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Abstract. Time-evolving networks have proven to be an efficient and effective

means of concisely characterising the behaviour of complex systems over time.

However, the analysis of such networks and the identification of the underlying

dynamical process has proven to be a challenging problem, particularly trying

to model the large-scale properties of graphs. In this paper we present a novel

method to characterize the behaviour of the evolving systems based on a thermo-

dynamic framework for graphs. This framework aims at relating the major struc-

tural changes in time evolving networks to thermodynamic phase transitions. This

is achieved by relating the thermodynamics variables to macroscopic changes in

network topology. First, by considering a recent quantum-mechanical character-

ization of the structure of a network, we derive the network entropy. Then we

adopt a Schrödinger picture of the dynamics of the network, in order to obtain

a measure of energy exchange through the estimation of a hidden time-varying

Hamiltonian from the data. Experimental evaluations on real-world data demon-

strate how the estimation of this time-varying energy operator strongly character-

izes the different states of time evolving networks.

Keywords: Complex Networks, Quantum Thermodynamics, Graphs

1 Introduction

Complex systems can be regarded as a collection of inhomogeneously and generically

interacting units and are ubiquitous both in nature and man-made systems. They appear

in a wide range of scenarios, varying from biological and ecological to social and tech-

nological fields and can refer to any phenomena properties, from the molecular level to

the scale of large communications infrastructures [4]. Notable examples are the World

Wide Web, metabolic reaction networks, financial market stock correlations, scientific

collaboration, coauthorship and citation relations, and social interactions [9].

Therefore, the study of the dynamics of these structures has become increasingly

important and a main subject for interdisciplinary research. Especially, network evolu-

tion mechanisms play a central role in science. This follows a crucial change of view-

point in network analysis, from a rather unnatural static view of the networks to a more

realistic characterization of the dynamics of the system, in order to predict their be-

havior and explain processes acting over the networks. Indeed now the majority of

efforts aims at identifying relations between the system structure and network perfor-

mance, e.g., how the network evolves with time to respond to structural needs, whereas
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previously efforts were aimed at representing the problem, i.e. the characterization of

network structure [3].

An excellent framework for the study of complex networks relies on statistical

physics and thermodynamics, connecting the macroscopic properties of a system to

the behavior of microscopic particles [6–8]. In particular, thermodynamics defines the

macroscopic properties of a system through three variables, subject to constraints im-

posed by the four laws of thermodynamics. For instance, in the case of graph representa-

tion of complex networks, Escolano et al. [2] provide a thermodynamic characterization

based on the variation of local histories over graphs.

In this paper we present a novel method to characterize the behaviour of the evolv-

ing systems based on a thermodynamic framework for graphs. Specifically, the graph

Laplacian of each time slice is seen as a quantum mixed state undergoing free evolution

- through the Schrödinger equation - under an unknown time-dependent Hamiltonian

representing the change in potential due to external factors, and entropy and energy

changing direct interaction with the environment.

In this way, the evolution of the network allows to estimate the hidden time-varying

Hamiltonian and consequently the Energy-exchange at each time interval - and the vari-

ation in entropy of the underlying structure as well. From these we derive all the ther-

modynamic variables of networks, including the free energy and temperature.

The consequent characterization is utilized to represent two real-world time-varying

networks: the price correlation of selected stocks in the New York Stock Exchange

(NYSE) [12], and the gene expression of the life cycle of the Fruit Fly (Drosophila

melanogaster) [1, 13].

2 Quantum Thermodynamics of the Network

Let G(V,E) be an undirected graph with node set V and edges set E ⊆ V × V and let

A = aij be the adjacency matrix, where

aij =

{

1, vi ∼ vj ,

0, otherwise.

The degree d of a node is the number of edges incident to the node and it can be

represented through the degree matrix D = (dij) which is a diagonal matrix with

dii =
∑

i aij . The graph Laplacian is then defined as L = D − A, and it can be in-

terpreted as a combinatorial analogue of the discrete Laplace-Beltrami operator. The

normalized Laplacian matrix L̃ is defined as

L̃ = D−1/2
(
D −A

)
D−1/2 (1)

If we divide the normalized Laplacian by the number of vertices in the graph we ob-

tain a unit-trace positive semidefinite matrix that Passerini and Severini [11] suggest can

be seen as a density matrix in a quantum system representing a quantum superposition

of the transition steps of quantum walk over the graph.

The continuous-time quantum walk is the quantum counterpart of the continuous-

time random walk, and it is similarly defined as a dynamical process over the vertices
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of the graph [5]. Here the classical state vector is replaced by a vector of complex

amplitudes over V , and a general state of the walk is a complex linear combination of

the basis states |v〉 , v ∈ V , such that the state of the walk at time t is defined as

|ψt〉 =
∑

u∈V

αu(t) |u〉 (2)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C
|V | are both complex. Moreover, we have

that αu(t)α
∗
u(t) gives the probability that at time t the walker is at the vertex u, and

thus
∑

u∈V αu(t)α
∗
u(t) = 1 and αu(t)α

∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R

+.

The evolution of the walk is then given by the Schrödinger equation, where we

denote the time-independent Hamiltonian as H.

∂

∂t
|ψt〉 = −iH |ψt〉 . (3)

Given an initial state |ψ0〉, we can solve Equation (3) to determine the state vector at

time t

|ψt〉 = e−iHt |ψ0〉 . (4)

The density operator (or density matrix) is introduced in quantum mechanics to

describe a system whose state is an ensemble of pure quantum states |ψi〉, each with

probability pi. The density operator of such a system is a positive unit-trace matrix

defined as

ρ =
∑

i

pi |ψi〉 〈ψi| . (5)

The von Neumann entropy [10] HN of a mixed state is defined in terms of the trace

and logarithm of the density operator ρ

HN = −Tr(ρ log ρ) = −
∑

i

ξi ln ξi (6)

where ξ1, . . . , ξn are the eigenvalues of ρ. The von Neumann entropy is related to the

distiguishability of the states, i.e., the amount of information that can be extracted from

an observation on the mixed state.

The observation process for a quantum system is defined in terms of projections

onto orthogonal subspaces associated with operators on the quantum state-space called

observables. Let O be an observable of the system, with spectral decomposition

O =
∑

i

aiPi (7)

where the ai are the (distinct) eigenvalues of O and the Pi the orthogonal projectors

onto the corresponding eigenspaces. The outcome of an observation, or projective mea-

surement, of a quantum state |ψ〉 is one of the eigenvalues ai of O, with probability

P (ai) = 〈ψ|Pi |ψ〉 (8)
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After the measurement, the state of the quantum systems becomes

∣
∣ψ̄

〉
=

Pi |ψ〉

||Pi |ψ〉 ||
, (9)

where || |ψ〉 || =
√

〈ψ |ψ〉 is the norm of the vector |ψ〉.
Density operators play an important role in the quantum observation process. The

observation probability of ai is P (ai) = Tr(ρPi), with the mixed state being projected

by the observation process onto the state represented by the modified density matrix

ρ′ =
∑

i PiρPi. The expectation of the measurement is 〈O〉 = Tr (ρO). The projec-

tive properties of quantum observation means that an observation actively modifies the

system, both by altering its entropy and forcing an energy exchange between quantum

system and observer.

Thermodynamics describes the behavior of a composite system in terms of macro-

scopic variables such as energy, entropy and temperature. These are linked together by

the thermodynamic identity

dU = TdS − PdV (10)

where U is the internal energy, S the entropy, V the volume, T the temperature, and P

the pressure.

Following Passerini and Severini [11] in their use of the normalized Laplacian

matrix as a density operator defining the current state of the network, we derive the

network entropy in terms of the von Neumann entropy

SV N = −

|V |
∑

i=1

λ̃i

|V |
ln
λ̃i

|V |
(11)

With this we can measure dS the change in entropy as the network evolves. Previous

work used similar entropic measure to define thermodynamic variables on networks,

but linked energy to the number of edges in the graph [15] or derived it through the

Boltzmann partition function of the network [14]. However, in these approaches the

structure of the graph has the dual function of state (determining the density operator)

and operator. Here we opt for a different approach that does away with this duality,

assuming that the energy operator is unknown and estimated from the evolution. We

assume that the dynamics of the network is governed by a free evolution following the

Schrödinger equation under an unkown time-varying Hamitonian Ht, and an interaction

with the outside world which acts as an observer. The free evolution does not change the

thermodynamic variables, while the cause of the variation in Entropy has to be sought

from the interaction process which also causes an energy exchange.

To measure the energy exchange we need to recover the potential term expressed by

the unknown Hamiltonian. In fact, the Hamiltonian acts as an energy operator, resulting

the following expression for the change in energy between state ρt and ρt+1

dU = Tr(Htρt+1)− Tr(Htρt) (12)

We estimate the Hamiltonian Ht as the one that minimizes the exchange of energy

through the interaction with the environment. To this end we assume that the interaction
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intervenes at the end of the free evolution, where ρt is transformed by the Schrödinger

equation into

ρ̂t+1 = exp(−iHt)ρt exp(iHt) (13)

The exchange of energy in the interaction is then

H = argmin
H

Tr(Hρt+1)− Tr(Hρ̂t+1) (14)

= argmin
H

Tr
(
H
(
ρt+1 − exp(−iH)ρt exp(iH)

))

Let ρt = ΦtΛtΦ
T
t be the spectral decomposition of the state of the network at time

t, equation (14) can be solved by noting that the minimum energy exchange intervenes

when the interaction changes the eigenvalues of the density matrices, and with them

the entropy, but does not change the corresponding eigenspaces. In other words, the

Hamiltonian is the cause of the eigenvector rotation and can be recovered by it:

Ht ≈ i log(Φt+1Φ
T
t ) (15)

It is worth noting that we have computed a lower bound of the Hamiltonian, since

we cannot observe components on the null spaces of ρs. Furthermore, we have

Φt+1Φ
T
t

︸ ︷︷ ︸

U

ρ0 ΦtΦ
T
t+1

︸ ︷︷ ︸

U

= ρ̂t+1 , (16)

where U = Φt+1Φ
T
t is the unitary evolution matrix. The final change in internal energy

is then

dU = Tr(Htρt+1)− Tr(Htρt) (17)

The thermodynamic temperature T can then be recovered through the fundamental

thermodynamic relation dU = TdS − PdV but where we assume that the volume is

constant, i.e. dV = 0 (isochoric process). As a result, the reciprocal of the temperature

T is the rate of change of internal energy with entropy

T =
dU

dS
(18)

This definition can be applied to evolving complex networks which do not change the

number of nodes during their evolution.

3 Experimental Evaluation

In this Section we evaluate the ability of the thermodynamic variables to describe the

overall dynamics of a system and to characterize significant changes of network’s state.

Especially, we will investigate how the estimated Energy-exchange describes the tem-

poral trend of the network and whether the approach turns out efficient to detect crit-

ical events of a complex phenomena (e.g. financial crises or crashes). To this aim, we

focused on two real-world time-evolving networks, representing the stock price corre-

lation of the New York Stock Exchange (NYSE) and the gene expression of the Fruit

Fly (Drosophila melanogaster).
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Fig. 1: Up-Bottom: entropy variation, energy variation and temperature versus time (May

1987 - October 1996), for the dynamic stock correlation network. The vertical colored

lines refer to the most important and devasting events for the trade market. Left-Right:

Black Monday (19th October 1987), Friday the 13th Mini-Crash (13rd October 1989),

Persian Gulf War (2nd August 1990 - 17th January 1991).

3.1 Datasets

NYSE: The dataset is extracted from a database containing the daily prices of 3799

stocks traded on the New York Stock Exchange (NYSE). The dynamic network is built

by selecting 347 stocks with historical data from May 1987 to February 2011 [12]. To

obtain an evolving network, a time window of 28 days is used and moved along time to

obtain a sequence (from day 29 to day 6004); so doing every temporal window becomes

a subsequence of the daily return stock values over a 28 day period. Then, to set trades

among the different stocks in the form of a network, for each time window, the cross

correlation coefficient between the time-series for each pair of stocks is computed. We

create connections between them if the absolute value of the correlation coefficient ex-

ceeds a threshold and in this way we construct a stock market network which changes

over the time, with a fixed number of 347 nodes and varying edge structure for each of

trading days.

Drosophila: The dataset belongs to the biology field and collects interactions among

genes of Fruit Fly - Drosophila melanogaster - during its life cycle. The fruit fly life

cycle is divided into four stages; data is sampled at 66 sequential developmental time

points. Early embryos are sampled hourly and adults are sampled at multiday intervals,

according to the speed of the morphological changes. Each stage gathers a set of sam-

ples: the embryonic phase contains samples from time point 1 to time point 30, larval

has samples 31-40, pupal 41-58 and the remaning samples concerns the adulthood. To

represent data using a time evolving network, the following steps are followed [13].

At each developmental point the 588 genes that are known to play an important role

in the development of the Drosophila are selected. These genes are the nodes of the

network, and edges are established based on the microarray gene expression measure-

ments reported in [1]. To make more tractable the normalized Laplacian any self-loop
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Fig. 2: Up-Bottom: entropy variation, energy variation and temperature versus time

(March 1997 - December 2001), for the NYSE dataset. The vertical colored lines signal

important events. Left-Right: Asian Financial Crisis (July 1997 – October 1997), Rus-

sian Financial Crisis – Ruble devaluation (17th August 1998), Dot-com bubble - climax

(10th March 2000), September 11 attacks.

in the obtained undirect graph - at each time - has been removed. This dataset yields a

time-evolving network with a fixed number of 588 nodes, sampled at 66 developmental

time points.

3.2 Experiments

To carry out our analysis, firstly we computed the normalized Laplacian of the network

at each step (e.g. the time interval in the NYSE is a day) and then the thermodynamic

variables, entropy and Energy-exchange (i.e. the change in internal energy), as shown

in equations (6) and (17), respectively. Then, by means of the entropy variation dS, we

computed the temperature (equation (18)) and finally we derived the Energy, from the

energy variation. Initial investigations were oriented towards a general analysis of three

main variables’ behaviour and afterward we shifted the focus on the one with the best

(qualitative) performance.

We commenced by examining the energy variation dU , the entropy variation dS

and the temperature T , as fluctuation indicators for the NYSE dataset (more suitable at

this exploratory level since presenting many phase oscillations to be detected). Fig. 1

and Fig. 2 are of help to compare the three quantities, throughout two slices of the time

series including well-distinct occurrences. We can see that both signals tend to exhibit

clear alterations in proximity of some major events even if the entropy variation appears

slightly noisier than the energy. For instance, in Fig. 2, the Asian financial crisis is well-

defined within boundaries (for the energy variation) as well as the Persian Gulf War

in Fig. 1, while the entropy’s signal lightly errs in terms of precision, still remaining

acceptable. Consequently the temperature, strongly affected by the entropy variation,

sometimes oscillates even if none financial incident influences the system. An example

of these unjustified swings is in Fig. 1, after January 1995.
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Fig. 3: Scatter plot of Energy vs Entropy (New York Stock Exchange data). Each dot is a

day and grey dots are the background. Dots of the same color belong to the same network

phase. Horizontal lines represent cluster centroids for the energy dimension.

Now we turn our attention to the energy dimension, which has proven to be the

one with the lowest volatility from the preliminary examinations. In Fig. 3, we show

the scatter plot of the Entropy over Energy for the NYSE dataset. Exploiting this kind

of representation, we were able to assess the effectiveness of the Energy-exchange in

characterizing the network state. Indeed, from the chart, an interesting feature of the

network emerges: it exists a clustering-like behavior of the market when the system

endures strong modifications. However, each pattern presents a wide entropy variation

but a low energy variation. Thus, we conclude network’s states are better identified by

the energy, which effectively catches cluster compactness, rather than the entropy, more

dispersive. A further evidence of such energetic typifying comes from Fig. 5, concern-

ing the Drosophila melanogaster data. Here again the entropy over energy plot modality

was adopted; we can observe that stages of the fruit fly life cycle, seen as phase tran-

sitions, are being recognized by the Energy-exchange, in a more succinct way than the

entropy dimension. Qualitative comparisons with other approaches adopting thermody-

namic characterizations, such as in [14], confirm that a clear distinction is not always

straightforward, above all when the amount of data is scarce (e.g., time epochs in the

time-series).

Finally, in Fig. 4, the temporal trend of the energy (recovered from Energy-exchange),

distinctly proves how the estimation of the hidden time-varying Hamiltonial success-

fully exctracts information from data and how the energy can be considered a decisive

state function.
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Fig. 4: Energy-exchange versus time of the NYSE network (May 1987 - December 2003).

Left-Right: Black Monday (19th October 1987), Friday the 13th Mini-Crash (13rd Oc-

tober 1989), Persian Gulf War (2nd August 1990 - 17th January 1991), Asian Finan-

cial Crisis (July 1997 – October 1997), Russian Financial Crisis – Ruble devaluation

(17th August 1998), Dot-com bubble - climax (10th March 2000), September 11 attacks,

Downturn of 2002-2003.

4 Discussion and Conclusion

In this paper, we adopt a thermodynamic characterization of temporal network structure

in order to represent and understand the evolution of time-varying networks. We provide

expressions for thermodynamic variables, i.e. entropy, energy and temperature, and in

addition we derive a measure of Energy-exchange. This analysis is based on quantum

thermodynamics and connected to recent works on the von Neumann entropy of net-

works. The Energy-exchage is derived by estimating an unknown Hamiltonian operator

governing the free evolution through the Schrödinger equation. We have evaluated the

approach experimentally using real-world data, representing time-varying complex sys-

tems taken from the financial and biological fields. The experimental results prove that

the Energy-exchage is a convenient and efficient measure for analyzing the evolution-

ary properties of dynamic networks, able to detect phase transitions and abrupt changes

occuring in complex phenomena.
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