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Abstract1

The study of ecological speciation is inherently linked to the study of selection. Methods2

for estimating phenotypic selection within a generation based on associations between trait3

values and fitness (e.g., survival) of individuals are established. These methods attempt to4

disentangle selection acting directly on a trait from indirect selection caused by correlations5

with other traits via multivariate statistical approaches (i.e., inference of selection gradi-6

ents). The estimation of selection on genotypic or genomic variation could also benefit from7

disentangling direct and indirect selection on genetic loci. However, achieving this goal is8

difficult with genomic data because the number of potentially correlated genetic loci (p) is9

very large relative to the number of individuals sampled (n). In other words, the number10

of model parameters exceeds the number of observations (p ≫ n). We present simulations11

examining the utility of whole genome regression approaches (i.e., Bayesian sparse linear12

mixed models) for quantifying direct selection in cases where p ≫ n. Such models have13

been used for genome-wide association mapping and are common in artificial breeding. Our14

results show they hold promise for studies of natural selection in the wild, and thus of ecolog-15

ical speciation. But we also demonstrate important limitations to the approach and discuss16

study designs required for more robust inferences.17
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Introduction18

Natural selection is the mechanism of adaptation and often drives speciation (Schluter, 2001;19

Schluter & Conte, 2009; Gompert et al., 2012; Nosil, 2012). Consequently, many attempts20

have been made to measure phenotypic selection in the wild, with the earliest studies occur-21

ring in the late 1800s (Bumpus, 1899; Endler, 1986; Kingsolver et al., 2001; Siepielski et al.,22

2013). Phenotypic selection can be quantified from changes in the distribution of trait values23

in a population within a generation (due to mortality), or from the association between trait24

values and quantitative measures of fitness components (e.g., seed set, weight, etc.) (e.g.,25

Lande & Arnold, 1983; Shaw et al., 2008). However, correlations among characters compli-26

cate measures of selection, as direct selection on one character induces indirect selection on27

correlated characters (Table 1, Fig. 1). Consequently, the total selection experienced by a28

trait can include direct selection on that character and the indirect effects of selection on29

any correlated characters (Kingsolver et al., 2001). Lande & Arnold (1983) showed that di-30

rect and indirect selection can be disentangled using multiple regression. Specifically, partial31

regression coefficients obtained from regressing fitness on a set of characters are estimates of32

the direct selection on each trait (these coefficients define the average gradient of the relative33

fitness surface). Although many modifications and refinements of this approach have been34

made (e.g., Schluter, 1988; Rausher, 1992; Geyer et al., 2007; Reynolds et al., 2016), these35

changes have not altered the conceptual basis of the approach.36

More recently, attempts have been made to measure selection on genetic loci or37

genomes based on short-term (e.g., within-generation) changes in allele frequencies (e.g.,38

Barrett et al., 2008; Anderson et al., 2013; Pespeni et al., 2013; Anderson et al., 2014; Gom-39

pert et al., 2014; Egan et al., 2015; Thurman & Barrett, 2016). The premise of these studies40

is that phenotypic selection within a generation alters the distribution of trait values and41

that this results in a within generation shift in allele frequencies at the causal loci affecting42

these traits (direct selection) and other genetic variants in linkage disequilibrium (LD) with43
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them (indirect selection) (Fig. 1). The extent to which phenotypic selection is transmitted44

down to the genetic-level depends on the heritability of the selected traits and patterns of45

LD. In stark contrast to our understanding of phenotypic selection, relatively little is known46

about individual episodes of selection on genetic loci, particularly under natural or semi-47

natural conditions (Barrett & Hoekstra, 2011; Thurman & Barrett, 2016). This is relevant,48

as measuring selection at the genetic-level could help resolve key questions about the mainte-49

nance of molecular variation in populations (e.g., Gillespie, 1991; Hahn, 2008; Huang et al.,50

2014) and the causes of ecological specialization (e.g., Agrawal et al., 2010; Anderson et al.,51

2013; Gompert et al., 2015; Gompert & Messina, 2016). Quantifying selection in the wild52

is also important for understanding speciation, as reproductive isolation often evolves as a53

direct consequence of divergent selection and local adaptation (e.g., Jiggins et al., 2001; Nosil54

et al., 2002; Lowry & Willis, 2010; Ording et al., 2010). Indeed, divergent selection is a form55

of reproductive isolation when it causes immigrant or hybrid inviability (Wu, 2001; Nosil56

et al., 2005). Moreover, direct or indirect selection on genetic loci and genomes can cause57

DNA sequence divergence that pleoitropically results in reproductive incompatibilities (e.g.,58

Swanson & Vacquier, 2002; Tang & Presgraves, 2009). Finally, the likelihood of speciation59

with gene flow and the persistence of distinct species upon secondary contact depends crit-60

ically on the genome-wide consequences of selection (Barton & Bengtsson, 1986; Barton &61

De Cara, 2009; Feder et al., 2012; Flaxman et al., 2013; Feder et al., 2014; Flaxman et al.,62

2014; Yeaman, 2015).63

Distinguishing between the direct and indirect effects of episodes of selection on allele64

frequency change is a notable challenge for genomic studies. Under most conditions, the65

number of correlated genetic loci will greatly outnumber the number of individuals studied66

(genome scans typically consider tens of thousands to millions of nucleotide variants and67

many fewer individuals). Thus, traditional statistical methods, such as the multiple regres-68

sion approach proposed by Lande & Arnold (1983) for phenotypic selection, cannot be used69

to obtain estimates of direct selection on each locus (such methods require the number of70
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observations, n, to exceed the number of model parameters, p). In other words, parsing di-71

rect and indirect selection on phenotypic and genomic variation present the same conceptual72

issue, but different analytical tools are needed for the latter because p ≫ n.73

We show that this problem can be approached using sparse linear mixed models74

that were developed for genome-wide association (GWA) mapping of polygenic traits and75

genomic prediction (Meuwissen et al., 2001; Ober et al., 2012; Habier et al., 2013; Zhou76

et al., 2013). The potential utility of GWA methods is unsurprising, as measuring episodes77

of selection on genetic loci is a special case of trait mapping. However, the conditions and78

study designs under which these methods will be most useful for inferring selection require79

further quantification, which we provide here. We focus on a specific model, the Bayesian80

sparse linear mixed model (BSLMM) introduced by Zhou et al. (2013), but related models81

and methods exist and will likely yield similar broad conclusions (e.g., Erbe et al., 2012).82

The method we focus on uses Bayesian variable selection, model-averaging and shrinkage83

inducing priors to extend the Lande & Arnold (1983) multiple regression approach to cases84

where the number of characters (i.e., loci) exceeds the number of observations.85

Herein, we demonstrate the utility and limitations of BSLMMs for studying selection86

by applying this method to a series of simulated data sets. We show that BSLMMs can be87

used to detect direct selection when fitness has a simple genetic basis. Additionally, we show88

that BSLMMs can generate quantitative summaries of selection across the genome, such as89

estimates of the additive genetic variation for fitness, under a wider variety of conditions.90

Whereas the quantitative summaries could also be obtained using traditional quantitative91

genetic breeding designs, such methods are not practical for many non-model organisms.92

Thus, approaches such as those considered here could help extend the direct study of selection93

to a broader range of organisms, an important goal if we are to achieve general understanding94

of ecological speciation.95
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Methods96

Theoretical background and statistical models97

We first present a general framework and issues for inferring selection, and then describe98

how BSLMMs can be used to infer direct selection. Multiple approaches exist to infer total99

selection, that is, the combined effects of direct and indirect selection on a genetic locus (e.g.,100

Anderson et al., 2014; Gompert et al., 2014). Key differences include whether one estimates101

a selection differential (as has been done in some phenotypic studies) or a selection coefficient102

(as used in population genetic theory, e.g., Ewens, 2004), and how one assesses statistical103

significance. Selection differentials for bi-allelic genetic loci can be calculated as δ = p1 − p0,104

where p0 and p1 are the population allele frequencies before and after selection, respectively105

(here we assume viability selection). While selection differentials are intuitive in phenotypic106

studies, selection coefficients are more useful for quantifying total selection on genotypes107

and are more directly related to population genetic models. Assume genotypes A1A1, A1A2,108

and A2A2 have relative expected fitnesses of w11, w12, and w22, respectively (here marginal109

fitnesses are defined based on the fitness effects of the genotypes and patterns of LD with110

other causal variants). The selection coefficient s is then defined based on the difference in111

the marginal fitnesses of alternative homozygotes, such that, w11 = 1+ s, w12 = 1+ hs, and112

w22 = 1 (here h denotes the heterozygote effect, that is the fitness of the heterozygote relative113

to the difference between the two homozygotes; Gillespie, 2004). Under this formulation,114

ŝ =
p1 − p0

p0(1− p0)(p0 + h(1− 2p0))
(1)

Thus, selection coefficients represent a particular standardization of the selection differential115

based on genetic variation, and one that differs from the standardization used in phenotypic116

studies (in phenotypic studies selection differentials are standardized by the phenotypic vari-117

ance; Lynch & Walsh, 1998).118
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In an infinite population Eqn. 1 could be used to calculate s exactly. However,119

stochastic processes (e.g., random mortality) in finite populations compound allele frequency120

changes due to drift and selection, making statistical inference of s necessary and adding121

uncertainty to estimates of selection. Thus, it is necessary to account for the possible con-122

tribution of drift to observed changes in allele frequencies. We present simple simulations in123

the on-line supplemental material (OSM) to illustrate this point, namely that genetic drift124

can cause substantial changes in allele frequency that can be misinterpreted as evidence of125

selection (distinguishing drift from selection is also an issue for phenotypic studies, although126

this is often not discussed).127

Given this consideration, maximum likelihood or Bayesian methods can be used to128

obtain interval estimates of s from genetic data under an appropriate stochastic model that129

allows drift and selection to contribute to allele frequency change (e.g., Wright-Fisher or130

Moran models with selection; Ewens, 2004). Additionally, randomization or simulation-131

based methods can be used to test the null hypothesis that s = 0 for a particular locus, as132

was done by Gompert et al. (2014) in their null model 1, or to test the global null hypothesis133

that s = 0 for all genetic loci (i.e., that selection did not affect any of the genetic loci). This134

can be done by comparing the number of loci with significant evidence of selection to the135

number expected by chance under the global null (Gompert et al., 2014). Note however, that136

the failure to reject null models of locus-specific or genome-wide drift is not evidence for the137

absence of selection, and thus this does not mean that s = 0 (most genetic loci will exhibit138

at least very low levels of LD with some causal variants in any finite population, and thus,139

the vast majority of cases where these null models cannot be rejected will represent type140

II errors; Gompert, 2016). We discuss these issues in more detail in the OSM (see ‘Total141

Selection’).142

These concerns related to parsing the contributions of drift and selection apply to143

inference of direct selection as well, but methods for estimating direct selection must addi-144

tionally account for correlations among genotypes at different loci. Lande & Arnold (1983)145
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proposed using multiple regression to solve the problem of trait correlations in phenotypic146

studies. Their approach works well as long as correlations among variables are not too strong147

and the number of observations (individuals) exceeds the number of traits (i.e., for p < n).148

Their approach still generally assumes that all relevant traits have been measured, which149

would be equivalent to assuming all causal variants have been assayed in genomic studies150

(the latter will rarely be true; we discuss the implications of this below). Using their ap-151

proach, partial regression coefficients provide measures of direct selection (Lande & Arnold,152

1983). More specifically, for bi-allelic loci with genotypes coded as 0, 1, or 2 copies of an153

allele, a partial regression coefficient, β, equals 1

2
sD, where sD is defined similarly to s but154

only includes direct selection on the genotype (here we assume perfect additivity, that is155

h = 0.5). When a relatively small number of genes or genomic regions are of interest, studies156

can be designed so that the number of individuals exceeds the number of genetic loci, and157

thus standard multiple regression approaches could be used to estimate sD (e.g., the major158

effect gene Eda in sticklebacks; Rennison et al., 2015). However, this will rarely be true for159

larger population genomic data sets (in such cases p ≫ n).160

BSLMMs can be applied even when p > n by adopting shrinkage or sparsity-inducing161

priors, which pull parameter estimates back towards zero (e.g., Bernardo et al., 2003; Pérez162

et al., 2010; Guan & Stephens, 2011). This class of methods includes polygenic models and163

whole genome regression approaches that have been successfully applied in genome-wide164

association studies (GWASs) and for genomic prediction and genomic selection in plant and165

animal breeding (e.g., Meuwissen et al., 2001; Goddard & Hayes, 2007; Heffner et al., 2008;166

Hayes et al., 2009; Resende et al., 2012; Zhou et al., 2013; Thomasen et al., 2014). Inference167

of direct selection can be approached in the same manner as mapping a phenotypic trait168

but with fitness or some component of fitness as the phenotype. Thus, all of the lessons we169

have learned from decades of GWASs, such as the need for large sample sizes, apply here170

(e.g., Visscher et al., 2012). We advance this existing knowledge by focusing on conditions171

most relevant for detecting selection, that is, cases where the phenotype (fitness) has a low172
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to moderate heritability and diffuse genetic architecture, and by considering genome-level173

summaries and locus-specific measures of selection.174

Here we focus on and describe one such model, the BSLMM proposed by Zhou et al.175

(2013), which is part of the gemma software package. We show how BSLMMs can be used to176

estimate direct selection when numerous (tens or hundreds of thousands) genetic loci have177

been sequenced, while also providing higher-level summaries of the genetic architecture of178

fitness, such as the number of loci with measurable effects on fitness. The latter informa-179

tion is extracted from a few key parameters in the model (caveats and limitations of these180

parameters are discussed below).181

BSLMMs consider the joint influence of all genetic loci on phenotype (Zhou et al.,182

2013). These models assume phenotype, or in this case fitness, is related to multi-locus183

genotype, such that,184

y = 1nµ+Xβ + u+ ǫ (2)

where y is the vector of observed fitness values (either 0 and 1 for binary outcomes such185

as dead vs. alive and mated vs. unmated, or a continuous metric such as survival time or186

seed set), µ is an intercept and ǫ is a n vector of error terms (this captures randomness and187

the effect of the environment on fitness). X is a matrix of p genotypes for n individuals,188

which are generally coded as 0, 1, or 2 copies of an allele, and β is a vector of (partial)189

regression coefficients. Thus, β is analogous to Lande & Arnold’s (1983) selection gradient,190

and represents the measurable effects of genotypes on fitness (i.e., direct selection). Here191

we use the term measurable to mean effects that are decidedly non-infinitesimal. To make192

the model identifiable, the regression coefficients are modeled as coming from a mixture of193

a normal distribution with unknown variance and a point mass at 0 (this is a shrinkage194

or sparsity-inducing prior). Analysis using Bayesian variable selection generates posterior195

inclusion probabilities (PIPs) for each genetic locus, which provide the probability of mea-196
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surable, direct selection on the locus. Bayesian model averaging can then be used obtain197

estimates of sD (direct selection) that account for uncertainty in whether sD = 0 (we refer198

to these estimates as β̄, whereas estimates that assume sD 6= 0 are denoted β̂). Depending199

on the nature and sparsity of the genetic data, some, most or all of the causal variants may200

not be sequenced, particularly with reduced representation sequencing methods (e.g., GBS,201

RADseq, exome sequencing, etc.; Tiffin & Ross-Ibarra, 2014). However, direct selection on202

the causal variants can still potentially be accounted for through LD with other variants203

(Fig. 2). Here, we are really using indirect selection on a locus linked to the (un-sequenced)204

causal variant as a proxy for direct selection on the missing causal variant. Nonetheless, this205

can be conceptualized as an estimate of direct selection in the sense that the effects of other206

(i.e., correlated and sequenced) genetic loci have been accounted for (i.e., the only indirect207

effects are those coming from missing loci). This issue is conceptually similar to the issue208

of inference of direct selection on phenotypes when not all phenotypes have been measured209

(Lande & Arnold, 1983).210

When fitness is determined by a large number of loci with very small or near infinites-211

imal effects, the contribution of this genetic variation to fitness might not be captured by212

the vector or partial regression coefficients, β. However, even in this case, genetic variation213

for fitness (and thus the full contribution of direct selection to variation in realized fitness)214

can be inferred using information from the overall genetic similarity among individuals. In215

Eqn. 2 this is accounted for by the vector u, which denotes each individual’s deviation from216

the mean expected fitness based on their complete multi-locus genotype. More specifically,217

a multivariate normal prior is placed on u with a variance-covariance matrix that is pro-218

portional to the genetic similarity or kinship matrix, which is calculated from the data and219

treated as a constant in the model; u is then inferred from the data given this prior.220

Thus, similar to classic quantitative genetic approaches, the model includes overall221

relatedness as a potential predictor of similarity in fitness (Lynch &Walsh, 1998). In contrast222

to quantitative genetic approaches, controlled crosses with specific breeding designs are not223
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required, and thus BSLMMs can be used in systems were controlled crosses are not practical224

or ethical. Nonetheless, breeding designs will affect the structure of the kinship matrix and225

amount of LD in the population, and patterns of relatedness can affect the efficacy of the226

method (see our results below). Thus, different experimental designs might be preferable227

for specific research questions (we discuss this point in detail below). The kinship matrix228

also serves to control for population structure, and can often do so more effectively than229

including population structure covariates (Zhao et al., 2007; Kang et al., 2008).230

The hierarchical nature of the model provides a means to estimate parameters that231

summarize direct selection across the genome (Guan & Stephens, 2011; Zhou et al., 2013).232

These include the proportion of variation in fitness explained by all of the genetic data (PVE)233

through β̄ and u (PVE should approach narrow-sense heritability with sufficient genetic234

sampling), the proportion of the PVE explained by genetic loci with measurable effects (via235

the β̄), which is denoted PGE, and the number of genetic variants with measurable effects on236

fitness (denoted n-γ). These metrics incorporate uncertainty in the specific genetic variants237

under selection, meaning that accurate estimates of these parameters should be possible238

even if the specific targets of direct selection cannot be localized. This is important, as239

these parameters alone can provide important information about genetic variation for fitness.240

Moreover, in some systems, such as hybrid zones, variation in fitness reflects components of241

reproductive isolation (e.g., hybrid inviability) making these measures relevant for studies of242

speciation.243

However, inference of these parameters is affected by the extent to which causal244

variants are effectively tagged by LD with sequenced variants, such that PVE and n-γ will245

only approach the true heritability and number of causal variants if all or most causal246

variants are in LD with sequenced variants. This will of course depend on the sparsity247

of the genetic data, general patterns of LD, and the extent to which causal variants and248

sequenced variants have similar allele frequencies (Visscher et al., 2012). More generally, the249

performance of BSLMMs for detecting selection will depend on numerous factors that can250
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usefully be explored with simulated data (as in this study).251

Simulations of fitness data252

We generated and analyzed data sets to assess the potential and limits of BSLMMs to quan-253

tify direct selection under different sampling designs and with different genetic architectures.254

The performance of this method has been evaluated in the context of genomic prediction255

and inference of PVE (Zhou et al., 2013). Our goal here was to also evaluate performance256

in terms of partial regression coefficients (that is, measures of direct selection on individual257

genotypes in our current formulation) and to examine performance under conditions that258

are more relevant for studies of genome wide selection in the wild, namely low to moderate259

heritability and diffuse genetic architectures for fitness (Mousseau & Roff, 1987; Kruuk et al.,260

2000; Hoffmann et al., 2016). We also considered sample sizes that, while reasonably large,261

are more realistic for studies of natural populations (compared to sample sizes that might262

be obtainable for studies of human disease).263

Fitness data sets were simulated under a variety of conditions and analyzed using264

the BSLMM implemented in gemma. We considered accuracy of inference with respect to265

individual estimates of sD and summaries of the genetic basis of variation in fitness (e.g.,266

PVE). We used previously generated genotyping-by-sequencing (GBS) genotype data as the267

starting point for simulations of fitness values. That is, we assigned selection coefficients to268

GBS genotypes and used these to compute the expected fitness for each individual based269

on the GBS data. This approach was used because it captures realistic patterns of genetic270

variation and linkage disequilibrium. We did not make inferences about selection in these271

specific species or populations (i.e., the fitness values were assigned by us in the aforemen-272

tioned simulation context). Although we used GBS data, BSLMM could be used with whole273

genome sequences, or even data sets that include a mixture of SNPs and structural variants.274

Our primary genetic data set included 592 Timema cristinae stick insects collected from a275

single population with genotypes for 246,258 SNPs (mean minor allele frequency = 0.09). A276
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full description of these data can be found in Comeault et al. (2015). We first considered a277

quantitative metric of fitness (e.g., adult weight, longevity, seed set, flower number, etc.).278

We initially simulated 50 replicate data sets with a narrow sense heritability of fitness279

(h2) of 0.3 or 0.05 and with 10, 100, or 1000 causal variants (we use L to denote the number280

of causal variants). We sampled the fitness effect of each causal variant from a standard281

normal distribution and assumed that the causal variants affected fitness additively with282

incomplete dominance (h = 0.5). Causal variants were chosen randomly from the set of283

genotyped SNPs and used to calculate expected fitness values. We then analyzed each data284

set with and without the causal variants included as potential covariates in the model. We285

did this because many causal variants will not be sequenced with partial genome sequencing286

approaches (Tiffin & Ross-Ibarra, 2014), such as GBS, but can still potentially be accounted287

for through LD with other variants. As mentioned previously, when causal variants are288

missing from the data set, we are really measuring indirect selection on a linked locus as a289

proxy for direct selection on the missing causal variant.290

Additional simulations were conducted to further test how different conditions influ-291

ence the efficacy of this method. First, the simulations described above were repeated using292

a binary metric of fitness, such as survival. We converted each individual’s quantitative score293

into a binary score by assuming that 50% of individuals with the highest quantitative score294

had a viability of 1, whereas the rest of the individuals had a viability of 0. Another set of295

simulations assessed the performance improvement through increased sample size (i.e., larger296

n). We sampled 2500 individuals from the set of genotyped individuals with replacement,297

and then simulated phenotypic data as described above for the initial set of simulations, but298

without the 1000 causal variants treatment. Genotypes (i.e., individuals) were replicated299

to obtain this sample size; this alters the structure of the kinship matrix and could affect300

performance independent of sample size. To test the effect of replicating genotypes (versus301

increasing sample sizes), we generated another series of data sets where we randomly chose302

148 of the 592 individuals and replicated them each four times (with N kept constant at303
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592). This also allowed us to evaluate the benefits and costs of more structured experimental304

designs (e.g., experiments involving full or half-sib families or even clones).305

We simulated a final series of fitness data sets using GBS data from Rhagoletis306

pomonella (Dryad DOI:10.5061/dryad.mb2tj). These data were described by Egan et al.307

(2015). Whereas this was a smaller data set (149 individuals and 33,723 SNPs), it is of308

interest because inversion polymorphisms result in large blocks of elevated LD, and more309

generally, LD is higher in R. pomonella (e.g., significant LD often extends beyond 10 cM)310

than in T. cristinae (e.g, average LD between SNPs ranges from 0.007 [SNPs < 100 bp311

apart] to 0.004 [SNPs > 100 bp apart]) (Feder et al., 2003; Gompert et al., 2014; Egan312

et al., 2015). Thus, it allowed us to ask whether increased LD offset the negative effect of a313

smaller sample size (for simplicity, we focus on the effect on PVE and n-γ). To this end, we314

replicated genotypes in a subset of simulations to obtain the same sample size as we had for315

the T. cristinae data (N = 592 individuals). Note that higher levels of LD generally make316

it easier to tag causal variants, but more difficult to localize them (see, e.g., Rieseberg &317

Buerkle, 2002), but that LD should in general improve estimates of PVE as this only requires318

tagging causal variants. As with the initial set of simulations, we generated replicate data319

sets with h2 equal to 0.3 or 0.05 and 10, 100, or 1000 causal variants (we only considered320

a quantitative metric of fitness, and only only 10 or 100 causal variants for the simulations321

with 592 individuals).322

Analyses of the simulated data323

We fit a BSLMM for each data set using gemma with two replicate MCMC runs, each with324

a 1 million iteration burnin, 2 million sampling iterations and a thinning interval of 100.325

Kinship matrixes were calculated as K = 1

p
XXT , where X is the matrix of genotypic data326

and p is the number of loci.327

We quantified the evidence of direct selection on individual SNPs based on posterior328
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inclusion probabilities, model-averaged estimates of selection (β̄ = 1

2
sD), and point estimates329

of β assuming β 6= 0 (denoted β̂). Both estimates of selection coefficients account for330

correlations among genotypes at different loci. We then assessed performance based on the331

correlation between true and inferred selection coefficients, and the normalized root-mean332

square error (RMSE) (normalized by the range of β). SNP effects were only considered for333

data sets that included the causal variants to make comparisons with true results readily334

interpretable.335

We summarized posterior distributions for genetic architecture parameters (we fo-336

cused mostly on PVE and n-γ, but also present estimates of PGE) based on the posterior337

mode and the 90% highest posterior density interval (HPDI), as calculated with the R package338

coda. The accuracy and precision of these parameter estimates were then quantified based339

on the RMSE and 90% HPDI coverage, where the latter is the proportion of the time that340

the true parameter value was included in the 90% HPDIs. Thus, lower RMSE and higher341

90% HPDI coverage equate to greater accuracy and precision of the BSLMM approach for342

inferring our parameters of interest.343

Results344

Estimating direct selection345

Under most conditions, partial regression coefficients (i.e., measures of direct selection or346

1

2
sD) were only weakly correlated with their true values (Fig. 3), such that distribution of347

true versus estimated effect sizes differed (Fig. 4). A notable exception occurred when fitness348

had a high heritability (h2 = 0.3) and was determined by a modest number of variants (L349

= 10). Under these conditions estimates of selection (β̄) were highly correlated with their350

true values (mean r = 0.73, s.d. 0.16) and the inferred and true effect size distributions were351

similar (Fig. 4c). Correlations between true and estimated effects were also higher when352
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only causal variants were considered (Fig. 3), or when the sample size was increased to 2500353

(Fig. S1). In contrast, replicating genotypes (without increasing N) caused a decrease in354

correlations between true and inferred measures of selection (Fig. S2).355

The mean posterior inclusion probability (PIP) for causal variants was relatively356

high for h2 = 0.3 and L = 10 (0.26, s.d. 0.10), but was near-zero for more diffuse genetic357

architectures or when h2 was low (Fig. 5a). Average PIPs for causal variants nearly doubled358

when the sample size was increased from 592 to 2500 individuals (0.48 for h2 = 0.3 and L359

= 10, and 0.13 for h2 = 0.05 and L = 10; Fig. 5b), but decreased notably when genotypes360

were replicated without increasing N (Fig. 5c). The accuracy of estimates of direct selection361

was also affected by the genetic architecture of fitness and the estimator used. For example,362

estimates of partial regression coefficients were the least accurate (i.e., had the greatest363

RMSE) when data sets were simulated with diffuse genetic architectures or when point364

estimates of selection (β̂) were used rather than model-averaged estimates (β̄) (Fig. S3). As365

with other metrics, increasing sample size to 2500 resulted in a decline in normalized RMSE366

(Fig. S4), but using replicated genotypes while keeping the sample size at 592 increased367

normalized RMSE (Fig. S5).368

Quantitative estimation of genetic variation for fitness369

Even with moderately large sample sizes (e.g., 100s of individuals), considerable uncertainty370

was observed for estimates of the proportion of variation in fitness explained by the genetic371

data (PVE) and the number of causal variants with measurable effects (n-γ) (e.g., Figs.372

S6, S7, S8). Despite this overall lack of precision, posterior point estimates of PVE were373

reasonably accurate (e.g., for the T. cristinae data with N = 592, RMSE varied from 0.06374

to 0.23; Table 2, Fig. 6). The accuracy of point estimates increased with sample size and375

replication of individual genotypes, with much lower RMSE (and higher 90% HPDI coverage)376

for N = 2500 or N = 592 with replicates than N = 592 with unique genotypes (0.01 to 0.02377
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for N = 2500 compared to 0.09 to 0.19 for similar conditions with N = 592; Table 2, Fig.378

S9).379

PVE was often lower for binary fitness metrics than for quantitative fitness metrics,380

though this did not have a consistent effect on accuracy (i.e., in some cases this gave better381

estimates as results for the quantitative metric were upwardly biased; Table 2; Fig. S10a).382

Simulations based on the R. pomonella data gave more variable and less accurate estimates383

of PVE than did those from T. cristinae, particularly with h2 = 0.3 and L = 100 or 1000384

(Table S1; Fig. S10b). However, results based on the R. pomonella data were similar to T.385

cristinae when we replicated genotypes to obtain the same sample sizes, suggesting that the386

poorer performance with the R. pomonella data was due to low sample sizes rather than387

high LD (Table S1; Fig. S10). 90% HPDIs for PVE generally included the true parameter388

value (the worst performance was observed for binary metrics; Table 2).389

Estimation of the number of casual variants390

Performance was notably poorer in terms of estimating the number of causal variants (that391

is, for inference of n-γ compared to PVE), but these results were also more difficult to392

interpret (Table 2, S1). Specifically, we seldom found evidence for greater than 10 variants393

with measurable effects on fitness, regardless of conditions (the greatest exception was for394

the case of 100 causal variants with h2 = 0.3 and N = 2500; Table 2). Thus, estimates395

of n-γ were mostly (but not entirely) independent of simulation conditions (that is, of the396

true parameter values). However, because the magnitude of fitness effects varied among397

causal variation (which were normally distributed) and many had very small effects (this398

is particularly true for the case where 1000 variants explained only 5% of the variation in399

fitness), not all of these variants necessarily had “measurable” effects on fitness and many400

were likely subsumed in the polygenic term (i.e., via their contribution to overall genetic401

similarity captured by the kinship matrix).402
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This interpretation is consistent with the fact that our estimates of PVE were fairly403

accurate, and that the proportion of the PVE that was attributable to loci with measurable,404

rather than infinitesimal effects (PGE in gemma) decreased with the number of causal vari-405

ants. For example, mean estimates of PGE based on the Timema data with h2 = 0.3 were406

0.79, 0.41, and 0.03 for simulations with L = 10, 100 and 1000, respectively. Also in support407

of this, SNP posterior inclusion probabilities (PIPs), which measure the probability a locus408

has a measurable effect on fitness and are the basis for estimates of the number of causal409

variants (n-γ), were positively correlated with effect sizes. Average correlations (Pearson’s r410

values) between PIPs and effect sizes for these same data sets were 0.61 (L = 10), 0.27 (L411

= 100) and 0.05 (L = 1000).412

Discussion413

Estimating direct selection414

We found that BSLMMs could provide useful information about individual bouts of direct415

selection on genetic loci under at least some conditions, but that important and sometimes416

strong limitations exist. For example, we showed that reasonably accurate estimates of417

selection coefficients could be obtained when sample sizes were large (N = 2500), the genetic418

architecture of fitness was relatively concentrated (L = 10) and fitness was more heritable (h2
419

= 0.3). With that said, even very large sample sizes gave poor estimates of direct selection420

when fitness had a diffuse genetic architecture (e.g., h2 = 0.05 and L = 1000). Thus, when421

heritability is low or fitness is highly polygenic, it might not be practical or even possible422

to obtain large enough samples for accurate estimates of direct selection on individual loci.423

These results are consistent with the general finding from GWASs over the past few decades424

that large sample sizes are often required but not always sufficient to map phenotypes for425

complex or quantitative traits onto genotypes (Manolio et al., 2009; Visscher et al., 2012).426



19

Replicating genotypes (while holding N constant) actually degraded performance427

with respect to estimating direct selection. We suspect this occurred because fewer inde-428

pendent data points were available to isolate the effects of individual loci on fitness. With429

this in mind, our results suggest that experiments designed to detect direct selection on430

individual genes should maximize sample sizes without necessarily attempting to include431

multiple individuals from the same family or replicate clones (when this is an option). In432

some systems it might be possible to obtain larger total sample sizes by studying multiple433

experimental populations in a block design (as in Gompert et al., 2014), perhaps at the434

expense of sample sizes within populations or blocks. Moreover, such replicated block de-435

signs could provide additional information about the consistency of selection across space436

or genomic backgrounds. In the end, the large experiments required to accurately measure437

direct selection on genes might benefit from (or even require) multi-investigator collaborative438

efforts on the same scale as those currently used to map human diseases (e.g., N > 100,000439

as in IL6R Genetics Consortium Emerging Risk Factors Collaboration, 2012).440

In addition to study design, we found that the estimator used to infer selection coeffi-441

cients mattered. In particular, we obtained more accurate estimates of direct selection (lower442

RMSE and a higher correlation with the true values) with model-averaged coefficients (i.e.,443

β̄) than with those that assumed a non-zero effect (i.e., β̂). A notable exception occurred444

for concentrated genetic architectures when only considering causal variants. Here, β̂ con-445

sistently outperformed β̄ with respect to RMSE and the correlation with the true parameter446

value. But, because causal variants will rarely be known a priori, we still recommend using447

model-averaged regression coefficients to estimate direct selection on genetic loci.448

Quantifying genetic variation for fitness449

Some key questions about selection can be addressed directly from statistical summaries450

of direct selection at the genome-level (e.g., via the model parameters PVE, PGE and n-451

γ). When the heritability of fitness is low or fitness is highly polygenic, focusing on these452
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questions and parameters might be the most productive way forward (Rockman, 2012). For453

example, estimates of PVE can be converted into measures of additive genetic variation454

for fitness and these could be productively compared across environments, populations or455

fitness components. In turn, these measures are of interest for studies of speciation as456

genetic variation for fitness determines the evolutionary response to selection and thereby457

affects the possibility for colonization of new habitats. Whereas such information could also458

be obtained using traditional quantitative genetic breeding designs (Falconer & Mackay,459

1996), these methods are not practical for many non-model organisms.460

We found that fairly accurate estimates of PVE could be obtained under a wider461

variety of conditions than estimates of direct selection on genes. The accuracy of PVE point462

estimates was determined mostly by sample size (bigger was of course better) and whether463

or not genotypes were replicated. Specifically and in contrast to the results for estimating464

selection coefficients (see above), replication of genotypes increased the accuracy of PVE465

estimates, likely by both increasing LD and increasing the explanatory power of overall466

genetic similarity. Thus, when possible, studies designed to estimate PVE should include467

replicate clones or inbred lines. Note however, that this will come at the cost of decreasing468

one’s ability to parse individual genotypic effects (compared to an analysis of the same469

number of unrelated individuals). When clones are not available other structured designs,470

such as studies of siblings or hybrids, should have a similar albeit less pronounced effect.471

Because structured designs increase LD and thereby make it easier to tag a greater proportion472

of causal variants with fewer sequenced loci, they could be particularly appropriate when473

generating GBS data.474

Unfortunately, n-γ was routinely underestimated, particularly when L was large,475

although performance did improve with N = 2500. This however does not necessarily reflect476

a failure of the method, as the effects of many causal variants were simply subsumed in477

the polygenic term when the number of causal variants was large. As such, these smaller478

effect causal variants did not contribute to estimates n-γ. Nonetheless, based on our results,479
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estimates of n-γ should be interpreted with extreme caution.480

Additional considerations and future directions481

Further refinements and extensions of BSLMMs have the potential to increase the utility of482

these models for studying direct selection. For example, current BSLMMs do not account483

for dominance or epistasis, which are central to many theories of speciation (e.g., Orr, 1995;484

Turelli & Orr, 2000; Gavrilets, 2004; Orr, 2005). Dominance can readily be incorporated485

into whole genome regression models, such as BSLMMs, and the same is true in principle486

for epistasis but the number of genotype combinations present a daunting, but not insur-487

mountable, computational challenge (Zhang & Liu, 2007; Jiang et al., 2009; Wang et al.,488

2010; Ritchie, 2011, 2015). Our understanding of speciation would benefit from measures of489

selection that explicitly incorporate genotype-environment interactions or that tie selection490

to trait genetics. Genotype-environment interactions for fitness are central to ecological spe-491

ciation and have been tested for in many studies, but often by post hoc comparisons rather492

than formal inference within a model (e.g., Gompert et al., 2014). With that said, adding493

additional model parameters for genotype-environment interactions or epistasis will further494

increase the sample size required for accurate inferences. Thus, trade-offs exist between ex-495

tending the realism of models and obtaining reliable estimates of parameters with limited496

sample sizes. Notably, methods now exist that take trait architectures into account when497

testing for selection based on spatial patterns of genetic variation (Berg & Coop, 2014).498

Similar approaches could be used to powerfully connect fitness to phenotype and genotype499

in short-term studies of selection, and doing so should not entail a cost (unlike adding epista-500

sis) as this would decrease the number of free parameters in the model. Such an integrative501

framework has the potential to truly advance our understanding of the causes and dynamics502

of speciation in nature.503

Beyond methodological refinements, progress in understanding selection’s role in spe-504

ciation can be made by combining information from studies of direct selection with genome505
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scans of natural populations or even long-term evolve and re-sequence experiments. Popula-506

tion genomic methods (e.g., FST outlier analyses and tests for allele frequency–environment507

correlations; Beaumont & Balding, 2004; Foll & Gaggiotti, 2008; Coop et al., 2010; Günther508

& Coop, 2013) gain power to detect selection by compounding the evolutionary consequences509

of selection over many generations (Lewontin & Krakauer, 1973). However, such approaches510

rarely provide actual estimates of selection (Thurman & Barrett, 2016), do not parse di-511

rect vs. indirect selection and can be confounded by demographic processes (Excoffier et al.,512

2009). In contrast, short-term studies of direct selection can employ experimental designs513

where demography is known precisely and where processes other than selection and drift514

(e.g., gene flow, mutation, and recombination) are eliminated (e.g., Gompert et al., 2014).515

Consistency of patterns between these types of studies would implicate direct selection as516

a key driver of divergence and suggest selection has acted in a consistent manner through517

time. Conversely, a lack of consistency could suggest methodological shortcomings, indicate518

a greater role for other evolutionary processes (such as drift and linked selection), or show519

that selection or LD varies through time. Such temporal variation in selection has been520

detected in phenotypic and genetic studies (Barrett et al., 2008; Siepielski et al., 2009; An-521

derson et al., 2014; Bergland et al., 2014; Thurman & Barrett, 2016), but has rarely been522

incorporated into models of speciation.523

Evolve and re-sequence experiments provide a powerful means to measure selection524

by compounding information over many generations (e.g., Cooper et al., 2003; Blount et al.,525

2008; Burke et al., 2010, 2014; Long et al., 2015; Gompert & Messina, 2016), and could be526

used to distinguish between direct and indirect selection (using, e.g., “driver” “passenger”527

models as in Illingworth & Mustonen, 2011). However, such studies have been mostly re-528

stricted to organisms with short generation times that can be maintained in the lab (e.g.,529

viruses, bacteria, yeast, and Drosophila), and lab conditions may fail to capture the com-530

plexity of nature. In contrast, experiments that measure one or several bouts of selection531

within a generation can be conducted with a greater diversity of organisms under natural532
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or semi-natural conditions. Indeed, hundreds or even thousands of such within-generation533

estimates of phenotypic selection have increased our awareness of how variable selection can534

be across traits, time periods, and populations, and refinement of this awareness contin-535

ues (Kingsolver et al., 2001; Siepielski et al., 2009). It will thus be important to recognize536

when multi-generation experiments are needed (e.g., to measure the effect size distribution537

of mutations fixed during a bout of adaptation), versus when replicated within-generation538

experiments might be more productive (e.g., to contrast directions of selection on genotypes539

across a suite of environments or to distinguish between mechanisms by eliminating mutation,540

recombination, etc.). When possible, short-term measures of selection should be compared541

to results from longer-term evolve and re-sequence experiments on the same species to de-542

termine whether the former can be extrapolated to predict evolutionary trajectories over543

greater time-scales (which are clearly relevant for speciation).544

Alternative approaches545

Some questions in speciation can only be addressed by disentangling direct and indirect546

selection. For example, measures of direct selection are most relevant for identifying the547

specific genes or alleles that cause reproductive isolation. Nonetheless and despite our focus548

on direct selection in this manuscript, there are cases where the combined effects of direct549

and indirect selection (that is, total selection) are of interest, and thus where the “problem”550

of correlated genetic loci disappears.551

First, the expected genomic response to an episode of selection (i.e., genome wide552

changes in genotype and gamete frequencies) is dictated by total selection, not direct selection553

alone. This means that evolutionary change from one generation to the next is best predicted554

from total selection. With that said, longer-term predictions will only be valid if LD is555

maintained through time, for example by tight physical linkage or by selection and gene556

flow as can occur in hybrid zones (Barton & Hewitt, 1985). Otherwise, patterns of LD will557

change via recombination and changes in allele or haplotype frequencies.558
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Second, several important evolutionary phenomena depend on the total selection559

experienced by genetic loci each generation (that is, direct selection and LD with causal560

variants), including genetic hitchhiking (Maynard-Smith & Haigh, 1974), genome-wide con-561

gealing during speciation with gene flow (Flaxman et al., 2013, 2014), and the reduction in562

effective gene flow across a hybrid zone (i.e., the barrier to gene flow; Barton, 1983; Bar-563

ton & Bengtsson, 1986; Gavrilets, 2004; Barton & De Cara, 2009). Thus, under a range of564

conditions, whether populations can speciate with gene flow or remain distinct upon sec-565

ondary contact depends on the total selection (specifically total selection in the context of566

divergent selection or selection against hybrids) rather than only direct selection on causal567

variants (Barton, 1983; Flaxman et al., 2014). In conclusion, total selection matters because568

it is not always just individual genes that respond to selection, but potentially sets of genes569

or genomes (Lewontin, 1974), and thus measures of total selection provide key information570

about evolutionary processes in general, and speciation in particular.571
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Pérez P, de los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based739

on molecular markers and pedigree using the bayesian linear regression package in R. The740

Plant Genome, 3, 106–116.741

Pespeni MH, Sanford E, Gaylord B, et al. (2013) Evolutionary change during experimental742

ocean acidification. Proceedings of the National Academy of Sciences , 110, 6937–6942.743

Rausher MD (1992) The measurement of selection on quantitative traits: biases due to744

environmental covariances between traits and fitness. Evolution, pp. 616–626.745

Rennison DJ, Heilbron K, Barrett RD, Schluter D (2015) Discriminating selection on lateral746

plate phenotype and its underlying gene, Ectodysplasin, in threespine stickleback. The747

American Naturalist , 185, 150–156.748

Resende M, Munoz P, Acosta J, et al. (2012) Accelerating the domestication of trees us-749

ing genomic selection: accuracy of prediction models across ages and environments. New750

Phytologist , 193, 617–624.751

Reynolds RJ, de los Campos G, Egan SP, Ott JR (2016) Modelling heterogeneity among752

fitness functions using random regression. Methods in Ecology and Evolution, 7, 70–79.753

Rieseberg LH, Buerkle CA (2002) Genetic mapping in hybrid zones. American Naturalist ,754

159, S36–S50.755

Ritchie MD (2011) Using biological knowledge to uncover the mystery in the search for756

epistasis in genome-wide association studies. Annals of Human Genetics , 75, 172–182.757

Ritchie MD (2015) Finding the epistasis needles in the genome-wide haystack. In: Epistasis ,758

pp. 19–33, Springer.759

Rockman MV (2012) The QTN program and the alleles that matter for evolution: All that’s760

gold does not glitter. Evolution, 66, 1–17.761



33

Schluter D (1988) Estimating the form of natural selection on a quantitative trait. Evolution,762

pp. 849–861.763

Schluter D (2001) Ecology and the origin of species. Trends in Ecology and Evolution, 16,764

372–380.765

Schluter D, Conte GL (2009) Genetics and ecological speciation. Proceedings of National766

Academy of Sciences , 106, 9955–9962.767

Shaw RG, Geyer CJ, Wagenius S, Hangelbroek HH, Etterson JR (2008) Unifying life-history768

analyses for inference of fitness and population growth. The American Naturalist , 172,769

E35–E47.770

Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics771

of phenotypic selection in the wild. Ecology Letters , 12, 1261–1276.772

Siepielski AM, Gotanda KM, Morrissey MB, Diamond SE, DiBattista JD, Carlson SM (2013)773

The spatial patterns of directional phenotypic selection. Ecology Letters , 16, 1382–1392.774

Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nature775

Reviews Genetics , 3, 137–144.776

Tang S, Presgraves DC (2009) Evolution of the Drosophila nuclear pore complex results in777

multiple hybrid incompatibilities. Science, 323, 779–782.778

Thomasen JR, Egger-Danner C, Willam A, Guldbrandtsen B, Lund MS, Sørensen AC (2014)779

Genomic selection strategies in a small dairy cattle population evaluated for genetic gain780

and profit. Journal of Dairy Science, 97, 458–470.781

Thurman TJ, Barrett RDH (2016) The genetic consequences of selection in natural popula-782

tions. Molecular Ecology , 25, 1429–1448.783

Tiffin P, Ross-Ibarra J (2014) Advances and limits of using population genetics to understand784

local adaptation. Trends in Ecology & Evolution, 29, 673–680.785



34

Turelli M, Orr HA (2000) Dominance, epistasis and the genetics of postzygotic isolation.786

Genetics , 154, 1663–1679.787

Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. The788

American Journal of Human Genetics , 90, 7–24.789

Wang Y, Liu X, Robbins K, Rekaya R (2010) AntEpiSeeker: detecting epistatic interac-790

tions for case-control studies using a two-stage ant colony optimization algorithm. BMC791

Research Notes , 3, 117.792

Wu CI (2001) The genic view of the process of speciation. Journal of Evolutionary Biology ,793

14, 851–865.794

Yeaman S (2015) Local adaptation by alleles of small effect. The American Naturalist , 186,795

S74–S89.796

Zhang Y, Liu JS (2007) Bayesian inference of epistatic interactions in case-control studies.797

Nature Genetics , 39, 1167–1173.798

Zhao K, Aranzana MJ, Kim S, et al. (2007) An Arabidopsis example of association mapping799

in structured samples. PLoS Genetics , 3, e4.800

Zhou X, Carbonetto P, Stephens M (2013) Polygenic modeling with Bayesian sparse linear801

mixed models. PLoS Genetics , 9, e1003264.802



35

Data Accessibility803

Simulated data sets and scripts used for analysis will be archived with DRYAD (DOI pend-804

ing).805

Author Contributions806

ZG generated and analyzed the simulated data sets. All authors wrote and revised the807

manuscript.808



36

Tables and Figures809



37

Table 1: Glossary of key terms.

term definition

direct selection selection on a genetic locus resulting from its
effect on fitness

indirect selection selection on a genetic locus caused by LD with
directly selected genotypes at other loci

total selection combined effects direct and indirect selection
on a genetic locus

linkage disequilibrium (LD) statistical correlations between genotypes at
different loci (physical linkage can facilitate
LD but is not required for it)

selection coefficient (s) measure of the strength of selection (direct
or total), often expressed as the difference in
expected fitness between alternative homozy-
gotes

polygenic modeling methods for connecting phenotypes to geno-
types that consider many loci at once and do
not rely on binary classifications of loci as as-
sociated or un-associated with phenotype

PVE proportion of the phenotypic variation ex-
plained by the genetic data, which should
approach the narrow-sense heritability of the
trait (fitness) as the genome becomes satu-
rated with genetic markers

PGE the proportion of the PVE explained by loci
with measurable effects on a trait (fitness); the
remainder of the PVE comprises loci with near
infinitesimal effects

n-γ number of genetic markers with measurable
effects on the phenotype (fitness)

PIP posterior inclusion probability, that is the pos-
terior probability that a genetic marker is un-
der direct selection (or is in high LD with an
un-sequenced locus under direct selection)

HPDI highest posterior density interval, that is the
interval that contains the most probable pa-
rameter values such that every value in the
interval is more probable than any value not
in the interval
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Table 2: Accuracy of genome-level parameter estimates under different conditions. Results
are shown for data sets generated from the T. cristinae genetic data; see (Table S1) for
results from the R. pomonella data. Average metrics across replicates are reported with and
without causal variants included in the analysis. ‘estimate’ denotes the point estimate of the
parameter (posterior mode), ‘RMSE’ is the root mean square error, and ‘90% cov.’ gives
the proportion of times the true parameter value was included in the 90% HDPIs. ‘no. loci’
gives the actual number of causal variants (L), whereas ‘no. SNPs’ refers to the number of
causal variants inferred from the model. ‘N’ is the sample size (N) and a denotes cases where
genotypes were replicated (see the main text for details).

h2 no. loci metric causal N PVE no. SNPs

estimate RMSE 90% cov. estimate RMSE 90% cov.

0.3 1000 quantitative true 592 0.26 0.20 0.92 8.7 991.7 0.00

0.3 100 quantitative true 592 0.34 0.19 0.86 18.3 85.6 0.84

0.3 10 quantitative true 592 0.39 0.14 0.80 7.3 5.6 0.88

0.05 1000 quantitative true 592 0.09 0.14 0.96 3.5 996.5 0.00

0.05 100 quantitative true 592 0.08 0.09 0.98 3.6 96.4 0.82

0.05 10 quantitative true 592 0.07 0.09 0.94 3.5 6.6 1.00

0.3 1000 binary true 592 0.12 0.23 0.72 8.8 991.8 0.00

0.3 100 binary true 592 0.16 0.18 0.84 4.6 95.4 0.74

0.3 10 binary true 592 0.26 0.15 0.90 6.0 7.0 0.94

0.05 1000 binary true 592 0.05 0.06 1.00 3.8 996.2 0.00

0.05 100 binary true 592 0.05 0.07 0.96 3.6 96.4 0.83

0.05 10 binary true 592 0.07 0.10 0.96 4.1 6.1 1.00

0.3 100 quantitative true 2500 0.30 0.02 0.90 63.2 45.3 0.62

0.3 10 quantitative true 2500 0.31 0.02 0.90 7.2 3.7 0.78

0.05 100 quantitative true 2500 0.05 0.02 0.80 9.1 99.1 0.68

0.05 10 quantitative true 2500 0.05 0.01 0.94 3.9 6.8 0.84

0.3 100 quantitative true 592a 0.31 0.03 0.96 4.8 99.5 0.74

0.3 10 quantitative true 592a 0.30 0.05 0.84 4.3 6.1 0.74

0.05 100 quantitative true 592a 0.05 0.03 0.92 3.3 96.7 0.66

0.05 10 quantitative true 592a 0.04 0.03 0.88 3.0 7.1 1.00

0.3 1000 quantitative false 592 0.24 0.19 0.88 4.2 995.8 0.00

0.3 100 quantitative false 592 0.25 0.19 0.94 5.2 94.9 0.92

0.3 10 quantitative false 592 0.26 0.19 0.92 3.8 6.4 0.98

0.05 1000 quantitative false 592 0.08 0.14 0.96 3.6 996.5 0.00

0.05 100 quantitative false 592 0.08 0.10 0.98 3.8 96.4 0.82

0.05 10 quantitative false 592 0.07 0.09 0.96 3.5 6.4 1.00
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Figure 1: Schematic representation of how phenotypic selection drives allele frequency change
across the genome, either directly or indirectly because of correlations among traits and non-
causal loci. Panel (a) shows how direct phenotypic selection on a trait (in this case trait 2)
alters the distribution of that trait. Panel (b) shows how selection on trait 2 (black arrows
denote the direction of selection) can cause a response to selection at a correlated trait (trait
1) that itself has no effect on fitness, and thus at genetic variants that underlie variation
in the correlated trait (green arrows give the direction of the response) when correlations
exist as denoted by the gray ellipses. Panel (c) shows how the response to selection depends
on patterns of LD. Here horizontal lines denote chromosomes, vertical bars correspond to
genetic variants with (peach) or without (black) effects on trait 2 (that is, the trait that
affect fitness), and vertical arrows indicate the magnitude of the response to selection (direct
selection only occurs on the causal variants).
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total selection on all loci

total selection on sequenced variants

indirect selection on sequenced 

variants as a proxy for direct selection 

Figure 2: Graphical depiction of total and direct selection when causal variants are not
sequenced in an empirical study. The top image (‘selection on all loci’) shows selection on a
series of genetic variants. The horizontal line denotes a chromosome, vertical bars correspond
to variants with (peach) or without (black) effects on fitness, and vertical arrows indicate
the magnitude of selection. In the next two images, information is presented for the subset
of variants that were sequenced; the causal variant was not sequenced but its position is
noted with a dashed line. The middle image shows that all genetic markers in LD with
the causal variant experienced indirect selection (‘total selection on sequenced variants’).
Whereas, the bottom image shows that, at least in this example, direct selection on the un-
sequenced causal variant is fully accounted for as direct selection on the genetic variant most
associated with the un-sequenced causal variant (‘indirect selection on sequenced variants
as a proxy for direct selection’). Because of imperfect LD, the strength of direct selection
on the missing causal variant is underestimated, but the number of causal variants (one) is
correctly inferred.
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Figure 3: Violin plots summarize the distribution (across data sets) of Pearson correlations
between true and estimated regression coefficients (i.e., measures of direct selection). Results
shown here are from the Timema cristinae GBS data with N = 592 (without genotype
replication) and a quantitative fitness metric. Results for different genetic architectures
(i.e., h2 = narrow-sense heritability and L = number of causal variants) are shown in each
panel. Correlations for different combinations of h2 and L are shown in different panels.
Correlations were calculated for model-average (β̄) and raw (β̂) estimates of direct selection,
and were calculated based on all SNPs or only the causal variants.
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Figure 4: Quantile-quantile plots compare distributions of true (simulated) and estimated
effect sizes. Each gray line corresponds to a single simulated data set. Results shown
here are based on the Timema cristinae GBS data set with N = 592 (without genotype
replication) and a quantitative fitness metric. Results for different genetic architectures (i.e.,
h2 = narrow-sense heritability and L = number of causal variants) are shown in each panel
(50 replicate data sets per conditions). One-to-one diagonal lines are included for reference.
Effect size distributions for each simulated data set were obtained by averaging distributions
over ten random draws from the posterior distribution of the gemma model parameters γ and
β.
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Figure 5: Violin plots summarize the distribution (across data sets) of posterior inclusion
probabilities (PIPs) for causal variants, that is for variants directly affecting fitness. Re-
sults are shown for the Timema cristinae GBS data with a quantitative fitness metric with
different sampling sizes and schemes (a-c) and genetic architectures (i.e., values of h2 =
narrow-sense heritability and L = number of causal variants).
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Figure 6: Box plots illustrate the distribution of point estimates for the proportion of vari-
ation in fitness explained by the genetic data (PVE). We show the distribution of point
estimates (posterior mode) across replicates for different conditions. Dotted red-lines indi-
cate the true parameter value. Panels (a), (b), and (c) give results for different sample sizes
and schemes. Results shown here are based on the Timema cristinae GBS data with a quan-
titative metric of fitness and a range of genetic architectures (h2 = narrow-sense heritability,
L = number of causal variants, N = number of individuals).


