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Abstract. The high resolution observations (TRACE and SOHO) of waves in coronal structures
have revealed a rapid damping of modes, sometimes their damping length being of the same
order as their wavelength. The rapid damping of modes in coronal loops permits us to derive
values for magnetic field and transport coefficients. In this contribution we study the damp-
ing of linear compressional waves considering a two-dimensional propagation in gravitationally
stratified plasma in the presence of thermal conduction. By considering this 2D model, we show
that the presence of an additional transversal motion has an important effect on the damping
of the waves. This theoretical model allows as to conclude that the main effects influencing the
damping of the waves are the degree of the transversal structuring and temperature.
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1. Introduction

The launch of the high resolution satellites and the study of data provided by these
space telescopes revealed the existence of waves propagating in the solar corona in the
magnetohydrodynamic (MHD) frequency domain. The common feature of the observed
waves and oscillations in the solar corona is their rapid damping. Mendoza-Briceno
(2004), De Moortel and Hood (2003 and 2004) studied the damping of coronal com-
pressional waves supposing an 1D model. Comparing the observational damping values
with theoretical results they found that slow MHD modes can be damped efficiently and
there is a minimum damping length (or time) that can be obtained by thermal conduc-
tion alone. Combining the effects of gravitational stratification, thermal conduction and
optical thick radiation, De Moortel and Hood (2004) and Mendoza-Briceno et al. (2004)
showed that the stratification increases the damping length considerably. Their numeri-
cal analysis proved that the combined action of thermal conduction and loop cross-area
divergence yields damping length values in good agreement with TRACE observations.

The damping of waves is a very popular area of study of modern solar physics since it is
one of the key ingredients of coronal seismology. Damping of modes is studied in coronal
loops to derive information about the magnetic field, transport coefficients, stratification,
and heating functions (Nakariakov et al. 1999, Ruderman and Roberts 2002, Banerjee
et al. 2007, Dymova and Ruderman 2007, Verth et al. 2007). The damping of global
waves is used to obtain maps of the magnetic field in the quiet Sun, or information about
the source of these waves, e.g. coronal mass ejections (Ballai et al. 2005, Ballai 2007)

In this paper we investigate the combined effect of an additional transversal motion and
gravitational stratification on thermally damped linear compressional waves propagating
in coronal loops in a two dimensional equilibrium.
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Figure 1. A schematic picture of the working model.

2. Model and Governing Equations

The proposed 2D dimensional working model is shown in Figure 1. The atmosphere
is stratified under gravity in the z direction and waves propagate upwardly in low-beta,
completely ionized gas. In order to simplify the treatment we restrict our model only
to those waves which have wavelengths comparable to the size of the loop (waveguide).
In this way we neglect any dispersive effect which would appear due to the geometrical
transversal size of the coronal loop. It was shown by Edwin and Roberts (1983) that waves
corresponding to this limit (wide tube limit) are weakly dispersive, i.e. they propagate
similar to waves in an unbounded plasma. We suppose vertical wavelengths comparable
to the gravitational wavelength, so the effect of gravitational stratification must be taken
into account. In order to describe non-ideal effects, which may act to damp the considered
modes, we consider thermal conduction as one of the most plausible mechanisms that can
affect the propagation of MHD waves (certainly for slow MHD modes). Under coronal
conditions, thermal conductivity is a tensorial quantity with the parallel component to
the ambient magnetic field being much larger than the perpendicular one (Ruderman
et al. 2000). We consider small but finite amplitude perturbations about the equilibrium.
Observations show that the amplitudes of the modes are small (De Moortel et al. 2002),
therefore we limit ourself to linear waves only.

The plasma is in a hydrostatic and isothermal equilibrium which means that the density
and Alfvén wave profiles are given by ρ0(z) = ρ0(0)e−z/H and vA (z) = vA0(0)ez/2H ,
where ρ0(0) and vA0(0) are the density and Alfvén speed at z = 0 and H(= c2

S /γg) is the
isothermal scale-height. All perturbations oscillate in phase, so we write all perturbations
proportional to exp[i(ωt − k⊥x)], where ω is the frequency of the wave and k⊥ is the
component of the wave vector in the x direction. The linearized system of equation
describing the motion in a stratified and thermally conductive medium is given by
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ρ0
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where κ‖ =
3ρ0 k 2

B T0 τe

m p m e
is the parallel component of the thermal conductivity (see, e.g.
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Braginskii 1965) and we introduced the notation

χ =
mp(γ − 1)2κ‖

2γkB ρ0
.

The equations given by the system (2.1)–(2.3) will be reduced to a dispersion relation
which will allow us calculating the damping length of waves.

3. Results and Discussion

In the particular case of waves in unstratified plasma under the effect of thermal
conduction, the system of equations describing the evolution of waves is simplified by
considering H → ∞, i.e. the Alfvén speed becomes height-independent. Now all pertur-
bations can be Fourier-analyzed in the z direction and write all quantities proportional to
exp(−ikzz). The system of equations describing the dynamics of waves can easily derived
to lead to the dispersion relation

ω5 + Q1ω
4 + Q2ω

3 + Q3ω
2 + Q4ω + Q5 = 0, (3.1)

where the coefficients Qi , (i = 1 . . . 5) are defined as

Q1 = −
iχγk2

z

γ − 1
, Q2 = −K2(v2

A + c2
S ), Q3 =

iχk2
z K2(c2

S + γv2
A )

γ − 1
,

Q4 = k2
z K2c2

S v2
A , Q5 = −

iχc2
S v2

AK2k4
z

γ − 1
,

where K2 = k2
⊥ +k2

z . The solutions of Eq.(3.1) describe the frequency of slow, fast MHD
and thermal modes. Under coronal conditions c2

S ≪ v2
A and the slow waves represent

acoustic waves modified by the presence of the magnetic field, while fast waves can be
seen as Alfvén waves modified by the compressibility of the plasma. Under the same
considerations, the frequency of waves can be approximated by ω2 ≈ k2

z c2
S for slow waves

and ω2 ≈ K2v2
A for fast waves. In order to study the dependence of the damping length

of these modes we suppose a real frequency and a complex longitudinal wavenumber,
i.e. kz = kr + iki . The wavelength of waves is given by λ = 2π/kr , while the damping
length by Ld = 1/|ki |. We also suppose that waves will have a weak damping, expressed
mathematically by the inequality |kr | ≫ |ki |. If this form of the wavenumber is inserted
back into Eq. (3.1) from, then we can isolate the imaginary part of the wavenumber
giving us the damping length of waves. Solved for slow waves, the damping length is

Lslow
d0 ≈

6χα1

3w2(γ − 1)c2
S + α2

, (3.2)

where

w = k⊥/kz , [α1 = [(2w2 − 5γ + 5)c2
S + (γ − 1)(2w2 + 5)v2

A ],

α2 =
√

9w4(γ − 1)2c6
S + 12k2

r χ2α1 [(w2 − γ + 1)c2
S + (w2 + 1)(γ − 1)v2

A ].

Further analytical progress can be made supposing a situation when the Alfvén speed
(i.e. equilibrium density and pressure) is locally constant (local analysis). In this ap-
proximation the dispersion relation will have a similar form as Eq. (3.1), but now the
coefficients will be modified as
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S ) −
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],
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Figure 2. The variation of the damping lengths of slow and fast waves with the ratio w = k⊥/kz

in a homogeneous and in a stratified coronal loop in the presence of thermal conduction
(kr = 1.4 × 10−7m−1 , χ = 1011m2s−1 , cS = 152kms−1 , vA = 900kms−1 , H = 50Mm)
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S v2
A (kz +
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z 3
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1

H
).

Using the same technique as before, we can obtain the damping length of slow waves
in the presence of stratification. The results are shown in Figure 2.

The damping length of fast waves has been studied numerically by solving the disper-
sion relation for ki . The variation of the damping length of slow and fast waves is studied
with respect to the ratio k⊥/kr (= w) in two cases (Figure 2). While for slow waves there
is a clear difference between the homogeneous and stratified case, in the case of fast waves
the two solutions coincide meaning that stratification (at least in the ’local’ sense) has
no effect on the damping of these waves. For both types of waves large changes in the
damping length occur for small values of w. For larger values the damping length seems
not to be sensitive to the existence of a transversal scale.
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