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Abstract

Kohonen self-organizing maps (SOMs) are unsupervised Artificial Neural Net-

works (ANNs) that are good for low-density data visualization. They easily deal

with complex and nonlinear relationships between variables. We evaluated molec-

ular events that characterize high- and low-grade BC pathways in the tumors from

104 patients. We compared the ability of statistical clustering with a SOM to strat-

ify tumors according to the risk of progression to more advanced disease. In uni-

variable analysis, tumor stage (log rank P = 0.006) and grade (P < 0.001), HPV

DNA (P < 0.004), Chromosome 9 loss (P = 0.04) and the A148T polymorphism

(rs 3731249) in CDKN2A (P = 0.02) were associated with progression. Multivari-

able analysis of these parameters identified that tumor grade (Cox regression,

P = 0.001, OR.2.9 (95% CI 1.6–5.2)) and the presence of HPV DNA (P = 0.017,

OR 3.8 (95% CI 1.3–11.4)) were the only independent predictors of progression.

Unsupervised hierarchical clustering grouped the tumors into discreet branches

but did not stratify according to progression free survival (log rank P = 0.39).

These genetic variables were presented to SOM input neurons. SOMs are suitable

for complex data integration, allow easy visualization of outcomes, and may strat-

ify BC progression more robustly than hierarchical clustering.

Introduction

Bladder cancer (BC) is a common disease for which the

outcomes have not improved in the last three decades

[1]. This probably reflects a lack of community-based

screening for the disease, that advanced BC responds

poorly to chemotherapy and that it can be hard to judge

the need for radical treatment in patients with non-mus-

cle invasive (NMI) disease. The latter arises primarily

from a lack of knowledge regarding the biology of this

disease. Clinicopathological and molecular data suggest

two distinct pathways of urothelial carcinogenesis [2, 3].
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Low-grade NMI cancers arise through regional deletion of

chromosome 9, mutation of FGFR3 (Fibroblast growth

factor receptor), and H-RAS [4]. High-grade tumors may

present with or before the onset of muscle invasion and

are best characterized by loss of (Tumor Protein) function

through direct (e.g., mutation or deletion of TP53) or

indirect (e.g., loss of RB1—Retinoblastoma or upregula-

tion of MDM2—Murine Double Minute) means [5].

High-grade tumors also have widespread chromosomal

instability (polysomy, aneuploidy) and numerous changes

to their epigenome [6,7].

While the two-pathway biology of BC is generally

accepted, many tumors have aspects of low- and high-grade

biology. For example, FGFR3 mutations are not found in

CIS (carcinoma in situ) but they coexist with TP53 muta-

tions in 10–20% of invasive BCs as do deletions of both

chromosome 9 (typical of low-grade disease) and 17p

(locus of TP53) in 15–74% BC [4, 8]. Clinical phenotypes,

therefore, reflect either the timing or impact of genetic

events combined with patient factors (such as type and

continued exposure to carcinogens) and treatment effec-

tiveness (such as timing, appropriateness and quality of

treatment). A current challenge for translational researchers

is to integrate distinct and, potentially, competing molecu-

lar events into single- phenotype predictions. In BC, this

represents the ability to discriminate future tumor behavior

using molecular alterations typical for low- and high-grade

tumor development. Nonstatistical methods are appealing

in this role as they do not rely upon data distribution, can

handle large datasets automatically without supervision or

prior assumptions, and do not assume that statistical prox-

imity equates to molecular association [9]. Various struc-

tures of artificial intelligence have been developed, of which

Artificial Neural Networks (ANNs) are perhaps the best

evaluated (reviewed in Ref. [10]). Here, we report the use

of a self-organizing map (SOM) to integrate molecular

parameters in BC. SOMs are a type of unsupervised ANNs

that are good for low-density data visualisation [11]. We

selected molecular events that characterize high- and low-

grade BC pathways and used progression to more advanced

disease as our primary outcome.

Materials and Methods

Patients, tumors, and samples

A total of 104 patients with BC were studied in this

report (data in Table 1). The tumors were chosen at ran-

dom to represent the disease spectrum from three Depart-

ments of Urology located in Lodz Macroregion, where

the textile industry was very popular in the previous

century. Tumors were graded according to 1973 WHO

classification and staged using the TNM criteria [12]. This

study was approved by the ethics committee of the Medi-

cal University of Lodz (No: RNN/99/11/KE) and all

patients gave written informed consent before entry.

RNA and DNA extraction

RNA and DNA were extracted from bladder tumors,

peripheral blood, and urinary sediments. For tumors,

frozen tissues were homogenized in TRI REAGENT

(guanidine thicyante/phenol, Molecular Research Center,

Inc. cat. No TR-118) using ceramic beads (Roche MagNA

Table 1. Genetic tests results, recurrence, and progression rate.

Overall n (%)

Kaplan–Meier analysis

Recurrence Progression

Rate

Log–rank

value Rate

Log–rank

value

Total 104 (100)

CHEK2 mutation

Yes 7 (6.7) 2 P = 0.858 2 P = 0.250

No 97 (93.3) 22 13

FGFR3 mutation

Yes 39 (37.5) 10 P = 0.618 5 P = 0.772

No 65 (62.5) 14 10

TP53 mutation

Yes 15 (14.4) 5 P = 0.291 11 P = 0.160

No 89 (85.6) 19 4

TP53 expression

Altered 29 (27.9) 2 P = 0.858 4 P = 0.924

Normal 75 (72.1) 22 11

Chromosome 9

LOH 33 (31.7) 5 P = 0.229 5 P = 0.743

No 71 (68.3) 19 10

Chromosome 13

LOH 6 (5.8) 0 P = 0.740 1 P = 0.740

No 98 (94.2) 24 14

Chromosome 17

LOH 12 (11.5 4 P = 0.405 2 P = 0.978

No 92 (88.5) 20 13

UroVysion test

Positive 74 (71.2) 16 P = 0.414 11 P = 0.930

Negative 30 (28.8) 8 4

CDKN2A polymorphism

148G/A 7 (6.7) 0 P = 0.298 2 P = 0.298

148G/G 97 (93.3) 24 13

CYP1B1 polymorphism

355T/T 14 (13.5) 4 P = 0.973 5 P = 0.417

355G/T 46 (42.2) 10 9

355G/G 44 (55.7) 10 10

TP53 polymorphism

72G/G 55 (52.9) 10 P = 0.106 10 P = 0.360

72G/C 41 (39.4) 10 5

72C/C 8 (7.7) 4 0

HPV DNA detected

Yes 14 (13.5) 3 P = 0.975 1 P = 0.02

No 90 (86.5) 21 13
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Lyser Green Beads, Roche Applied Science, Mannheim,

Germany, cat. No 3358941001) and the Roche Magna Lyser

(cat. No 03 358 976 001: three times for 45 sec at 9283 g).

Homogenized samples were cooled and RNA isolated by

acid guanidinum thiocyanate- phenol-chloroform extrac-

tion (according to the manufacturer’s protocol) [13]. Total

RNA was eluted in nuclease-free water and stored at

�70°C. RNA was assessed for degradation, purity, and

DNA contamination by spectrophotometry and electro-

phoresis in 1.0% ethidium bromide-stained agarose gel.

Total RNA was DNase treated using DNase I (RNase free)

reagent (Ambion, Life Technologies Polska Sp. z o.o., War-

saw, Poland, cat. No AM2222). First-strand cDNAs were

synthesized from equal amounts of total RNA (0.5 lg/reac-
tion) using oligo(dT) and iScript cDNA Synthesis Kit (Bio-

Rad Polska Sp. z o.o., Warsaw, Poland, cat. No 70-8890)

according to the manufacturer’s instruction. For blood

samples, Roche MagNA Pure Compact automatic worksta-

tion was used to isolate DNA (Nucleic Acid Isolation Kit I-

Large Volume, cat. No 03 730 972 001, Roche Diagnostics

GmbH, Mannheim, Germany). For exfoliated urinary cells,

200–400 mL of freshly voided urine was collected in Carbo-

wax at diagnosis. DNA was isolated from urine sediment

with a Sherlock AX Kit according to manufacturer’s guide-

lines (A&A Biotechnology s.c., Gdynia, Poland).

Quantitative polymerase chain reaction

TP53 expression was measured using quantitative poly-

merase chain reaction (qPCR) performed using an iCycler

iQ System (Bio-Rad cat. No 170-8701, 1709750) [14].

Expression was determined SYBR Green I fluorescence

and normalized with respect to GAPDH (Glyceraldehyde-

3-Phosphate Dehydrogenase) and HPRT (Hypoxanthine–
guanine Phosphoribosyltransferase) genes.

Mutation and deletion detection

Mutations in TP53 (exons 4–8), CDKN2A (Cyclin-Depen-

dent Kinase inhibitor 2A, exons 1a, 2, and 3), and FGFR3

(exons 7, 10, 15) were detected using single strand confor-

mational polymorphism (SSCP) analysis and Sanger

sequencing, as detailed [15–17]. The mutations in CHEK2

(Chekpoint Kinase, IVS2 + 1G>A, 1100delC, and I157T)

gene were detected using multiplex PCR [18]. Loss of

heterozygosity (LOH) for the TP53,/ARF, and RB1 genes

was studied using PCR technique with malignant and wild-

type (blood, genomic) DNA [19].

UroVysion test

The UroVysion (Vysis) test consists of a four-color, four-

probe mixture of DNA probe sequences homologous to

specific regions on chromosomes 3, 7, 9, and 17, and was

carried out according to the manufacturer’s protocol.

Human papilloma virus detection

Human Papilloma Virus (HPV) DNA was detected using

the LINEAR ARRAY Human Papillomavirus GENOTYP-

ING Test in cancer tissue (Roche, includes 37 pathogenic

genotypes: 6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 45, 51,

52, 53, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70,

71, 72, 73, 81, 82, 83, and 84) according to manufac-

turer’s protocol.

Generation of a self-organizing map

The dataset (10 genetic variables 9 104 patients) was pre-

sented to 10 input neurons seven times in the rough-train-

ing phase and 27 times in the fine-tuning phase. The

number of the input neurons was equal to the number of

variables in the dataset. On a basis of the established link

between the input and output neurons, a virtual patient

(in terms of values of the genetic variables presented to

the SOM) was created in each output neuron. The output

neurons were arranged on a two-dimensional grid

(4 9 4). To cluster the virtual patients (and respective

output neurons), the hierarchical cluster analysis with the

Ward linkage method and Euclidean distance measure was

used [20–22]. Finally, each real patient was assigned to the

best matching virtual patient and the respective output

neuron. The SOM training process was performed with

the use of the SOM Toolbox developed by the Laboratory

of Information and Computer Science in the Helsinki

University of Technology (http://www.cis.hut.fi/projects/

somtoolbox/) in Matlab environments [23, 24]. The signif-

icance of differences between subclusters was assessed: 1)

with the Tich�y and Chytr�y analysis and the Monte Carlo

randomization test carried out with PC-ORD software for

binary variables, and 2) with the Kruskal–Wallis test and

the post hoc Dunn test for the variables measured at the

ordinal or ratio level (STATISTICA Vsn. 10, 2011, StatSoft

Polska Sp. z o.o., Krakow, Poland) [25].

Statistical data analysis

The primary aim of our study was to evaluate the ability

of the SOM at integrating molecular data from BC

samples. To this end, we analyzed its ability to stratify

tumor progression using log-rank analysis and by plotting

survival using the Kaplan–Meier method (SPSS Vsn. 19.0,

IBM Inc., New York, NY) (Fig. 1). Progression was

defined as pathological or radiological evidence or wors-

ening tumor stage. The most common examples were the

development of muscle invasion from a NMI tumor, and
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or metastases from an invasive cancer. Both these events

mark a significant deterioration in prognosis for the

patient and a need to alter treatment intent. For compari-

son with the SOM, we used an unsupervised hierarchical

approach to cluster tumors using city block distance and

average linkage in Cluster 3.0 (Eisen Lab, University of

California, Berkeley, CA) and Tree view.

Results

Patients and tumors

The population studied was typical for bladder cancer.

Most patients were male; the average age was 66 years

(66 � 11), and most had a history of cigarette smoking.

Around 2/3 of tumors were NMI (Table 1) and most

were of low or moderate grade. Following treatment,

recurrence was observed in 24 patients (23%) and pro-

gression to invasion or metastases in 15 (14%).

Genetic analysis of tumors

Genetic analysis revealed various molecular abnormalities

(Table 1 and Fig. 2). For example, mutations were found

in FGFR3 (n = 39, 38%), TP53 (n = 15, 14%), and CHEK2

(n = 7, 7%) tumors. Overall mutations were detected in 50

(48%) tumors, including 11 with more than one (six with

FGFR3 and TP53, and five with FGFR3 and CHEK2 muta-

tions). Chromosomal loss was found in 41 (39%) tumors,

including nine with more than one chromosome affected.

While mutations of CHEK2 (n = 7, 7%) and deletions of

chromosome 13 (n = 6, 6%) were uncommon, the UroVy-

sion test was positive in 74 (72%) samples.

Progression from genetic markers

The primary outcome for our study was disease progres-

sion to a more advanced stage. In univariable analysis,

tumor stage (log rank P = 0.006) and grade (P < 0.001),

Figure 1. Hierarchical clustering of samples.
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HPV DNA (P < 0.004), Chromosome 9 (P = 0.04) and

the A148T polymorphism (rs 3731249) in CDKN2A

(P = 0.02) were associated with progression following

treatment. Multivariable analysis of these parameters

identified that tumor grade (Cox regression, P = 0.001,

OR 2.9 (95% CI 1.6–5.2)) and the presence of HPV DNA

(P = 0.017, OR 3.8 (95% CI 1.3–11.4) were the only

independent predictors of progression. Unsupervised hier-

archical clustering grouped the tumors into several

branches (Figs. 1 and 3). This approach did not signifi-

cantly stratify progression free survival (log rank

P = 0.39).

Clusters

The two main clusters of SOM output neurons were dis-

tinguished: X and Y, each with a pair of sub-clusters: X1

and X2, and Y1 and Y2 (Fig. 4). Patients with the worst

prognosis were assigned to X1 and X2 (UroVysion test

positive in 100% and 93%, respectively, and high fre-

quency of TP53 mutations, data in Table 2 and Fig. 2).

The highest frequency of: (1) abnormal TP53 expression

(57%) and (2) heterozygocity loss for 9, 13 and 17 chro-

mosome loci (71%) was recorded for patients in subclus-

ter X2. In Y1 the UroVysion test was negative for all

patients, and the FGFR3 mutation ratio was quite high

(38%). In Y2 the UroVysion test was positive in 86%

patients and all of them had FGFR3 gene mutation. These

differences were also reflected in clinical variables

(Table 2). Tumors with high grade and higher diameter

were grouped mostly in subcluster X1 and X2. The highest

ratio of recurrences (29%) was observed in subcluster Y1,

where were only negative results of UroVysion test and

none TP53 mutations. Significant difference in frequency

Figure 2. Pathological and molecular features of the individual tumors in this report. No patients were assigned to the nonlisted SOM neurons

(B1, B3, C2-C4 and D2; see Fig. 4).
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of patients with polymorphism A148T of CDKN2A gene,

LOH frequency and TP53 altered expression were

observed between subclusters. Some other interesting

observation can be noticed like negative correlation

between CDKN2A and TP53 gene polymorphism Figure 5

is showing SOM component planes used to form the

rules and their values with scale (down right-hand side of

each histogram); components describe various characteris-

tics of the subclusters.

Discussion

Our knowledge of the molecular changes in BC has con-

siderably grown over recent years [25]. Currently, a num-

ber of conventional clinicopathological factors are useful

in predicting survival of bladder cancer patients. These

include tumor grade, stage, type, size, the presence of

concomitant carcinoma in situ, patient age, tumor loca-

tion, and presence of multiple tumors [26]. As yet,

there are no criteria that robustly predict the clinical out-

come for individual patients with BC. Improvements in

prediction may be made by the gain of information (e.g.,

through molecular biology) or by alternate methods of

analysis. With this in mind, we have undertaken this

study to evaluate the ability of SOM to integrate clinical–
molecular information for stratifying outcomes in BC.

Traditionally, statistical techniques such as Cox’s propor-

tional hazards and logistic regression are usually

employed when analyzing prognostic information. Classic

statistical modeling requires the explicit assumption of

certain relationships within the data that are often unpro-

ven. ANNs offer a number of theoretical advantages,

including ability to detect complex nonlinear relationships

between variables, ability to detect all possible interactions

between predictor variables, and the availability of multi-

ple training algorithms [27]. The ANN techniques

depicted in the literature can be mainly categorized under

two headings: supervised and unsupervised. Kohonen

SOM consists in a feed forward neural network that uses

an unsupervised training (partitional clustering). It means

that, the data are directly divided into a set of clusters

without any regard to the relationships between the clus-

ters. These methods try to maximize some measure of

similarity within the units (patients) of each cluster,

Figure 3. Recurrence and progression following treatment stratified using a self-organizing map.

Figure 4. The output layer of the self organizing map applied. Clusters X, Y, and subclusters (X1, X2, Y1, and Y2) of virtual patients and

respective output neurons have been identified on the basis of the hierarchical cluster analysis.
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Table 2. Results of the Kohonen SOM classifier (ns, not significant, *Kruskal–Wallis, **Tich�y and Chytr�y).

Variables

Subcluster Subcluster Subcluster Subcluster

P value

X1 X2 Y1 Y2

n (%) n (%) n (%) n (%)

Total No of patients 24 (23.0) 28 (27.0) 24 (23.0) 28 (27.0)

Mean age 64 75.5 70.5 69

No female 2 4 5 1

Grade

G1 10 (41.7) 13 (46.4) 19 (79.2) 18 (64.3) <0.001*

G2-3 14 (58.3) 15 (53.6) 5 (12.5) 10 (21.4)

Stage

Ta 16 (66.7) 15 (53.6) 19 (79.2) 20 (71.4) ns*

T1 3 (12.5) 8 (28.6) 5 (20.8) 5 (17.9)

T2–T4 5 (20.8) 5 (17.8) 0 3 (10.7)

Smoking history

Current and ex 24 (100) 26 (92.9) 22 (91.7) 27 (96.4) ns**

Never 0 2 (7.1) 2(8.3) 1 (3.6)

Occupational exp.

Yes 9 (37.5) 9 (32.1) 9 (37.5) 12 (42.9) ns**

No 15 (62.5) 19 (67.9) 15 (62.5) 16 (57.1)

No of tumors

1 18 (75.0) 18 (64.3) 17 (63.0) 21 (75.0) ns*

>1 6 (25.0) 10 (35.7) 7 (37.0) 7 (25.0)

Tumor diameter

2 cm 10 (41.7) 7 (25.0) 19 (79.2) 18 (64.3) <0.001*

>2 cm 14 (58.3) 21 (75.0) 5 (20.8) 10 (35.7)

Local recurrence

Yes 5 (21.0) 7 (25.0) 7 (29.2) 5 (17.9) ns**

No 19 (79.0) 21 (75.0) 17 (70.8) 23 (82.1)

HPV infection

Yes 4 (16.6) 4 (14.3) 3 (12.5) 3 (10.7) ns**

No 20 (83.4) 24 (85.7) 21 (87.5) 25 (89.3)

CHEK2 mutation

Yes 2 (8.3) 1 (3.6) 1 (4.2) 3 (10.7) ns**

No 22 (91.7) 27 (96.4) 23 (95.8) 25 (89.3)

FGFR3 mutation

Yes 1 (4.2) 1 (3.6) 9 (37.5) 28 (100) <0.001**

No 23 (95.8) 27 (96.4) 15 (62.5) 0

TP53 mutation

Yes 5 (20.8) 5 (17.9) 0 5 (17.9) ns**

No 19 (79.2) 23 (82.1) 24 (100) 23 (82.10

TP53 expression

Altered 1 (4.2) 16 (57.1) 1 (4.2) 11 (39.3) <0.01**

Normal 23 (95.8) 12 (42.9) 23 (95.8) 17 (60.7)

LOH chromosome 9

Yes 1 (4.2) 17 (60.7) 7 (37.0) 8 (28.6) <0.001**

No 23 (95.8) 11 (39.3) 17 (63.0) 20 (71.4)

LOH chromosome 13

Yes 1 (4.2) 3 (10.7) 2 (8.3) 0 ns**

No 23 (95.8) 25 (89.3) 22 (91.7) 28 (100)

LOH chromosome 17

Yes 2 (8.3) 8 (28.6) 0 2 (7.1) <0.01**

No 22 (91.7) 20 (71.4) 24 (100) 26 (92.9)

UroVysion test

Positive 24 (100) 26 (92.9) 0 24 (85.7) <0.001**

Negative 0 2 (7.1) 24 (100) 4 (14.3)
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while minimizing the similarity between clusters [28].

SOM is combination of partitional clustering and projec-

tion methods. It can be used at the same time both to

reduce the amount of data by clustering and to construct

nonlinear projection of the data onto a low-dimensional

display. In contrast to other clustering methods, the

units in SOM become organized in such a way that

nearby units on the gird are similar to another. The

Figure 5. The associations (stronger if brighter red) of virtual patients’ features with SOM regions. The intensity of colours is scaled

independently for each variable. Variables with the same pattern over SOM are positively correlated. If the frequency of real patients with a given

feature is significantly highest in any subcluster as compared to others, the symbol of the subcluster and the respective significance level

(*P < 0.05; **P < 0.01; ***P < 0.001) are shown along with the variable name.

Table 2. Continued.

Variables

Subcluster Subcluster Subcluster Subcluster

P value

X1 X2 Y1 Y2

n (%) n (%) n (%) n (%)

CDKN2A polymorphism

Ala/Thr 5 (20.8) 1 (3.6) 1 (4.2) 0 <0.05**

Ala/Ala 19 (79.2) 27 (96.4) 23 (95.8) 28 (100)

CYP1B1 polymorphism

355T/T 5 (20.8) 3 (10.7) 1 (4.2) 5 (17.9) ns**

355T/T and T/G 19 (79.2) 25 (89.3) 23 (95.8) 23 (82.1)

TP53 polymorphism

Arg 16 (66.6) 15 (53.6) 13 (54.2) 11 (39.3) ns**

Arg/Pro 7 (29.2) 12 (42.9) 9 (37.5) 13 (46.4)

Pro 1 (4.2) 1 (3.5) 2 (8.3) 4 (14.3)
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topology of the gird can be anything but in practice

rectangular two-dimensional girds are preferred as they

are easy to display [28, 29].

In managing patients with BC, one of the principal

problems for the clinician is prediction tumor recurrence

and progression. It is likely that a combination of clini-

cal, pathological, and molecular data are needed to opti-

mize these outcome predictions. The future of molecular

biomarkers in BC undoubtedly lies in of panels of mark-

ers that represent high- and low-grade disease. Examples

of these include FGFR3 and TP53 mutations that are

associated with a better or worse prognosis, respectively

[30]. Additional genetic changes that reflect underlying

malignant traits, such as numerical chromosomal alterna-

tions from genetic instability, are useful as they identify

global patterns within a disease rather than focusing

upon specific events [31]. In this work, we included

many of these changes in an attempt to genotype

tumors. In 2010, Catto et al. and Kim et al. identified

six and eight progression-related genes in BC from

microarray and either neurofuzzy modeling or hierarchi-

cal clustering, respectively [32, 33]. Of interest, the genes

in these panels do not overlap, as found in other cancers

[34, 35]. Here, we used SOM to explore a similar clinical

scenario. We found that the SOM was easily understood

by the clinician and could cluster tumors according to

future clinical outcomes. SOMs appear to do this better

than more traditional statistical analyses. In clinical care,

this stratification could identify aggressive tumors need-

ing early radical treatment and indolent ones suitable for

less intense surveillance. The potential for SOMs is in

real time help to guide patient choices. For example, in

breast cancer detection, an unsupervised ANN model

improved diagnosing performance when compared to

classical feed-forward neural networks like multilayer

perceptron (MLP), radial basis function (RBF), and

probabilistic neural networks (PNN) [36, 37]. Thus, it is

possible that SOMs could be integrated into patient

pathways and used to guide their surveillance frequency

or even treatment intent. There are a number of limita-

tions to our work. For example, the analysis was based

on a relatively low number of patients with a low event

rate (number of cases with progression). However, we

analysed a large number of genetic events that are

known to characterize distinct BC molecular pathways,

and as such, this work represents the first in BC to inte-

grate clinical, molecular, and environmental prognostic

biomarkers.

Conclusions

We have shown that Kohonen SOM could cluster homoge-

nous tumors according to genotype and that this stratified

clinical outcomes when analyzed. SOMs are easy to

understand and potentially outperform traditional statis-

tical analyses. As such, their use needs more evaluation

but they could potentially offer a real-time solution to

integrating molecular data into patient pathways.
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