UNIVERSITY OF LEEDS

This is a repository copy of Computing at massive scale: Scalability and dependability
challenges.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105671/

Version: Accepted Version

Proceedings Paper:

Yang, R and Xu, J orcid.org/0000-0002-4598-167X (2016) Computing at massive scale:
Scalability and dependability challenges. In: Proceedings - 2016 IEEE Symposium on
Service-Oriented System Engineering, SOSE 2016. 2016 IEEE Symposium on
Service-Oriented System Engineering (SOSE), 29 Mar - 02 Apr 2016, Oxford, United
Kingdom. IEEE , pp. 386-397. ISBN 9781509022533

https://doi.org/10.1109/SOSE.2016.73

(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Computing at Massive Scal8calability and
Dependability Challenges

Renyu Yang and Jie X
fSchool of ComputingBeihang University, Beijing, China
*School of Computing, University of Leeds, Leeds, UK
yangry@act.buaa.edu.cn; j.xu@leeds.ac.uk

Abstract —L arge-scale Cloud systems and big data analytics
frameworks are now widely used for practical services and
applications. However, with the increase of data volume, the
heterogeneity of workloads and resources, together with the
dynamicity of massive user requests, the uncertainties and
complexity of resource scheduling and service provisioning
increase dramatically, often resulting in poor resour ce utilization,
vulnerable system dependability, and negative user-perceived
performance impacts. In this paper, we present our
understanding of the current and future challenges in this
particular area, and discuss both existing and potential solutions
to the problems, especially those concerned with system
efficiency, scalability and dependability. We first introduce a
data-driven analysis methodology for characterizing the resource
and workload patterns and tracing performance bottlenecksin a
massive-scale distributed computing environment. We then
examine and analyze several fundamental challenges and the
solutions we are developing to tackle them, including for
example, incremental resource scheduling and incremental
messaging communication, decentralized scheduling, rapid
system failover, and request handling parallelism etc. We
integrate these techniques together with the data analytics
methodology to drive a novel big data and service engineering to
facilitate the system optimization, tuning and verification. We
aim to develop and offer innovative methods and mechanisms for
future computing platforms that will provide strong support for
new big data and 10E (Internet of Everything) applications.

Keywords — Cloud computing, Compute at Scale, Performance,
Scalability, Dependability, Cloud engineering

. INTRODUCTION

making, thereby improving user experiences such as
personalization and product recommendation. Meanwhile,
there are also a large number of tracing logs generated within
these processes every ddhese system logs can be utilized
both in the development stages and in online production
systems for monitoring, debugging the operational behavior
and understanding the inherent patterns in massive-scale
computing system.

In order to effectively and fully utilizing and mining the
business data or system logs, data processing has been
progressively migrating from traditional database-based store
and query approaches to distributed systems which can easily
scale out. However, as data analytics clusters grow in size and
complexity, how to provide scalable and dependable se&rvice
is a significantly important challenge. This indicates the
system should schedule hundreds of thousands of tasks per
second, while applications (running services and compute jobs)
canbe immune to the increasingly unexpected system failures
or unforeseen interactions. Therefore, scalabilind
dependability have become two fundamental challenges for all
distributed computing at massive scale. Despite many recent
advances from both academia and industry, these two
problems are still far from settled especially when the system
scale grows to over 10k-level servers and million-level
computation tasks.

In particular, the scheduler is highly risky become the
scalability bottleneck, considering the approximately linear
grow of the workloads number hold within the enlarged
cluster. Additionally, in highly dynamic Cloud environments
there are great heterogeneities produced by different user

Cloud datacenters are large-scale distributed computinggquests and available resources since many specialized

systems, typically implemented using commodity hardwaresystems with different computation purposesexist with
capable of provisioning services to consumers with diversdiverse resource requirements and patterns. The system
business requirements. The batch processing and real-tirgsource utilization can be intuitively enhanced by running a
analytics of big data are becoming the most exploring anthix of diverse workloads on the same machines (CPU- and
important requirementdn the big data erathe volume and memory-intensive jobs, small and large workloads, and a mix
velocity of data generation are unprecedent@yer 2.5 of batch and low-latency jobs), sharing the underlying
Exabytes of data are generated every day and the speed of dahysical resources.

generation doubles every 40 months according to a study by Furthermore, Cloud service providers are constantly under
Harvard Business Revidw [7]. In platformthe e-commerce great pressure to provision uninterrupted reliable serdogs
giant Alibaba in China, hundreds of millions of customers visitplatforms to consumers while reducing their operational costs
the web sites every day, looking for things to buy from ovedue to significant software and hardware failures in such scale
one billion items offered by merchants. Hundreds of terabytesystemp [43]A widely used means to achieve such a goal is to
of user behavior, transaction, and payment data are logged ange redundant system components to implement user-
must go through daily elaborated processing to timely suppottansparent failover, but its effectiveness must be balanced
the optimization of core business operations (such aseonlircarefully without incurring heavy overhead when deployed
marketing, product search and fraud detection) and decisig@n important practical consideration for systems at sufficient



scale and complexity. -~

In this paper, we present our understanding of the current  @# “Tasksubmission eee lll eed
challenges in this particular area based on the emerging o o o@ o mm
characteristics within computing at scale. Additionally, we
discuss both existing and potential solutionglepth to the W_ Scheduler
problems, especially those scalability and dependability
concerns. Specifically, we fitgt introduce a data-driven %%%%% %%%%%%%
analytics methodologyo charactede the patterns in Cloud
data centers including resouragorkload, performance and EEeEE :> EeEEEEN
failure models, and to trace potential performance bottlenecks EHemom @DDHD CIC]
in massive-scale distributed computing environmeBtsed HemENe0Q
on these profiling information and knowledge, we then ® - compute task TR EREEN
examine and analyze several fundamental challenges and =3 = computenode | N | |
solutions we are developing to tackle them, including Fm = Framework o

incremental resource scheduling and messagiecentralized
scheduling, request handling parallelism, rapid system failoveiFigure 1 Comparison and evolution: traditional system scale v.s mas
and state recovery etc. We concretely discuss the desigystem scale
philosophies, considerations and tradeoffs we usually make
when we implement the techniques above. Most of them am/stem scale in the following aspects: heterogeneity, diverse
adopted or appliedn-progress into underlying distributed workloads increasing scale, and frequent failures etc. To deal
platforms at the Alibaba Cloud systems. Moreover, we presentith these changes, multiple compute frameworks run on a
the data-driven service engineering in which we realize a fullinified scheduler while handling varying requests. The diverse
closed-circle including monitoring, analytics, alarming, systenworkloads will usually co-allocate to improve utilization.
optimization, and the eventual verification. Finally, we presen varving R tand R Het i
several further directions not limited to our particular researc arying request and Resource Heterogeneity
areas and demonstrate that the proposed apm®auid There are great heterogeneities produced by different user
mechanisms can bring great benefits to an extensive range f§fluests and available resources in the computing cluster
computer systems, such as mobile computing, loV (Internet of Firstly, the request heterogeneity can attribute to the highly
Vehicles) 10T (Internet of Things) etc dynamic Cloud environment, where users with different
The remaining sections are structured as follows: Section @omputation purposes co-exist with diverse resource
discusses the overview of massive-scale computing charactéfduirements and patterns. User-specific attributes can be
istics; Section 3 present the data-driven analytics methodolodgiPrmally expressed by the required type and amount of
we adopt the scalability and dependability challenges and€source and other attributes that could dictate detailed
possible solutions are presented in Section 4 and SectionPeferences including data locality, the optimal location where
respectively we show the systematic application of big data@ Specific workload can be executescurity requirements
engineering in Section 6;evmake a concrete discussion in geographical location, or specific hardware
terms of the future directions and research challenges gonstraints such as processor architecture, number of cores or

Section 7 and conclude our paper in Section 8. Ethernet speed among others describéd il [12][13]. Secondly,
for the resource hetererpity, the machine that constitutes the

cluster is typically derived from commodity hardware rather
II.  OVERVIEW: COMPUTING AT MASSIVE SCALE than advanced high performance server owing to the

Internet-scale or datacenter-scale computing for analyticggnificantly reduced merchandising and operational costs
workloads has been widely mentioned in recent years anghe conﬂgu_ranon d|v¢r5|t_|es among different m_achm(_as lead to
becomes increasingly common. High operational andhe huge.d|screp.anc:|e_s in a cluster. These d_|ver5|t|es_ can be
maintenance  costs  within  heterogeneous  workloadsharacterized using dimensions such as micro-architecture,
management and resource allocation enable the philosophy §chine chipset version, CPU and memory capacm. [44].
share cluster resources among diverse computatiof fact, the machines are constantly supplemented into the
frameworks ranging from batch jobs to long-running servicescomputing cluster over_time, using whatever configuration
Scheduling such diverse workloads is inherently complex anf@s most cost-effectiie T1B]. Despite these benefits, these

uncertain especially when the compute cluster size rapidifommodity servers are very vulnerable to kinds of hardware
grows. and software failures_[4B]Therefore, the Cloud datacenter

To determine the challenges in the massive-scal@roviders have to be constantly under great pressure to face
computing, it is firstly necessary to clearly understand théncreasing failures in such systems in order to provision
numerous emerging but inherent characteristics within theninterrupted reliable services to theconsumers. The
wide fields including Cloud computing and Big Data Mentioned heterogeneities will increase the scheduling
processing As described if_Figure |1, we summarize theComplexity since the system has to pre.-fllter the_gandldate
emerging characteristics and trends compared with traditionigr9eted servers for the specific request in the waiting queue



TABLE 1 STATISICAL DATA DURIN G 2015ALIBABA DOUBLE -ELEVEN while more than 160 million transactions per hour could be

SHOPPING FEST'VAEl done inside Master Card system in 2012. In comparison, the
Type Number upper payment transactions in Alipay (Alibgba Grsup
Peak order number Over 120,000 pesecond payment system) even reached 85,900 transactions per second
Total payment transactionsin Alipay | 710 millions during the double-eleven shopping festival in 2p1H [1][2]
gea:: ltoayme”tt_ transactions in Alipay ?ibgggoper Secondd which had surpassed visa as the most transacted payment
eaK transaci IOﬂSpI’OCBSSBd on , per secon .
AliCloud (Alibaba Cloud) platform gateway. Table 1 illustrates the peak or total throughput of

systems in Alibabh [2]. The throughput is indicated by the
transactions processed in the payment subsystem or big-data

TABLE 2 STATISICAL DATA OF ONE PRODUCTION SYSTEM INALICLOUD. . I .
processing system. All order and transaction data will be

Type Number finally extracted into a large-scale computing system da¥ r
S‘jro‘:)erngﬁgger 9‘;8380 time processing and business analysis. Specifically, a
Task number 42.266.899 transparent user experience is highly desirable during the
Worker number 16,295,167 request bursting period without noticeable response latency or

. _ ~ service timing-out due to the overloaded workloads beyond
by going through whole search space of available machingke system capacity. Therefore, the high-stress requests and
according to the request constraints and specification. transactions require the underlying systems to cope with them
B. Workload Diversity and Resource Sharing timely and keep the'waltlng queue size as short as poss!ble.
_ _ . Subsequently, effective resource assignments and allocations
With the prevalence of big data concepts and techniques, thee expected to accelerate the turnovers of system resources
demanc_js for data analysis and processing  increasgereby improving the resource utilization.
dramatically. At presentcluster computing systems are  \jeanwhile, the increasingly enlarged cluster size also
increasingly specialized for particular appllcatlon domains Qngives rise to difficulies of cluster management and the
purposes. Generally, we can categorize the workloads infjcreasing scheduling complexity. At preseriihoo reported
online service and offlme processing. The form'al one can bgat they can support up to 4,000 nodes before YA:|RN [37]
regarded as long-running service, such as virtual machinginaha had supported 5,000 nodes resource management and
rental, .emal'l service, storage service etc. For the Oﬁl'”%rovision and will support ovet0000 nodes recently.
processing, in addition to early systems such as Map Redugg,ogle claimed that their Borg system can run workloads
[18]] Dryad [17] more and more specialized systems for newacross tens of thousands of machines effectively] [38]
application domains are emerging both in academia andgjity, with the cluster size increased, even the periodical

industry. In particular, these systems include: Spark for ingiays updates and reports carried by the heartbeats would
memory computinf [34]Storm{[31] and MillWhed [48] for  pocome a heavy burden, leading to the message congestions.
stream processing, Drenpel [46] and Hive [47] for interactiverne RpC call might be invalid when messages are aggregated
SQL queries, Pregfl [4B] for graph processing, [Tez] [50] ang}ithin the sending queue, resulting in severe package drop and
FuxiJob[ 28] for DAG processing, and Graphilab [49] forjoss The messages re-sending retries will further aggravate
machine learning etc. Although these systems seem @ beyo system handling capability and the system might
natural way to achieve the corresponding computatiogventuwy hang out and fail to handle any request

effectively, these solutions can achieve neither high server cgnsiger a cluster with hundreds of thousands of
utilization nor efficient data sharirfg [33]. In reality, most concyrent tasks, running for tens of seconds on average, the
cloud facilities operate at very low utilizatibn [38]. It seems esource demand/supply situation would change tens of
contradictory to the fact that some clusters might be very busy,qusands times per second. Making prompt scheduling
or be extremely short for a specified resource dimension (SUGfbcisions at such a fast rate means that the resource allocation
as CPU-, mem-intensive), although other separateediuste st realizearapid and relatively precise mapping of the CPU,
idle but cannot be fully utilized by others. The data sharinghemory and other resource on all machines to all tasks within
among different frameworks on separate cluster becomegery decision makingThe statistics shown in Table 2 give a
difficult and have to leverage data exporting, replicated tg et example of the numerical dataincluding the
permanent storages for contemporary buffering. computational tasksind the available compute nodes in a

Consequently, high operational costs force heterogeneo%icm production system at massive sgale][28].
applications to share cluster resources for achieving economy

of scale The highly-required utilization and data sharing

demands motivate the system evolution to support multiD. Frequent Failure Occurrence

tenant workloads in a unified system to improve the efficiency Massive-scale systems are typically composed by hundreds

and utilization. of thousands to millions of alive and interacting components

comprised by the resource manager, service framework and

: computational applications. With increasing scale of a cluster,

C. Increas.lng Request and Cluster §cale. the |[|z)r0bability %? hardware failures als?) arifes [[20][21]
According to a bankcard analy[6]|sa Card system aqgitionally, rare-case software bugs or hardware deficits that

could process over 24,000 transactions per second in 203@yer show up in a small-scale or testing environment could

=1




also suddenly surface in massive-scale production systems .

. . Request number Request handling
Essentially, failures have become the norm rather than the | ;4 requency scalability
exception at large scale [19]. Due to such system scale,

heterogeneity and complexity, it is very likely that different [ Resource dimension - Resource scheduling
types of faults will manifest. According to our observations, and amount > Scalability scalability
there are a variety of failures causes including halt failures due

to OS crash, network disconnection, and disk hang or [“gysem scale and Communication and

insufficient memory (OOM) due to bugs in codes, overweight complexity messaging scalability
system utilization, performance interference, network
congestion ett [2A2][28][64][6%]. As we discussed early, the Figure 2 Charateristics of massive-scale system scalability, chalienge
servers adopted widely in Cloud datacenter use commodityand the main concerns.

hardware, resulting in deteriorating situations. At the same

time, the increased cluster size itself introduces much MOIghergy model in which we comprehensively analyze the

unce_rtalr)tles and reduce _the overaI_I. system re"ab'l'%nergy-eﬁiciency of massive system impacted by performance
considering the increased fallurg probap|I|ty of each nqqe a"iﬂterferenc] and failure-energy model which depicts the

software component. In this environment, traditionalgnergy-efficiency reduction and wastes due to constant
mechanisms such as health monitoring tools or heartbeg res in Cloud data cenfer [43].

tracking can help but cannot completely shield the failures The gata-driven analysis is critical to improve resource

from running applications. Fault-tolerance is an effective,jization, reduce energy waste and in general terms support
means in enhancing the dependability of Cloud systems, aRde gesign of accurate forecast mechanisms under dynamic
will ultimately reduce the economic impact and serviceongitions with QoS offered to customers improved. For

degradation for providers and consumers respectively. example, we classify the incoming tasks based on their

Based on fundamental analysis ahove will mainly focus  regource usage patterns, pre-select the hosting servers based
on two outstanding system problems which are highly needegh, resources constraints, and make the final allocation
to be handled scalability and dependability in this paper. decision based on the current servers performance interference
level[[4d[41]. Additionally, we propose a practical data engi-
neering method which uses the data analytics methodology to

driven an automatic service for system monitoring and

Gaining an understanding of Cloud system environments igiagnosis, thereby instructing where and how to optimize and
of increasing importance as well as complexity due to &nprove the system.

Cloud's ability to elastically scale-up and down provisioned
resources on-demahpd [10]. Additionally, such systems need to
satisfy the expected Quality of Service (QoS) requirements to IV. SCALABILITY
fulfill the diverse business objectives demanded by consumerg Challenges
As a consequencé is a crucial requirement to characterize ) ) )
the workloads runningithin a Cloud environment. Resource scheduling can be simply considered as the
Analysis and simulation of Cloud tasks and userg’rocess of matching demand (requests to allocate resources to
significantly benefits both providers and researchers, as fin processes of a specific task or application) with supply
enablesas well as offering a practical way to improve data (@vailable resources of cluster nodes). Therefore the complex-
certer functionality and performance. For providers andty of resource management is directly affected by the number
system developers, it enables a method to enhance resouffeconcurrent tasks and the number of server nodes in a
management mechanisms to effectively leverage the diversifjuster. Additionally, other factors also impact the complexity,
of users and tasks to increase the productivity and QoS of thdilclu-ding - supporting resource allocation over multiple
systems. For example, we exploit task heterogeneity tgimensions (such as CPU, memory, and local storage),
minimize performance interference of physical servers of@irness and quota constraints across competing applications;
analyze the correlation of failures to reduce resourc&nd scheduling tasks close to data. _
consumption. It is also extremely useful for us to find the TO deal with the increasing explosion of running tasks and
potential system deficiencies and bugs according to the daifjﬁe Cluster scale, computing systems at massive scale have to
regression testing and profiling data analysis. irstly take the scalability issues into considerations. In this
In our previous workd [J4][15], we conducted the CONtext, we define scalaplllty as a constant system capabll[ty
comprehensive analysis at cluster and intra-cluster fevel that sustains the scheduling throughput (such as the operation
quantify the diversity of Cloud workloads and derige Per second) whilst controlling the perceptional response
workload model from a large-scale production Cloud datddtencies as if in ordinary smaller scale. We describe the
center [8]. The presented analysis and model captures tf@aracteristics and challengef in Figufe 2. N
characteristics and behavioral patterns of user and task 10 understand the mechanisms of scalability, we divide the
variability across the entire system as well as differentsSues into the following aspects

observational periods. We further quantify the interference- [S1:] Request handling scalability - Running workloads
(such as job or application) will propose resource requests to

Ill.  DATA-DRIVEN METHODOLOGY



utilize request-based approach, in which the central
resource manager is responsible for resource negotiation
among different resource requests and application master takes
charge of job schedulindt significantly mitigates the load

Cluster

= Appl:P1, 14 5=
( Rackl ) App2: P1,9 ([ Rack2

- o5 : and stress on the central master while enables a customized
4: P3, 1 . . . .
N S— ApoS: 49 —t— and flexible resource requirement in the meantime.
. ||mpriprs|| == = |[mppripral| — ) Decentralized-schedulers phase — the third evolution to
M1 App2:PL5 | [ M2 M3 App2: P14 M4 ) . S . . .
— | |appaipa || e " || app3:p2.3 ; improve the scalability is decentralization. In general, multiple

Appd: P3, 8 ! ! Appa; P3, 8

- distributed scheduler replicas are adopted via multi-threads or
R iqdependent processes, and_ each scheduler can handle requests
App4:P3.3 simultaneously based on its local cached states or global

shared statés [3b5]. Such typical systems include: [29]
Mercur and Bord [36] Moreover, no central state need

Figure 3 Locality-tree based incremental scheduling example.r to be maintained ",c the scheduler (such as Sp [32])

example, Appl totally requires 14 units of resourcethencluster, and adopts batch-sampling and only sends resource probe to find

prefers 4 units on M1 and 4 units on M2 with the highpiority P1 due candidate server This category is particularly effective for

to data-locality considerations. those scenarios witlistrong low-lateny requirement.

Appl:P1, 4
App2: P1,3
App3:P2, 1

App2:P1,3
App3:P2, 1
Appd: P3,4

Appl:P1, 4
Appd: P3,6

ask for resources according to application-specific executio(®) Effective Scheduling Approach
logic. The requests will aggregate if they are not handled Apart from changes derived from system architecture,
timely by the generalesource manager. To avoid the requestsome scheduling techniques and mechanisms are proposed
aggregation, the system should provide high clustewhich can be demonstrated very effective and efficient
throughput with dw-latency request handling and allocation  Incremental scheduling — Achieving rapid response and
decisions. prompt scheduling decisions at such a fast rate means that the
[S2:] Resource scheduling scalability - Making prompt central resource manager cannot recalculate the complete
scheduling decisions at such a fast rate means that the resount@pping of CPU, memory and other resource on all machines
allocation must realize a mapping of the CPU, memory antb all applications tasks in every decision makimn our
other desirable machine resource to all tasks within evemgrevious work, we proposed a locality tree based incremental
decision making. schedulind [2§] in massive scale computing and only the
[S3:] Communication and message scalability - In genergl  changed part will be calculated.
internal scheduling related instructions or states exchanges in For example, whef2cores CPU, 10GB Mem} of resource
most massive-scale systems are suitably piggydshdly frees up on machine A, we only need to determine which
periodical heartbeats or interactive messages. A long periaghplication in machine A’s waiting queue should get this
could reduce communication overhead but would also redugesource. There is no need to consider other machines or other
the utilization when applications wait for resource assignmengpplications. The locality tree will be gradually formed when
On the other hand, frequent adjustments would accelerate tekeme of resource requests cannot be handled instantly and
response to demand/supply changes, resulting in promotiohave to wait for schedulingeach resource request will be
of system resource turnovers and throughputs; however, it wdlnqueued into different queues according to its locality
aggravate the message flooding phenomenon. Thus, how poeferences|Figure 3 shows a concrete example of the
properly control the messaging amount whilst maintaining thecheduling method. Micro-seconds level scheduling can be

scheduling performance is a great challenge. achieved in light of this intuitive but effective locality-based
approach
B. Solutions _Decen_traJized s_che_d_ulinq — Decentralized m_ethod is
' mainly aimed to significantly reduce the scheduling latency.
(1) Architectural Evolution We can further classifiy according to how states are used
The architecture experienced several phases: a) Local state replica coordinated by central master: The

a) Single-master phase - A naive approaciis to delegate functionality of the central master can be simplified to only
every scheduling decision, state monitoring and updatirig all synchronization all states as a coordinator once the resource or
a single master node (such as the JobTracker in Hadoop 1.8jate information is updated by any scheduler][29]][30]][36]
But it will be severely limited by the capability of the masterTypically, the used states are derived from load information
and usually leads to single-point failueventually negatively and abstracted states or metricher than fully cluster and
affecting the system dependability. workloads states which are widely-adopted in centralized

b) Two-level phase - this type of approach decouples theschedulers. Since each running job performs independent
resource management and the framework- or applicatiorscheduling choices and the task is actually queued directly at
specified_scheduling into two separate layers. For exampl@orker nodesthe core philosophy is to disperse the burden
Mesos[[33] adopts offer-based philosophy, provisioning and potential bottleneck of the central resource manager onto

calculated resource to each upper framework according #any execution nodes. However, distributed schedulers make
dominant resource fairness. In comparison, [37] and Fuxi



strike the balances between the scalability and other variables
Sender App Messenger RPC-Call Messenger  Receiver App according to their main objectives.
—A—| A (3) Effective Message Communications
Incremental Communication — Because of the message
flood in the massive scale system, a simple iterative process
that keeps asking for unfulfilled resources will take too much
bandwidth and get worse when cluster is busy. For this reason,

=

A% -

{max=1,ack=Q}
AHA

lf A_& r_& MessageBuf we try to reduce the message amount by only sending
Loy ""LA__J callback messages from running job masters and execution daemons to

{max=2,ack=0}

-

{max=2,ack=0} the central resource manager when changes occur. Only the
delta portion will be transferred. Jobs or Applications can
Sender App Messenger RPC-Call Messenger  Receiver App publish their resource demands in incremental fashion when
— A A the requirement adjusts accc_)rding to runtime vyork]oads.
Consequently, we propose an incremental communication and

messenger mechanism. In particular, it should fulfill:

{max=1,ack=p}

max-iacc 3 a) Message order-preserving - we must ensure the changed
AN A fack=1} portions be delivered and processed in the same order at the
—=—n receiver side as they are generated on sender side;

(" S\ /| MessageBuf
DL AX
J [ 7

- —— callback

b) Message idempotent resending - we must achieve the
idempotency of handling delta messages, which might happen
as a result of temporary communication failure
Figure 4 Message re-sending and de-duplication in increme ¢) Message deduplicationwe de-duplicate the message to
communication messenger minimize the network traffic and avoid useless
communications.

local scheduling decisions which are often not globally opti- An example Is demonsirated 4 and message

mal. Moreover, the state synchronization and conflict resolv[esendlng and deduplication will accur when the network

ing must be handled effectively to guarantee that a particulzﬁ’r"’mk‘r’lge get lost between the sender and the receiver.

resource is only made available to one scheduler at a time. ica%gjr?se,::a;%itlli?onw; u';grn;[[:ﬁi ?ee:?rngcgf rimljje(s:?mr;rllj;-er
b) Shared states visible to all schedulers without a central Y, pie rep q 9

coordinator: Shared states can enable each distribute&0 handle communication and peno.d.lcal §tatus report
scheduler full access to the entire cluster and allow them ara'lllel. A compu.te cluster can be d'.V'ded into_several area
compete in a free-for-all manrer [35]The communal states P2 titon (the equivalence notion of link shard in_[36]) and

can be locked using exclusive locking techniques or Iock—fre%afgrmrgsgs%aeregtl:gﬁ :)Sf rseesv%?rs]svl\?iiﬁir]:oirtsresqL(jaiﬁ‘tier(]janglrlt?t?or?nd
optimistic concurrency control by using incremental Y P P '

transaction To our understanding, inside the transaction anThe consistency will be guargnteety an elected central
atomic action will be consecutively conducted: the resourc oordinator and only the coordinator can c_onduct changes to
assignment decision and the global shared-state updates. & permane_nt_storea& manager fe.p"ca will aggregate and
action is in fact equivalent to the states re-syncs with conflict§OMPress th'.s |nfo.rmat|on by reporting only differences to the
resolved mentioned in approach a). coordinator, in an incremental way as we discussed above.

c) Stateless distributed scheduling techniques: Another
fully-decentralized approach within the spectrum is sampling- V. DEPENDABILITY
based probing for low-latency (e.g., Spartbw [32]). Such
designs are highly scalable since there is no requirement f» Challenges
maintain central states and global resource view. There are Dependability is a key concern for resource managers due
multiple independent schedulers each of which is responsibte increasingly common failures which are now the norm
for scheduling one or a subset of jolisach autonomous rather than the exception caused by the enlarged system scale
scheduler detects servers with fewer queued tasks by probiagd complexity, different workload characteristics, and
m random servers and assigns the tasks of its jobs to targetadthora of faults types that can actea&8uch failures within a
machines in the cluster. massive-scale system have the potential to cause significant

Generally speaking, fully-decentralized solution is indeedeconomic consequences to Cloud providers due to loss of
very efficient for those latency-sensitive scenarios such aservice to consumefs[[9][35], and affect services provisioned
interactive queries. However, this design will be extremelyto millions globally in the event of catastrophic failures.
hard to strictly satisfy the scheduling constraints (such as Traditional techniques face a number of challenges and
fairness, capacity, and quota management) when onlyill no longer directly suitable to the massive scale systems
depending on fast-changing global states without highlue to the unaffordable costs and overheads. Specifically,
synchronization cost.Therefore, the system designers mustredundancy-based methods such as Recovery Blockss [23], N-

Version Programming (NVIP) [2hN-self Checking Program-

{max=2,ack=0} {max=2,ack=0}

> >




components tend to fail simultaneously and also exhibit

Failure MTTF Fault Coverage correlation these failures will also complicate the system
fault-tolerant solutions. Therefore, we have to maximize the
Workloads and - Recovery fault coverage from both faults mode and fault handling
Subcomponents » Dependability Effectiveness & coverage respectively
amount Efficiency . .
[D2:] Recovery effectiveness and efficiency — The recov-
System complexity User-perceived ery effectiveness can 'be evaluateq by whether the |nfep'Fed
Impact component or application can continue to work. In specific

data processing context, computation job might fail due to
Figure 5 Charateristics of Massive-scale system dependability, ehalle partial subtasks are evicted and re-compute during the
nges, and required specific considerations. recovery. In addition, the recovery efficiency is also a
significantly important metric, which might include the full
ming (NSCP[ 25| rely on replicated redundant componentsiecovery time, the system utilization and the additional
but it is infeasible to apply these redundancies into eactesource cost produced by the recovery, the latent negative
component within a system composed of millions ofimpacts oto other components or worklogdsand the
components and jobsAnother widely-used fault-tolerant propagation pattern and behavior among different subsystems
technique in distributed system is checkpointing. The systemtc. In massive-scale environment, all these above will
can recover its states by restoring the recently-recordesecome increasingly complicated due to the shortened MTTF
checkpoint logs or files Checkpoint and Restart (CR) is (means frequent failure occurrenca)plenty of component
utilized in high performance computing (HPC) and supercombinations, and system architectural complexity.
computing (SC) areas, due to the significant reduction of re- [D3:] User-perceived impact — From our experience in
computations. In particular, periodical multi-levels check-massive-scale systems, resource overhead due to eviction, and
pointing and rolling-back techniques [$4] are suitable for longre-computation of non-faulty workers produces a substantial
running MPI tasks but cannot be properly applied in shoramount of wastd [1$]. More importantly, long-running
tasks or time-sensitive tasks. This is because the resourservices are disproportionally affected due to restarting worker
requests and allocations of these MPI tasks are determineddRrecution, leading to sevdyesuffered QoS. Such behavior
advance and will not change during its life-cycle. The taskwill also result in increased strain on the resource manager,
number is also not large compared with available resourceghich has to handle more requests and reschedule workers
making sufficient resources to conduct redundanbnto nodes, causing reduced component performance as well
checkpointing. Another extended application of checkpointingis further increased failure probability. Therefore, how to
is the snapshot and restore technigiressirtual execution implement a user-transparent failover technique to recover the
environmenf [SHI[SAI[53] The availability and dependability service without noticeable changes to provisioned service
of virtual machine and the overall virtual cluster can beperceived by consumers is a big challenge.
guaranteed by recovering the network whilst restoring the [D4:] Easily-used failure detection and diagnosis - In
memory and disk states from the snapshot file. However, it ispite of the proposed system prevention or recovery measures,
relatively time-consuming considering the large amount okome failures will always occur. The right tools can quickly
runtime memory page size and disk states. In our propose€ihd the root cause, minimizing the duration of the failure. In
massive-scale computing system which consists of hundredgidition to the software aging or system failure, human factor
of thousands running tasks and active system components, itéfrors are observed to be another important provefianck [58]
extremely ineffective due to the non-negligible additionalAlthough our approach can be self-healing in face of non-
overheads incurred by conducting checkpdiaking the disk human causes of errors, manual measures and technical staffs
space, communications and operations into account. have to get involved if necessary. Therefore, rapid and
In general, above systems achieve effective resourceffective detection and diagnosis approach can ersstast
scheduling and management by large backlogs of pendirgccess to the types of abnormal metrics.
work - an assumption which cannot be adhere to the on-
demand access required for Cloud computing. Considering the .
large cost for millions of running tasks, it is infeasible to™" Solutions
conduct them in Internet-scale systemalithin the context of To maximize service reliability whilst minimizing
Cloud resource managers, such techniques are required detrimental effects to service performance, we propose several
effectively scale to thousands of servers, with acceptabi@ult-tolerant techniques to illustrate a feasible design and
overhead and impact to system performance. Thes wmplementation towards reliable service execution for
summarize the dependability challenges shown in Figure 5 argffective computing systems at scale.
as follows: (1) Rapid and Effective Component Failover
[D1:] Faults and handling coverage - Components within Failover with reduced checkpointing — we present the
the resource manager are likely to experience different typgdhilosophy and architecture of a novel approach for
of faults ranging from crash-stop to late timing failure, as welcomponent failure recovery that collects and exploits states

as have different underlying root caufes |65]. As multiplecollected from neighboring components instead of solely
relying on hard-state periodically collected from dedicated




backup systemdn particular, minimized hard state such asApplication-level blacklisting calculates the health of a
meta-data and information are persistently stored within physical node based on the status of workers as well as failure
node locally, distributed file system or distributed coordinatiorinformation collected by the node daemon, andperates
service Actually, we leverage the distributed memory to storeboth at task-level and job-level. If one worker of an
each component states which can constitute the overall systexpplication has been reported as failed within a node, the node
states and be used to recover infected components. will be placed into the blacklist for the particular task which is
Minimized worker eviction — we achievat through loose- currently executing in the worker. This action is taken under
coupling master or agent behavior from its respective workerthe assumption that the faulty behavior of the task could
during the execution. Specifically, this entails that failurepotentially be the result of the task operational requirements
occurrence of a master or agent does not result in its noexecute on that particular hardware specification.
faulty workers to be automatically evicted. For example, to  System _health _self-checker _and _dashboard - the
tolerate timing failures, the central resource manager attempdgerational characteristics of each physical node and internal
to preserve the assigned resource for running workers as sifstem components are monitored periodically using a health
timing-out daemons are still executing rather than directlyhecker tool to diagnose the node health and process status,
evicting and re-scheduling them. In this manner, such faultauch as disk statistics machine load and network 1/O etc. in
will have minimal interference with perceived reliability. order to calculate a health score. If the score falls beneath a
specific threshold, the component will mark the node as
(2) Optimized Recovery Time v.s. Degraded Service Level unavailable. An advantage of this approach is that datacenter
According to our reduced hard state recovery stratémgy, t administrators are capable of adding customizable check items
additional overhead cost is mainly dependent on the collectiaio the list for specific error detection, and an alarm will be
and required boundary of state information completenesstiggered on the monitoring dashboard. The technical staff can
Incomplete information might appear due to timing-outbe involved and leverage the alarming information to timely
components unable to contribute their states in time. Thi&nd workaround solutions.
collection time also closely depends on cluster scale,
application number, and application-specified configurations.
For instance, increased application number signifies a larger V!-  CASE-STUDY: DATA AND SERVICE ENGINEERING
amount of states to collect and the requisite time For datacenter management, existing methods are tedious,
correspondingly. On one hand, longer waiting time carerror-prone, and ultimately time consunfing [[57]; requiring the
potentially lead to the mitigation of soft states incompletionexpertise of a large number highly trained datacenter engineers
but resulting in extra entb-end recovery time. On the other to develop in-house development scripts, or in the worst case
hand, insufficient collection time leads to incomplete statescenario, perform the process of system momigpri
and subsequent degraded service level (e.g., job extendprbcessing, and analysis manually. Therefore, we leverage the
running time due to worker eviction, or system slow responsedata-driven methodology and integrate the depicted massive
due to state absengesThus, it is necessary for cluster computing entities model in Section 3 into an autonomous and
administrators to strike the balance between the recovery casfitomatic profiling system to aid decision making. Such

and various levels of degraded service. decisions include the detection of the system abnormal
behaviors, driving the further system optimizaticealuation
(3) Blacklist and alarm dashboard to help diagnose failures of the consequent effectiveness, and finally making

Multi-level blackligt - It is high probable that within the configurations refines to the resource _management
datacenter’s lifetime, physical nodes will experience crash or ~ Mechanisms deployed within the infrastructFégure
timing failures. Such behavior can result in cascading failureglescribes the whole architecture of the proposed closed-loop
as well as long-tail phenomen of application executidn [5p] workflow andit is composed ofeveral core components:

In order to mitigate such occurrences, a multi-level machine Iracelog collector - We add probes in order to monitor

blacklist has been designed and deployed in order to detedfd collect log data of system components. For example, in
and isolate faulty nodes from the rest of the system. Thigrder to comprehensively monitor the lifecycle of an

blacklist functions by monitoring system behavior at both@pplication, we monitor event status changes (i.e. submitted,
cluster and application level The blacklist can be added scheduled, running, failed, completed) and resource utilization
through system autonomous program or by technical staf@f Physical nodes and applications. Furthermore, it is also
manually according to their experiences and engineeringecessary to profile some system metrics and overheads
requirements. incurred by communication between components, and latency

More specifically, for cluster level, a heartbeat is senb€tween resource request and neg_otiation for applications. As
between the node daemon and resource managerting the @ result, how to collect and monitor the generated tracelog
health situation of each node within the cluster. If the managéfficiently while mitigating its impact of service performance
detects a heartbeat timeout, the node will be removed from th& @ big challenge. Our approach uses the inftify ][59]
scheduling resource list, and a resource revocation is sent @gchanism in Linux 2.6 in order to incrementally tracelog
the app"cation master so that it can evacuate the runnir\ﬁhen there are Changes within individual files and directories.
instances away from the unresponsive executive nodes




Data Analytics . .
Models & Profiling Metrics

Statistical Statistical Query #
Visualization Modelling Processing ‘ User Submission ‘ ‘ Running Workloads ‘
ﬁ ‘ Failures & Abnormities ‘ ‘ Resource Utilization ‘
User Defined
Queries & Profilings Performance Tracer & Profiler
Log Collector 1

Data H Data i
q Log collection ‘
Collector Aggregator @data warehouse

' Key Component Performance Optimizer
Compute Cluster
. Interference-aware Failure-aware
‘ Resource Management & Scheduling System ‘ « Workload Placement Resource Scheduling
Node 1 Node 2 Node n D'éptloy
into
|_Probe & Deamon | Scalable & Effective QoS prediction &
Res Util Event Request Handling management
Monitor || Tracker

Figure 6 Data-driven methodology and overall closed-cycleesfgrmance monitor, optimization and deployment.

Data analysis engine - In order to exploit the monitored verification and test environment to evaluate the latest updates
profiling data, we implement an analysis and visualizatioror configuration changesThe proposed closed-cycle can
service based on the Alibaba Open Data Processing Servipeotects against rapid development and deployment of bad
(ODPS[3]. ODPS is the proprietary data platform in Alibabaconfigurations and provides a system-test framework to
providing massive data storage and query processing serviguarantee the code quality from engineering aspects. In
The query processor allows users to extract the results pfactical, we have used this methodology in our previous
interest from the collected log data of the cluster. Thavorks to realize system utilization improvemént J42] and
processor provisions an SQL type language to users which iisquest latency reductipn [39]
automatically translated into a DAG workflow for query
processing. The generated profiling data could be populated
automatically into the data warehouse and customized queries VIl FUTHER DIRECTIONSDISCUSSION
are executed within the ODPS control-plane, by importing the Big Data as a Service (BDaaS) - With the blooming of all
data flow from the data-plane. Additionally, we calculate andsorts of big data provenances over the Internet, the huge data
conduct statistics-oriented computing based on the outputtadlume has become too large and time-consuming for
results using R-statistic programming environrhent][@®jch  individuals to calculate on personal machine or small-scale
is an integrated suite of software facilities for dataservers. The business model in Cloud computing is to enable
manipulation, calculation and graphical display. In this waypndemand and flexible resource provision. Similarly, the big
we integrate visualization and mathematical modeling into oudata storage, analytics and management could be integrated
service in order to produce charts, distribution modeling antbgether and provided as a service to custdmer$ [11]. Typically,
cluster analysis etc. customers only need to write their own processing logics

Diagnosis, tuning and optimization — Based on the data according to the BDaaS APIs without any concern in terms of
analysis framework, statistical analysis and visualization of théhe underlying running location and implementations. In this
metrics profiler will facilitate the explorationf operational context, the scalability and dependability of BDaaS platform
behaviors Consequentlydiagnosis, correctigrand tuning to  are significantly important to guarantee the custos8tA.
the system configurations or implementations could be Debugging large-scale distributed applications - The
conducted. Correction entails a reactive approach of direchanagement difficulties of large-scale distributed systems
intervention by technical staff to perform fault-correction uponmainly derive from the intricate relationships among different
the performance metric alarm detectitirallows for technical processes (all kind of masters, slaves, and execution workers)
staff to identify and manually correct potential problemsthat are widely dispersed on different compute nodes, and the
within the system for reducing QoS violations and catastrophiextremely large size of the system logs. Debugging or
failure prevention (such as system outages). After thévestigating a distributed application performance issue or
optimization, our profiling system can provide an automaticsystem bugs usually needs to search for some specific key




events information from the massive logs. Due to the semeontext, it is highly indispensable for resource management
structured or unstructured log information, the heterogeneitgystem such ds [PBIBBI[37] or specialized system such as
will lead to an inability to produce a single unified query orKubernete§ [g] to provision scalable and dependable request
scheme for issue diagnosis. From our industrial engineerinigandling, image storage, 10 throughput, resource allocation in
experiences, it is extremely time-consuming for engineers amatder to support large-scale container composition and
technical staffs to find root-causes of problems in theorchestratios.
production clusters or daily Build Verification Test (BVT) Application _in IoE system - With the booming
clusters. Consequently, it is highly necessary to develop development and the increasing demands of smart city
series of tools by leveraging large-scale system tracing, bigtelligent traffi techniques within Internet of Things (IpT
data analytics and visualization techniques to demonstrate th@d Internet of Vehicles (loV) have become the significantly
distributed execution of running jobs across many thousandmportant means to realize the objectives. In addition to the
of machines. Despite some existed wolks [[66][67], théhardware-related techniques such as sensor network, signal
problem is far from settledzurthermore, joint with techniques control, vehicle engineering etc., the massive-scale
in software engineering of large-scale systems, research workdormation system plays increasingly vital role in building
have tobe conducted to effectively improve the developmenteffective solutions in Internet of Everything (IoE). There are
and debugging of massive-scale systdim the system huge demands of real-time data processing, statistical analytics
continues to scale in the future. and distributed machine learning in many scenarios such as

History-Based Optimization (HBO) approach - Resource user behavior pattern analysis, data mining of massive
sharing with running workload isolation is an intuitive idea totrajectory data streamingeal-time parameter tuning during
mitigate the poor resource utilization in distributed computinginmanned automatic driving etc. Some of them are extremely
system. Furthermore, accurate estimation of resourcgafety-critica] thus have additional requirements for the
requirement could be an effective alternative. For example, fatependable and real-time capability with low latency. In
a specific compute job which daily runs in the productionparticular, in the architecture 6Cloud-Network-Edgg, it is
system, the required resource can be approximately measurié@ cloud system that should be responsible for satisfying
and modeled considering the processed data size, paralleldmse demands abavé is noteworthy that the techniques
instance number, operator type (e.g., some SQL operators sutiscussed in this papean be directly applicable within the
as select, join, group, order, limit, union and other operator®E scenarios. Moreover, the computation resources at the
such as table scan, file operations ef€he estimated value edge side should also be fully utilized in tight resource
canbefurther revised based on the historical resource usage ehvironment. The executable task and process can be
the same job type due to the assumption that the resouroéfloaded from the cloud side [B1][HL][63] to improve the
pattern is stable and can be followed. However, with théolistic system utility, user QoS, and energy-efficiency.
complexity and diversity of user-defined function (UDF) or
third-party libraries and packages, the accuracy of resource
estimation faces great challenges.

Simulation of large-scale system behavior - Due to the VIl CONCLUSIONS
scarcity of large-scale test cluster, it is highly desirable to find In this paper, we present our understanding of the
a cost-effective technique to evaluate the systenghallenges in distributed systems, especially in massive-scale
functionalities and performance in a simulation environmentcomputing systems and discuss both existing and potential
One critical aspect of simulation is the ability to evaluatesolutions to the problems. We particularly focus on the most
large-scale systems within a reasonable time frame whilenportant system efficiency issues in terms of scalability and
modeling complex interactions between millions of dependability Through data-driven analytics methodology, we
components. Additionally, the simulation approach is expectedan characterize patterns including resoureeorkload
to playback the requests size and frequency in a timelinperformance and failure models and monitor the performance
driven by high-fidelity system tracelogs. metrics in a massive-scale distributed computing environment.

Application in container-based system - Container-based Based on the profiling information and knowledge,amalyze
techniqgue has been obtaining increasing popularity recentkeveral fundamental challenges and the solutions we are
due to the fact that it is much more light-weight comparedieveloping to tackle them. We also present a data and service
with virtual machine. The OS-level virtualization is able toengineering solution from our industrial experience which
leverage the process isolation mechanism to suppoitivolves many best practices such as tracelog collection, data
independent executions of co-allocated containers and thgnalytics, metric monitoring and alerting, abnormal behavior
resource sharing of the same underlying resources. At presediagnosis, system optimization etc. We aim to develop and
Dockel[ [4] rapidly achieves wide use because it can not onlyffer innovative methods and mechanisms for future
provide convenient and effective mechanism to deployxomputing platforms that will provide strong support for new
applications into its containers with Dockerfiles, but securabléig data and IoE applications. From our studdditional
and isolated execution environment. Due to these reaens important conclusions can be summarized as follows:
performance of typical web service composition or internet ¢ Exploiting the inherent workload heterogeneity that exists
application mashup can be enhanced by using Docker. In this in Cloud environments provides an excellent mechanism




to improve both the performance of running tadke

REFERENCES

efficiency of holistic systems. Combining specific
workload types can reduce the performance impad

http://www.cnbc.com/2015/11/10/alibaba-handlesilieloi-in-8-
minutesef-sales-through-alipagn-singles-day.htnjl

negative effect on energy-efficiency, with scheduling
effects improved.

http://www.businesswire.com/news/home/2015111100635 llibaka-
Group-Generated-USD-14.3-Billion-GMV

increasingly important. Traditional parallel procesgsi
and concurrency control techniques might not be properl
applied into due to the dramatically-increased scale
workloads and resources. Service providers have to pay
much more attentions on scalability issues because th
will have direct and huge economic consequences once
the massive and concurrent user requests cannot hg
satisfied.

Improving the scalability of a massive-scale system will b%
]

Large-scale distributed systems may run millions 01{9]
instances concurrently, with an increased probability {
frequent and simultaneous failures. These failures lmave

be understood properly and addressed appropriately
together with a correct scheduling strategy for instances.

Inappropriate scheduling of instances has the potential 31

dramatically affect the whole system reliability due to the
complex co-relation  between rescheduling

communication caused by application failures. Our

technique has also attempted to tolerate timing failures, a3
e

increasingly dominating failure type for modern servic
applications

Relying on real data is critical to understanding the rea[ll4]

challenges in massive-scale computing and formulating

assumptions under realistic operational circumstanceg;s)

This is especially true in very dynamic environments such

as Cloud datacenters and big data processing systems
is required td16]

where precise behavioural modeling
improve environmental efficiency,
dependability.

scalability and

(17]

Experiences learnt from cloud and distributed computing
will facilitate developing the future generation computing

systems to support a number of human intelligent'8]

decisions. We believe the big data analytics would
revolutionize our way of thinking, living and workintp
hindsight, insight and foresight in an effective way.

[20]

ACKNOWLEDGMENTS

Of10]

and2l

(19]

[21]

We would like to thank Dr. Peter Garraghan from University of
Leeds and Jin Ouyang from Alibaba Cloud Inc. for discussiores. W[22]
would also like to extend our sincere thanks to the entire SIGRS

group from Beihang UniversitypSS group from University of Leeds

and the Fuxi Distributed resource scheduling team in Alibaba Clout?3]
Inc. for their work and supports. The work in this paper has been
supported in part by the National Basic Research Program of Chiré?]

(973) (No. 2014CB34-0304), China 863 program

.(No

2015AA01A202), the UK EPSRC WRG platform project (No. [25]
EP/F057644/1) and Fundamental Research Funds for the Centigk
Universities and Beijing Higher Education Young Elite Teacher

Project (YETP1092)

(27]

ODPS https://www.aliyun.com/product/odps/
Docker Project. https://www.docker.io/, 2014.
Kubernetes. http://kubernetes.io, Aug. 2014.

S. Herbst-Murphy Clearing and Settlement of Interbank Card
Transactions: A MasterCard Tutorial for Federal ResePayments
Analysts

A. McAfee and B. Erik. Big data: The management revatutHarvard
Business Review, 10 2012.

Google Cluster Data V2 (2011). [Online] Available:
http://code.google.com/p/googleclusterdata/wiki/Clti3é¢a2011_1

(2008) Amazon suffers u.s. outage on friday internetnlif@].
Available: http://news.cnet.com/

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, agtdndic, "Cloud
computing and emerging IT platforms: Vision, hype, analitse for
delivering computing as the 5th utility," in Futurer@e. Comput. Syst.,
vol. 25, pp. 599-616, 2009.

Z. Zheng, J. Zhu, and M. R. Lyu. Service-generateddzta and big
dataasa-service: an overview. In Proceedings of IEEE BigaD2013
B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaad C. R.Das.

Modeling and synthesizing task placement constraintsGmogle
compute clustersin Proceedings of ACM SoCC, 2011

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, andAMKozuch
Heterogeneity and dynamicity of clouds at scale: Googice analysis.
In Proceedings of ACM SoCC, 2012

I. S. Moreno, P. Garraghan, P. Townend, and J.Atuapproach for
characterizing workloads in Google cloud to deriealistic resource
utilization modelsin Proceedings oHEE SOSE 2013.

I. S. Moreno, P. Garraghan, P. Townend, and J. Xaly&is, modeling
and simulation of workload patterns in a large-scaiktyucloud[J].,
IEEE Transactions on Cloud Computing, 2014

P. Garraghan, I. S. Moren®. Townend, and J. Xu. An analysis of
failure-related energy waste in a large-scale clomt@mment in IEEE
Transactions on Emerging Topics in Computing, 2014

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. FetterlyDryad:
distributed data-parallel programs from sequentialdingl blocks in
ACM SIGOPS Operating Systems Review. ACM, 20073311 (

J. Dean and S. Ghemawat. MapReduce: simplified dategsing on
large clusters [J]. In Communications of the ACM, 20881).

R. K. Sahoo, M. S. Squillante, A. Sivasubramaniang &. Zhang.
Failure data analysis of a large-scale heterogeneousr ssrvironment.
In Proceedings of IEEE DSN 2004.

K. V. Vishwanath and N. Nagappan. Characterizingi¢laomputing
hardware reliability. In Proceedings of ACM SoCO18, (pp. 193-204).
F. Dinu and T. Ng. Understanding the effects and icafibns of
compute node related failures in hadoop. In Procesdih§CM HPDC,
2012.

A. Avizienis, J.-C. Laprie, B. Randell, and C. LandweBasic concepts
and taxonomy of dependable and secure computimg. [ HEE
Transactions on Dependable and Secure Computing (X3

B. Randell and J. Xu, “The evolution of the recovery block concep,”
Software Fault Tolerance, 1995.

A. Avizienis, “The methodology of n-version programming,” Soft-
ware fault tolerance, 1995.
M. R. Lyu et al., Handbook of software reliabilitggneering, 1996

Z. Wen, J. Cala, P. Watson, and A. Romanovsky. Cost Bféecti
Reliable, and Secure Workflow Deployment over Feera&Cloudsin
Proceedings of IEEE Cloud, 2015

Z. Wen, J. Cala, and P. Watson. A scalable method fditipaing

workflows with security requirements over federatedudk h
Proceedings of IEEE CloudCom, 2014


http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-minutes-of-sales-through-alipay-on-singles-day.html
http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-minutes-of-sales-through-alipay-on-singles-day.html
http://www.businesswire.com/news/home/20151111006351/en/Alibaba-Group-Generated-USD-14.3-Billion-GMV
http://www.businesswire.com/news/home/20151111006351/en/Alibaba-Group-Generated-USD-14.3-Billion-GMV

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J.. Xuxi: a fault-
tolerant resource management and job scheduling systdmteatet
scale. h Proceedings of the VLDB Endowme014
E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. ZhouQ@an, M. Wu, and
L. Zhou Apollo: scalable and coordinated scheduling for cleadle
computing. h Proceedings of USENIX OSP2014

K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliphil, G.

(49]

(50]

M.Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanag[51]

Mercury: Hybrid Centralized and Distributed Schedgliin Large
Shared Clusters. In Proceedings of USENIX ATC, 2015

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. P&el
Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, et aln&@twitter.
In Proceedings of the ACM SIGMQR014

K. Ousterhout, P. Wendell, M. Zaharia, and 1. Stoi@&parrow:
distributed, low latency schedulinign Proceedings of ACM SOSP,2013

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Ibseph, R. H.

Katz, S. Shenker, and |. Stoica. Mesos: A Platform Fiore-Grained
Resource Sharing in the Data Center. In Proceedifigthe USENIX
NSDI, 2011

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, McQAuley, M.
J.Franklin, S. Shenker, and I. Stoica. Resilientrilisted datasets: A
fault-tolerant  abstraction for in-memory cluster conmpmt
In Proceedings of the USENIX NSDI, 2012

M. Schwarzkopf, A. Konwinski, M. Abdel-Malek, and J. Wilkes.
Omega: flexible, scalable schedulers for large computstetkl In
Proceedings of the ACM EuroSys, 2013

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, Enelwand J.
Wilkes. Large-scale cluster management at Google withg.Bbr
Proceedings of ACM EuroSys, 2015

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agaaly M. Konar,R.
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Yoladoop varn:
Yet another resource negotiatolil' Proceedings of the ACM SoCC,
2013

C. Delimitrou and C. Kozyrakis. Quasar: Resourcezifit and qos-
aware cluster management. In Proceedings of ACM ASP ORI,

R. Yang, T. Wo, C. Hu, J. Xu and M. Zhang?P3: a Dependable Data
Provisionina  Service in Multi-Tenants Cloud Environrgen
In Proceedings of IEEE HASE, 2016.

I. S. Moreno, R. Yang, J. Xu and T. Wo. Improved endffigiency in
cloud datacenters with interference-aware virtual rimechlacementlin
Proceedings dhe IEEE ISADS, 2013

R. Yang, I. S. Morenal. Xu and T. Wo. T. An analysis of performance
interference effects on eneray-efficiency of virtmadl cloud
environmentsln Proceedings of the IEEEloudCom, 2013

Y. Wang, R. Yang, T. Wo, W. Jiang and iBu. Improving utilization
through dynamic VM resource allocation in hybridudoenvironment
In Proceedings of the IEEE ICPADS 2014

P. Garraghan, P. Townend and J. Xu. An empiricélriianalysis of a
large-scale cloud computing environmemh Proceedings of IEEE
HASE 2014

P. Garraghan, P. Townend and J. Xu. An analysis ef gsérver
characteristics and resource utilization in googleicién Proceedings
of IEEE IC2E, 2013

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle.lIMiheel: fault-
tolerant stream processing at internet sdal®roceedings of the VLDB
Endowment2013

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivadr, M. Tolton,
and T. Vassilakis. Dremel: interactive analysis of wehle datasets [J].
In Proceedings of the VLDB Endowmen, 2010

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. ChakkantS8osy, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solutiover a map-
reduce framework. IProceedings of the VLDB Endowmer009

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnértdorn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scalengpapcessing.n
Proceedings of the ACM SIGMQR010

(52]

(53]

(54]

(55]

[56]

(57]

(58]
(59]
(60]
(61]

(62]

(63]

(64]

(65]

(66]

(67]

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyroknd J.
M.Hellerstein. Distributed GraphLab: a framework for fmae learning
and data mining in the cloudn Proceedings of the VLDB Endowment
2012

B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, AtiWuand C. Curino
Apache Tez: A unifying framework for modeling and lding data
processing applications Proceedings of ACM SIGMO2015

L. Cui, J. Li, T. Wo, B. Li, R. Yang, Y. Cao and J. Huai. Restore: a
fast restore system for virtual machine cluster. In Bedimgs of
USENIX LISA, 2014

Y. Huang R. Yang, L. Cui, T. Wo, C. Hu and B. Li. VMCSnap: Taking
Snapshots of Virtual Machine Cluster with Memory Ddihapion. In
Proceedings of IEEE SOSE, 2014

J. Li, J. Zheng, L. Cui and R. Yang. ConSnap: Takiogtiauous
snapshots for running state protection of virtual m@es. In
Proceedings of IEEE ICPADS, 2014

A. Moody, G. Bronevetsky, K. Mohror, and B. R. Dep#ski, Design,
modeling, and evaluation of a scalable tnlgvel check-pointing
system, In Proceedings of IEEE SC, 2010

L. A. Barroso, J. Clidaras, and U. Holzle, “The datacenter as a computer:
An introduction to the design of warehouse-seadehines.” Morgan &
Claypool Publishers, 2013.

J. Dean and L. A. Barroso. The tail at scateCbmmunications of the
ACM, 56(2), 2013.

C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M. Wolf, “A
Flexible Architecture Integrating Monitoring and &gtics for
Managing Largescale Datacenters”, in Proceedings of ACM ICAC
2011

B. Mauren. Fail at scalen Communications of the ACM, 58(), 2015.
R. Love, "Kernet Korner: Intro to Inotify", Linuxalirnal, 139( 8), 2005.

R. Ihaka,R. Gentleman,"R: a Language for Data Anabsts Graphic”,
Journal of Computational Graph Statistics, 1996.

Y. Zhang R. Yang, T. Wo,C. Hu, J. Kang and L. Cui. CloudAP:
Improving the OoS of Mobile Applications with EfficienVM
Migration. In Proceedings of IEEE HPG@013

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Dalfes.case for
vm-based cloudlets in mobile computing In IEEE Pervasive
Computing, 2009

N. Fernando, S. W. Loke, and W. Rahayu. Mobile dlesomputing: A
survey. In Future Generation Computer Systems, 2013

X. Chen, C.-D. Lu, and K. Pattabiraman. Failure ysial of jobs in
compute clouds: A google cluster case study. In Procgedf IEEE
ISSRE, 2014

A. Rosa, L. Y. Chen, and W. Binder. Understanding Dlagk Side of
Big Data Clusters: an Analysis beyond Failures. In Prdings of IEEE
DSN, 2015

B. H. Sigelman, L. A. Barroso, M. Burrows, P. StephensénPlakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, astzalgedistributed
systems tracing infrastructurBechnical report, Google, 2010

H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai. Tawd fine-grained,
unsupervised, scalable performance diagnosis for piioducloud
computing systems.nl IEEE Transactions on Parallel and Distributed
Systems, 24(6), 2013



