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Abstract Optimising production from heterogeneous and anisotropic reservoirs challenges
the modern hydrocarbon industry because such reservoirs exhibit extreme inter-well vari-
ability making them very hard to model. Reasonable reservoir models can be obtained using
modern geostatistical techniques, but all of them rely on significant variability in the reser-
voir only occurring at a scale at or larger than the inter-well spacing. In this paper we take a
different, generic approach. We have developed a method for constructing realistic synthetic
heterogeneous and anisotropic reservoirs which can be made to represent the reservoir under
test. The main physical properties of these synthetic reservoirs are distributed fractally. The
models are fully controlled and reproducible and can be extended to model multiple facies
reservoir types. This paper shows how the models can be constructed and how they have
been tested. Reservoir simulation results of a number of generated 3-D heterogeneous and
anisotropic models show that heterogeneity, in terms of only the geometric distribution of
reservoir properties, has a little effect on oil production from high andmoderate quality reser-
voirs. However, if the effect of heterogeneity on capillary pressure is taken into account, the
effect becomes striking, where varying the heterogeneity of reservoirs properties can lead
to a 70% change in the predicted oil production rate and a significant early shift of water
breakthrough time. Hence, it is the heterogeneity consequences that are really substantial if
not taken into account. These are very significant uncertainties for a hydrocarbon company
if the heterogeneity of their reservoir is not well defined.
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List of symbols

D The fractal dimension
n The Euclidean dimension
χ The anisotropy factor
φ Porosity
k Absolute permeability
kr Relative permeability
Sw Water saturation
Swr Residual (irreducible) water saturation
Sor Residual oil saturation
S∗
w Reduced water saturation

λ Pore size distribution index
β The spectral exponent
H The Hurst exponent (dimension)
σ Surface or interfacial tension
θ Fluid contact angle
τ Tortuosity
m Cementation exponent
d Grain size
Pc Capillary pressure
Pe Capillary entry pressure
f Frequency
k, l, and w The directional frequencies corresponding to the x, y, and z
R A random number generator
γ A mismatch factor between two independent fractal volumes
Mstb/day Thousand stock tank barrels per day
Mstb Thousand stock tank barrels
MMstb Million stock tank barrels
psia Pounds per square inch absolute
g Gravitational acceleration
h The height above the free water level
ρ Fluids density
Poroperm cross-plots Porosity–permeability cross-plots

1 Introduction

Reservoir production performance and ultimate hydrocarbon recovery are controlled by both
the reservoir fluid transport properties (e.g. porosity and permeability) and pore geome-
try (Mandal et al. 2006). Reservoir performance is also controlled by the spatial variation
of these reservoir properties (i.e. heterogeneity) (Li 2010; Perez and Chopra 1997; Shen
et al. 1998). Optimising the production from heterogeneous and anisotropic reservoirs has
challenged the oil industry for a long time. This stems from the fact that reservoir mod-
elling and simulation of such reservoirs is difficult as their inter-well volumes are extremely
hard to model in a reliable fashion. As a result, understanding the non-uniform distrib-
ution of reservoir properties and how they distribute themselves in the porous media is
vital in studying the oil recovery (Hewett 2001). To describe a reservoir effectively, it is
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important to use the appropriate approach to quantitatively characterise its heterogeneity
(Li 2010).

Modelling the spatial variation of reservoir properties (e.g. porosity and permeability) at
laboratory scale, at which they are measured, is important to account for the effect of their
heterogeneous distribution (Hewett 1993).Unfortunately, such data are only available at some
locations, usually wells, and a complete reservoir description at this scale cannot be obtained.
Recently developed statistical techniques can go some way towards helping to construct a
reasonable reservoir model, but all of them rely on significant variability in the reservoir only
occurring at a scale at or larger than the inter-well spacing (Al Qassab et al. 2000; Al-Ali and
Al-Qassab 2000; Alqassab and Heine 1998). Because such data are impossible to obtain for
the whole reservoir, it was decided to construct a synthetic property distribution mimicking
real reservoirs and representing the scale necessary for reservoir simulation and representing
the macroscopic laboratory measurements at the same time. These synthetic models can then
be used to study the generic influence of heterogeneity on hydrocarbon production.

Several approaches were developed to characterise the heterogeneity of objects in nature.
It has been shown that sandstones have fractal geometric pore spaces (Katz and Thompson
1985; Krohn and Thompson 1986; Krohn 1988a, b; Yu and Li 2001). This implies that a
fractal approach can be implemented to characterise the spatial heterogeneity of reservoir
properties (Perez and Chopra 1997). Fractals are powerful since they have the ability to
describe the broad range of variability which exists in reservoir properties such as porosity
and permeability (Perez and Chopra 1997).

In this paper, we take a different, generic approach. A method for constructing synthetic,
but realistic, heterogeneous and anisotropic reservoirs, which can be made to represent
the reservoir under test, was developed using the fractal approach. The tested and pro-
duced reservoir models have fractally distributed porosity, grain size, cementation exponent,
and permeability, mimicking the fractal behaviour observed in real reservoirs. The fractal
approach was implemented in order to study quantitatively the effect of heterogeneity and
anisotropy of reservoirs on their production performance. The degree of heterogeneity can
be modelled by varying the fractal dimension. Moreover, anisotropy can be implemented in
the algorithm using a simple factor. It should be noted that this methodology is not aimed at
modelling a specific reservoir, but rather constructing synthetic ones that can have different
scenarios of heterogeneity and anisotropy degrees. These synthetic models can then be used
to study the generic influence of heterogeneity and anisotropy on hydrocarbon production.

This paper shows how to generate and test fractal models that can be used as models for
reservoir properties with variable degrees of spatial correlation (i.e. heterogeneity). We are
interested in addressing how the different realisations of reservoir properties affect the reser-
voir performance prediction through time. This is achieved by synthesising fractal volumes
using fractional Brownian motion “fBm” algorithm which represent reservoir properties
that are distributed fractally within the reservoir. After that, a dynamic simulation has been
conducted to predict the reservoir performance with several heterogeneity and anisotropy
scenarios in order to study their effect on oil production.

2 Fractal Models of Reservoir Parameters

2.1 Fractal Pore Space

Reservoir properties aremeasured indirectly, by geophysical surveys, or directly but at certain
locations by drillingwells. Due to the Earth’s complexity, it is considered to be a big challenge
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to characterise and model inter-well reservoir properties. The complexity stems from the fact
that it is difficult to infer the location, distribution, and structure of rock types (i.e. grain size
distribution, porosity, permeability) away from the wells where they were measured (Dimri
et al. 2012).

The fractal concept of Mandelbrot (1977) has found various applications in various geo-
science sectors. This is due to the fact thatmany physical systems in nature produce a variation
of properties that can be described via fractal statistics (Lozada-Zumaeta et al. 2012). Several
studies have been carried out in the past decades relating the fractal theory to the distribu-
tion of reservoir properties such as porosity and permeability. Turcotte (1997) modelled the
sedimentation process by the devil’s staircase, which is an exact fractal, and showed that
the rate of sedimentation can be related to the time interval of deposition occurrence by
a fractal power law relationship. Moreover, the soil particles can be represented as a frag-
mented porous medium (Rieu and Sposito 1991). Turcotte (1997) showed that the frequency
size distribution of fragments is fractal, with the number of fragments depending on their
linear dimension through a fractal power law relationship. Since the formation of porosity
is closely linked to both sedimentation processes and to fragmentation, both of which show
fractal behaviour, it makes sense that porosity would be expected to follow a fractal behaviour
too. In other words, if the grain size distribution is fractal, then the pore size would also be
expected to be distributed fractally (Turcotte 1997; Tyler and Wheatcraft 1990).

Laboratorymeasurements have confirmed that the porosity of sandstones is indeed fractal,
exhibiting a non-integer power law scaling behaviour (Katz and Thompson 1985; Krohn
and Thompson 1986; Krohn 1988a, b; Thompson 1991; Thompson et al. 1987). Katz and
Thompson (1985) showed that a set of sandstone samples had fractal geometric pore spaces
which were self-similar over three to four orders of magnitude in length in the range 10 Å to
100μm. Additionally, Krohn (1988a) reported a study on the microstructure of sandstone,
shale and carbonate samples, by statistically analysing the structural features on their fracture
surfaces. He argued that fractal behaviour can be confirmed if the number of features as a
function of feature size on the pore–rock interface shows a power law (self-similar) behaviour,
which was the case over a very large scale range, representing the limits of self-similarity.

2.2 Heterogeneity Characterisation by Fractal Dimension

Studies on sandstone samples and cores reveal that homogenous samples with good sorting
and little clay content have small fractal dimensions,while samples havingbad sorting andbad
roundness with secondary mineralisation or more clay content have high fractal dimension
(Hewett 1986, 1993; Li 2010; Mandal et al. 2006; Shen et al. 1998). These studies concluded
that the smaller the fractal dimension, the more homogeneous the pore structure and the
better the reservoir storage capacity. On the other hand, the higher the fractal dimension,
the more heterogeneous the pore structure and the less the reservoir capacity. Note that
the heterogeneity defined by the fractal dimension is the microscopic-scale heterogeneity.
However, this occurs over large range of scale. Based on rock sample measurements, Li and
Xie (2011) argued that rock samples with high fractal dimensions were also heterogeneous
at macroscopic scale.

The great advantage of these studies is that the heterogeneity of rock samples can be
characterised quantitatively by the fractal dimension. This allows the construction of reservoir
property distributionmodels with different scenarios of the degree of heterogeneity, modelled
by fractal dimension, and their subsequent use as inputs to reservoir simulation in order to
study the effect of property heterogeneity on reservoir performance prediction.
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2.3 Synthetic Fractal Reservoirs Property Distribution

The statistics of sediment distribution is clearly controlled by the natural processes which
created them. Since these processes have been proven to behave fractally, it is expected that
the distribution of sediments will show fractal behaviour too (Lozada-Zumaeta et al. 2012).
Consequently, a desired spatial reservoir petrophysical property distribution can possibly be
modelled with fractal distribution, with the desired power law behaviour, over a finite range
of scales defining the self-similar validity range (Hewett 1986, 1993).

A good model to describe the spatial statistics of reservoir property distribution would be
random fractals that have self-similar statistics. This can be achieved by synthesising random
fractal distribution and then using it to model the property distribution of properties showing
fractal behaviour, such as porosity and grain size distributions (Hewett 1986). In this paper,
it is not intended to infer the heterogeneity between wells of a specific reservoir, but rather
to assume that a synthesised fractal distribution reveals the available geologic information of
a reservoir (i.e. similar to have a well everywhere in a real reservoir). Then, to try to answer
the questions “to what extent do the heterogeneity and degree of anisotropy, if not accounted
for, affect our ability to optimise heterogeneous and anisotropic reservoirs? Can we analyse,
quantitatively, the relationship between the degree of heterogeneity and anisotropy and our
ability to predict the reservoir performance?”

As far as we are aware, the presented framework for generating synthetic reservoirs using
3-D fractal modelling has not been used before for such studies. All previous applications
to the fractal approach were for specific reservoirs, whereas our methodology is general and
not specific to a certain reservoir. Examples of such specific studies were done by Shen et al.
(1998), Perez and Chopra (1997), and Hewett and Behrens (1990). While these studies aim
to study the effect of heterogeneity on a certain reservoir, our intention is to study this effect
in a generic manner.

3 Modelling Methodology

The construction of geological reservoir models was carried out using the following five
steps.

I. 3-D fractal volume (fractional Brownian motion, fBm ) generation

• Generating independent fractal volumes which share some physical features using
the fBm algorithm.

• Renormalising the resultant volumes between zero and unity.

II. Fractal property modelling

• Rescaling these fractal volumes to the desired porosity, grain size, and cementation
exponent volumes.

III. Permeability modelling

• Use porosity, grain size, and cementation factor volumes to calculate the absolute
permeability using the RGPZ equation.

IV. Fluid saturations modelling

• Calculate fluid saturations using the Brooks–Corey model, which relates the
capillary and capillary entry pressures to water saturation.
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V. Relative permeability modelling

• Calculate the relative permeability curves using Brooks–Corey–Mualem method.

The main advantage of this methodology is that it enables us to generate synthetic reservoir
models with different scenarios of heterogeneity and anisotropy for reservoir performance
prediction without the need of any hard data of any given reservoir.

3.1 Generating 3-D Fractal Volumes

Fractional Brownian motion (fBm) (Mandelbrot and Van Ness 1968; Saupe 1988) has been
recognised as one of the most powerful mathematical models to simulate random fractals
which enabled themodelling of complex objects found in nature such as clouds andmountains
(Voss 1988). Several algorithms are available for simulating finite fBm objects including (i)
the midpoint displacement method, (ii) the successive random addition method, and (iii)
the spectral synthesis method (Saupe 1988). The spectral synthesis method has been used
previously to produce synthetic rough fractures in porous media by Isakov et al. (2001),
Ogilvie et al. (2002), Ogilvie et al. (2003), and Ogilvie et al. (2006), who based their work
on that of Glover et al. (1997, 1998), and Brown (1995). The developments in this study
allow such an approach to be applied to the petrophysical characterisation and modelling of
hydrocarbon reservoirs.

The spectral synthesis method, which is also known as the Fourier filtering method, has
been implemented based on the construction of a random function with the desired spec-
tral density such that it follows a non-integer power law scaling behaviour. According to
Saupe (1988), a random process X (t1, t2, . . . , tn) with a spectral density S( f1, f2, . . . , fE )

is fractional Brownian motion (fBm) if

S ( f1, f2, . . . , fE ) ∝
⎛
⎝

√√√√ E∑
i=1

f 2i

⎞
⎠

−β

, (1)

where the spectral exponent β is related to the Hurst exponent H (0 ≤ H ≤ 1) as

β = 2H + E, (2)

and H is related to the fractal dimension D through

D = n + 1 − H, (3)

where n is the simple Euclidean dimension (1 for 1-D curves, 2 for 2-D surfaces, and 3 for
3-D volumes). The fractal dimension can only be between 1 and 2 in the 1-D case, 2 and 3
in the 2-D case, while it ranges between 3 and 4 in the 3-D case.

It can be noted that fBm fractal dimension exceeds the topological dimension by one.
This is due to fBm being self-affine rather than self-similar. For a self-affine object, the
fractal dimension is not as easily defined as with self-similarity. Self-affinity is an important
property of fBm and means that it is invariant statistically if different coordinates are rescaled
by different amounts (Mandelbrot and Van Ness 1968). For a self-affine time series to repeat
itself “statistically”, both axes (e.g. t and V ) should be magnified by different amounts. If
the time t is rescaled by a factor x , then V must be rescaled by a factor xH , which is what
we call “self-affinity” (Voss 1988). Thus, the similarity dimension implicitly fixes a scaling
between the “otherwise independent” coordinates (Family and Vicsek 1991).

However, fractals typically reduce their dimension by one if intersected with a plane. This
is a property of Euclidean objects as well. If a 2-D plane intersects a 1-D line, they will
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intersect in 0-D points. On the other hand, the intersection of a 3-D cube, or sphere, with
a plane will result in a 2-D intersection plane. Similarly, when a self-affine fractal curve,
with a fractal dimension between 1 and 2, intersects a straight line, the result is a set of
points, called zeroset. Although the original object is self-affine, this set of points is self-
similar, not self-affine. The importance of this concept is that a self-similar fractal can be
generated by reducing a self-affine fractal. Therefore, this set of points, or zeroset, will have
a fractal dimension of D0 = 1− H and the fractal dimension of the self-affine fBm would be
D = D0+1. Using this concept, the relationship of the fractal dimension of a self-affine fBm
curve to the scaling parameter H would be D = 2 − H . In general, the fractal dimension of
a statistically self-affine fBm in n Euclidean dimension is related to H by Eq. 3. This implies
that the fractal dimension of a 2-D fractal fBm surface is D = 3− H , while a 3-D fractal fBm
would have a fractal dimension of D = 4 − H . Their zerosets, however, form a statistically
self-similar fractal with fractal dimension D0 = 2− H and D0 = 3− H , respectively (Voss
1988). FBm fractal dimension works as a correlation parameter, where low value means a
high correlation between the nearby cells.

Equations 1, 2, and 3 imply that a three-dimensional fBm has a spectral density depending
on three frequencies corresponding to x, y, and z directions

S( f1, f2, f3)α
1

(
f 21 + f 22 + f 23

) β
2

with β = 2H + 3. (4)

To synthesise a 3-D fractional Brownianmotionwith the Fourier filteringmethod, the discrete
Fourier transform is considered. It can be written as

X (x, y, z) =
N−1∑
k=0

N−1∑
l=0

N−1∑
w=0

aklwe
2π i(kx+ly+wz), (5)

where aklw is the coefficient for three-dimensional fast Fourier transform (FFT). This
expression contains information about the amplitude spectrum |aklw| and phase spectrum
(2π(kx + ly + wz)) of the function X (x, y, z). It can be rewritten as

X (x, y, z) = |aklw|
N−1∑
k=0

N−1∑
l=0

N−1∑
w=0

[[
cos

(
2π

(
kx + ly + wz

))]

+i
[
sin

(
2π

(
kx + ly + wz

))]]
. (6)

In order to obtain a fractal behaviour, conditions in Eq. 4 are to be imposed such that

E
(|aklw|2) α

1
(
k2 + l2 + w2

) 2H+3
2

, (7)

where k, l, and w are the directional frequency components. As a result, the Fourier coeffi-
cients are calculated as

aklw = 1
(
k2 + l2 + w2

) 2H+3
4

. (8)

The algorithm is simply implemented by constructing a 3-D matrix with the desired dimen-
sional size, which represents the Fourier transform coefficients of Eq. 5. The matrix is
populated with random phases drawn from a Gaussian “normal” distribution1 with zero

1 The distribution of resultant volume value magnitudes is defined by the type of distribution from which the
random number seed samples random numbers (e.g. the use of normally distributed random numbers produce
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mean and a standard deviation of unity, where the phase at each location X (x, y, z) is
ϕkl = 2π · randklw and the parameter randklw is derived from a high-quality random
number generator. At the same time, at each of the coordinates x, y, and z, the amplitude
spectrum coefficients aklw are populated such that they conform to the power law in Eq. 8.
Subsequently, both the real and imaginary parts of the Fourier complex coefficients matrix

X (x, y, z) = [aklw · cos ϕklw] + i [aklw · sin ϕklw] (9)

can be calculated at each matrix location, where aklw and ϕklw are the amplitude and phase
spectrum of Fourier transform. Finally, an inverse fast Fourier transform (IFFT) is performed
to obtain the desired three-dimensional fractal volume. For the IFFT to return real values,
the original matrix has been restricted to be symmetric. Conjugate symmetry is applied so
that all complex terms of X (x, y, z) will cancel each other after the IFFT. The resulting
3-D volume values are spatially correlated by the imposed fractal dimension. The higher the
fractal dimension, the rougher the geometric distribution will be. On the other hand, the lower
the fractal dimension, the smoother the geometric distribution will be. Equation 1 implies
that log(frequency) is linearly related to log(magnitude) and that the gradient of the power
law allows the spectral exponent β to be calculated, from which the fractal dimension D of
the volume can be derived. If the behaviour is not linear in log–log space, the object does
not have fractal behaviour (Brown 1995; Russ 1994). Anisotropy can be introduced into the
algorithm by modifying the Fourier coefficients of the spectral density function. In practice,
this simply means we need to multiply each frequency component that corresponds to a
certain spatial direction by a constant factor, which we call the anisotropy factor χ (Brown
1995). This implies that the modified equation will replace Eq. 8 in the algorithm. The new
equation is

aklw = 1
((

k
χx

)2 +
(

l
χy

)2 +
(

w
χz

)2) 2H+3
4

. (10)

In this paper, the anisotropy is allowed to vary only in the z direction,while lateral anisotropies
were held at unity. It is possible to introduce anisotropies into the lateral directions, and when
implemented they behave perfectly symmetrically. Consequently, in this paper, the value of
the anisotropy factor χ should be taken to represent the anisotropy in the z direction only and
varies between 0 and infinity, with χ = 1 representing isotropic behaviour (i.e. no anisotropy
in any direction).

The fractal volume generation process relies on defining random phases which can be
seeded. Each seed of a random number generator produces a different set of random numbers
and hence a different fractal volume, and the use of the same seed always produces the
same volume. Hence, the random number generator can be treated as a texture classification
generator. In this way, any generated fractal volume can be reproduced at any time with
any combination of fractal dimensions and anisotropies. This gives us total control over the
resulting volumes. Alternatively, we may keep the same fractal dimension and anisotropy
factor and create many volumes with different seeds “or texture classification numbers”.
This ultimately allows us to explore the range of the resulting oil and gas production rates
from different implementations that share the same physical characteristics. In this sense,
the model that we have created is fully determinative and not stochastic at all, as stochastic

Footnote 1 continued
a surface whose heights are normally distributed too). For the purpose of this study, normal distributions are
implemented because they are more likely to simulate distribution of reservoir properties in reality.
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Fig. 1 Isotropic fractal volumes with their resulting distribution histograms with a D = 3.1, χ = 1;
b D = 3.5, χ = 1; c D = 3.9, χ = 1. The x, y, and z axes represent the number of blocks at each
direction which are (128 × 128 × 64; 1,048,576 voxels) in these particular examples

implies reliance on a random process to provide a random result. Some people might argue
that the use of a random number to generate the fBm fractal distribution makes the model
stochastic, but a truly stochastic model is one that cannot be repeated, whereas in our case
the models are repeatable. Since the model is fully determined, uncertainty quantification
analysis is not needed—it is what it is.

Advantages of the spectral synthesis method include its simplicity to understand and to
implement and code as well as its efficiency generating fractal objects (curves, surfaces, or
volumes). However, because of the periodical nature of Fourier transforms, sometimes we
end up computing twice as many points as needed. In this case, we need to discard a part of
the resulting object that is not needed (Saupe 1988).

Figure 1 shows a typical example of an isotropic fractal realisation (anisotropy factor
χ = 1) with three different fractal dimensions (D = 3.1, 3.5, and 3.9, respectively) together
with their value magnitude histograms. The effect of increasing the fractal dimension is clear,
leading to increasing variability of the fractal volumes. It should be noted that the bottom half
of the volumes are mirror images of their top halves. This is an artefact of the fractal volume
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Fig. 2 Anisotropic fractal volumes with their resulting distribution histograms with a D = 3.4, χ = 1; b
D = 3.4, χ = 3; c D = 3.4, χ = 5. The x, y, and z axes represent the number of blocks at each direction
which are (128 × 128 × 64; 1,048,576 voxels) in these particular examples

generatingmethod and does not pose a problem because one of the halves can be disregarded.
This process does not change the overall fractal dimension or affect the statistical normal
distributions to which all the voxels of the model contribute.

Figure 2 shows three typical fractal realisations together with their distributions, but this
time with changing the vertical anisotropy factor. The fractal dimension is fixed in all the
three (D = 3.4), while the anisotropy factors are χ = 1, 3, and 5, respectively. The operation
of the anisotropy factor in the second and third volumes is very obvious acting as a layering
introducer to the model.

3.2 Testing the Models

The reservoir model building process has been tested at every stage. The initial volumes were
tested for fractal behaviour and to ensure that they have their intended fractal dimension.
This analysis was performed using aMATLAB code developed by Zhang (2005), is obtained
from the MATLAB Central File Exchange, and is independent of any of our procedures.
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Fig. 3 Fractal behaviour tests performed on fractal volumes shown in Fig. 1, where a D = 3.1, χ = 1; b
D = 3.5, χ = 1; c D = 3.9, χ = 1. For each model, a log power spectral density (PSD) versus log frequency
is shown with hedgehog plots for D and intercepts; 1,048,576 data points

This MATLAB code measures the fractal dimension using the spectral density function and
the spectral exponent β. Taking the natural logarithm of both sides of the three-dimensional
form of Eq. 1 results in

log S ( f1, f2, f3) = −β log

(√
f 21 + f 22 + f 23

)
, (11)

where the exponent β is related to the fractal dimension D through Eqs. 2 and 3 by

D = 11 − β

2
. (12)

Equation 11 shows that the frequency is linearly related to the magnitude on a log–log scale,
which the validation code measures and plots. If the double logarithmic plot of the three
components as a function of frequency is linear, the object is fractal. The gradient of the line
can be used to calculate the spectral exponent β, from which the fractal dimension may be
calculated using Eq. 12 (Russ 1994). If the relationship is not linear on a double logarithmic
plot, the object lacks fractal behaviour. The static statistical distributions of all volumes were
also tested to ensure that they were normally distributed with a mean and standard deviation
corresponding to the imposed values after normalisation.

Figures 3 and 4 show some of the main tests carried out on the models shown in Figs. 1
and 2, while Tables 1 and 2 summarise the testing metrics. It can be seen that in all cases,
fractal behaviour was obtained very well, with log(magnitude) falling off linearly with
log(frequency). In general, the analysed fractal dimensions were very close to that of the
imposed fractal dimension (within 0.01%) when the volumes were isotropic or moderately
anisotropic. The effect of the anisotropy is clearly seen in the “hedgehog plot” of intercepts.
This hedgehog plot is a plot of intercepts as a function of orientation in three dimensions
(i.e. like a rose diagram but in 3-D). Anisotropy in two dimensions would be indicated by

123



192 S. Al-Zainaldin et al.

0.5 1 1.5 2 2.5 3 3.5
5

10

15

20
Log Log plot of PSD. vs Freq.

Lo
g 

P
S

D

Log Frequency

data
LSE fit line

-20
0

20

-20

0

20
-20

0

20

Hedgehog plot of fractal dimension

3.36

3.38

3.4

3.42

3.44

-20
0

20

-20

0

20
-20

0

20

Hedgehog plot of intercept

20.9

21

21.1

21.2

21.3

21.4

0.5 1 1.5 2 2.5 3 3.5
5

10

15

20
Log Log plot of PSD. vs Freq.

Lo
g 

P
S

D

Log Frequency

data
LSE fit line

-20
0

20

-20

0

20
-20

0

20

Hedgehog plot of fractal dimension

3.36

3.38

3.4

3.42

3.44

3.46

3.48

-20
0

20

-20

0

20
-20

0

20

Hedgehog plot of intercept

20

21

22

23

0.5 1 1.5 2 2.5 3 3.5
5

10

15

20
Log Log plot of PSD. vs Freq.

Lo
g 

P
S

D

Log Frequency

data
LSE fit line

-20
0

20

-20

0

20
-20

0

20

Hedgehog plot of fractal dimension

3.4

3.45

3.5

-20
0

20

-20

0

20
-20

0

20

Hedgehog plot of intercept

20

21

22

23

24

(a)

(b)

(c)

Fig. 4 Fractal behaviour tests performed on fractal volumes shown in Fig. 2, where a D = 3.4, χ = 1; b
D = 3.4, χ = 3; c D = 3.4, χ = 5. For each model, a log power spectral density (PSD) versus log frequency
is shown with hedgehog plots for D and intercepts; 1,048,576 data points

Table 1 Values of tested fractal dimensions of fractal volumes shown in Fig. 1

Volume Imposed χ Slope Imposed D Tested D % Error (D) (%)

(a) 1.0 −4.806 3.1 3.097 0.097

(b) 1.0 −4.005 3.5 3.4975 0.071

(c) 1.0 −3.204 3.9 3.8980 0.051

Table 2 Values of tested fractal dimensions of fractal volumes shown in Fig. 2

Volume Imposed χz Slope Imposed D Tested D % Error (D) (%)

(a) 1.0 −4.2054 3.4 3.3973 0.079

(b) 3.0 −4.153 3.4 3.4235 0.691

(c) 5.0 −4.126 3.4 3.4370 1.088

an ellipse in a rose diagram and is represented by an ellipsoid in a hedgehog plot. However,
the anisotropy would need to be quite large for the subtle differences between ellipsoids to
be distinguished. Consequently, the hedgehog plot is also coloured with differences in the
colour of each facet of the hedgehog plot referring to the direction perpendicular to that facet,
with hotter colours representing greater distances to the central origin of the plot. The shape
of the hedgehog plot is a sensitive indicator to the degree and direction of anisotropy. In an
isotropic case (Fig. 3), the hedgehog plot of intercepts is nearly a sphere, indicating that the
values are almost the same in all direction. However, when one considers the anisotropic
cases (Fig. 4), the hedgehog plots of intercepts are now ellipsoids with orientation parallel
to the direction of anisotropy. For instance, values of intercepts in Fig. 4 show that they are
much higher in the z direction than in the x and y directions. The ratios of the major and
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minor axis of the hedgehog plot ellipsoids of intercepts infer the degree of anisotropy. It
should be noted that as anisotropy increases, there was is an interaction that increases the
fractal dimension of the final model, but the effect is very small and falls within an acceptable
error (<1%). The anisotropy needs to be very large in order to have a significant effect on the
fractal dimension, and these values of anisotropy are extremely unlikely in real hydrocarbon
reservoirs. In all cases, the statistical distributions conformed extremely well to those which
were expected in regard to their normality, mean, and standard deviation.

4 Reservoir Modelling Procedure

Reservoir property distribution can be modelled by random fractals having self-similar
statistics (Hewett 1986). Based on statistical analysis, horizontal variation of sediment accu-
mulation resulting from depositional or erosional processes exhibits statistics similar to
fractional Brownian motion (fBm). As a result, the horizontal distribution of sediment prop-
erties can also be characterised by fBm statistics (Zeybek and Onur 2003; Lu et al. 2002;
Molz et al. 1997; Liu and Molz 1996; Hewett 1986). Consequently, reservoir properties at
reservoir scale that are approximated by and obtained from Gaussian-based fractals using
the fBm approach are considered.

4.1 Modelling Reservoir Porosity

The reservoir model is thought of as being composed of a number of layers, N . Each layer
is composed of voxels, and each voxel has a given porosity that conforms to a given overall
porosity distribution that is, for the purposes of this work, assumed to be normal and described
by amean and a standard deviation, aswell as a fractal dimension and three anisotropy factors.
Since reservoirs are inherently layered due to the way they were initially deposited, the
question arises as to what behaviour the porosity statistics of reservoirs shows. Is the porosity
fractally distributed in all directions, or only fractally distributed spatially but not vertically?
A clear and direct answer to this question could not be found in the literature. However,
analysis of well logs shows that while fractal behaviour can be present within particular
formations of the same petrofacies in any direction including vertically, a well log of a whole
sequence has characteristics similar to fractionalGaussian noise (fGn) vertically. This vertical
distribution of the characteristics is due to the different behaviours in the different layers that
compose the sequence (Sahimi andYortsos 1990; Hewett 1986). However, since the reservoir
is a small unit compared to a sequence of formations, the property distribution is assumed
to be fractal both horizontally and vertically, i.e. three-dimensional. As a result, a fractal
porosity model can be created by synthesising a volume with a fractal spatial correlation in
three dimensions and then renormalising the magnitude of each voxel. The renormalisations
scale the magnitude of the fractal volume at each voxel X (x, y, z), by the overall porosity
distribution to obtain the porosities of each voxel φ(x, y, z) (Hewett 1986). The scaling could
be carried out by ensuring the lowest value of the normalised volume (i.e. zero) is equal to
the lowest desired porosity and the highest value of the volume (i.e. unity) is equal to the
highest porosity, as follows

φ (x, y, z) = φmin + [X (x, y, z) − Xmin] [φmax − φmin]

[Xmax − Xmin]
, (13)

where φmin and φmax are the desired minimum and maximum porosity values, Xmax and
Xmin are the maximum and minimum values of the original fractal volume, X (x, y, z) is the
value to be renormalised at point x , y, z, and φ(x, y, z) is the new renormalised value.
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Another way, which was preferred in this study, is to renormalise the mean and standard
deviation of the fractal volume to the desired porosity mean and standard deviation. This can
be done by first obtaining the standard score (Z -score) for each position, which normalises
the values to have zero mean a unit variance by Aksoy and Haralick (2001)

Z (x, y, z) = X (x, y, z) − μX

σX
, (14)

where Z(x, y, z) is the Z-score value,μX and σX are the overall mean and standard deviation
of the fractal volume X , which is being normalised. The renormalised porosity volume
φ(x, y, z) can then be obtained by scaling the Z -score at each location by the desired mean
porosity μφ and its standard deviation σφ

φ (x, y, z) = μφ + σφ × Z (x, y, z) . (15)

4.2 Modelling Reservoir Permeability

Permeability is a primary reservoir property of any reservoir model to be simulated. Each
voxel within the reservoir model should be assigned three permeability values, one for each
direction (i.e. x , y, and z).

A distinction should be made between the anisotropy of the distribution of fractal per-
meabilities and the anisotropy in the magnitude of the permeabilities. The anisotropy of the
distribution of fractal permeabilities operates at voxel scale and above and controls how “lay-
ered” the reservoir permeabilitymodel looks. In this study the permeability is calculated from
three fractal volumes representing porosity, effective grain size, and cementation exponent
using the RGPZ equation (Glover et al. 2006; Glover 2015). It is the anisotropy in each of
these volumes (χφx , χφy , χφz , χdx , χdy , χdz , χmx , χmy , and χmz ) that is ultimately responsi-
ble for the development of anisotropy in the calculated permeability volume. In this work,
all fractal volumes have lateral anisotropy values which are equal to unity, and a vertical
anisotropy greater than unity (χφx = χφy = χdx = χdy = χmx = χmy = 1;χφz = χdz =
χmz > 1), which leads to a significant horizontal layering in the calculated permeability
volume.

There is also a microstructural anisotropy which is associated with the fundamental pore
structure and arises from the asymmetric operation of depositional and diagenetic processes.
The result is a mean vertical permeability that can be up to a factor of 10 smaller than the
horizontal permeability. This smaller-scale anisotropy can also be implemented in the model
by scaling the vertical permeability to be equal to some defined fraction ξ of the horizontal
permeability, where ξ=kz/kx=kz/ky , i.e. the mean vertical permeability divided by either
of the mean lateral permeabilities, which are equal. For the purposes of this work the hori-
zontal permeability is that calculated from the fractal volumes using the RGPZ method, and
ξ = 0.1.

Consequently, the permeability anisotropy at voxel scale is defined only by themicrostruc-
tural anisotropy,while the permeability anisotropy at larger scales has contributions both from
the microstructural anisotropy and from the larger-scale anisotropy imposed by the fractal
volumes.

The RGPZ equation was used to calculate the permeability volume (Glover et al. 2006).
This equation is one of the very few “non-empirical” formulae that describe the permeability
of a porous medium. The RGPZ equation is given by
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k = d2φ3m

4am2
, (16)

where k is the permeability (in m2), d is the grain size (in m), φ is the porosity, m is the
cementation exponent, and a is a constant which usually takes the value a = 8/3 (Walker
and Glover 2010). The RGPZ model requires knowledge of grain size and the cementation
exponent as well as the porosity for each voxel in order to calculate the permeability, which
is discussed in the next section.

4.3 Modelling Grain Size and Cementation Exponent

Wehave seen earlier that the distributions of the effective grain size and cementation exponent
both behave fractally. Hence, both the grain size and the cementation exponent volumes can
be generated in exactly the same manner as the porosity volume, but renormalising with the
desired mean and standard deviation for each property. It is possible to create completely new
fractal reservoir volumes, one for effective grain size and one for cementation exponent, that
are independent of each other and of the porosity volume. Each of these new volumes may
have different fractal dimension and anisotropy factors as well as the underlying structures
which are defined by the random number seeds used in their construction. However, we have
recognised that the relative variation in one physical property, e.g. porosity, is sensitive to
the same environmental factors during deposition and diagenesis that also control the grain
size and cementation exponent.

The difficultywith generating twovolumes for each petrophysical property that share some
overall features, but are different, stems from the fact that each random number generator
seed used in the fractal generator algorithm produces a completely different and independent
fractal volume in an unpredictable fashion (i.e. two consecutive seeds do not produce slightly
different volumes). However, in order to overcome this problem and generate volumes that
can share some similarities, the following procedure has been used.

Let us consider two random number generators R1 and R2 that can be used to generate two
independent fractals. For the case that some similarity is required, the two random number
generators aremixed linearly as a function of a certainmismatch factor to form a third random
number, R3, according to

R3 = γR1 + (1 − γ )R2, (17)

where γ is a mismatch factor applied to each Fourier component. So, if γ = 1, 17 collapses to
R3 = R1 and the two volumes will be completely independent to each other, while if γ = 0,
17 collapses to R3 = R2 and the two volumes will match each other exactly. However, if
0 < γ < 1, R3 will be a mixture of the two random numbers where smaller value of γ will
produce more similar volumes.

This way, we can control how sensitive a certain property is to another. For example, if
we think that the grain size distribution is highly sensitive to porosity distribution, γ can take
values 0.2 or 0.3. However, if we think that cementation exponent is less sensitive to porosity
distribution, we can use a value of γ = 0.5 or higher.

After generating models for reservoir grain size distribution and cementation exponent,
these models are then used in the RGPZ permeability equation (Eq. 16) to calculate the
permeability volume for each voxel.

Figure 5 shows the porosity, grain size, cementation exponent, and lateral permeability
maps as a typical example of a reservoir model. The parameters that were used to create the
model are given in Table 3.
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Fig. 5 Physical property maps of an example reservoir model with a fractal dimension of D = 3.5, and
vertical anisotropy of χ = 6.0. a porosity, b grain size, c cementation exponent, and d lateral permeability.
The x, y, and z axes represent the number of blocks at each direction which are (128 × 128 × 32; 524,288
voxels) in these particular examples

Table 3 Parameters used in the creation of th models shown in Figs. 5 and 6

Physical property Parameter Symbol Value Unit

Porosity Fractal dimension Dϕ 3.5 Unitless

Anisotropy factor χϕ 6.0 Unitless

Distribution arithmetic mean φ 0.14 Unitless

Distribution standard deviation �φ 0.015 Unitless

Grain size (diameter) Fractal dimension Dd 3.5 Unitless

Anisotropy factor χd 6.0 Unitless

Distribution arithmetic mean d 120 × 10−6 m

Distribution standard deviation �d 5.5 × 10−6 m

Cementation exponent Fractal dimension Dm 3.5 Unitless

Anisotropy factor χm 6.0 Unitless

Distribution arithmetic mean m 1.9 Unitless

Distribution standard deviation �m 0.05 Unitless
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Fig. 6 Poroperm cross-plot of the model reservoir shown in Fig. 5 and using parameters given in Table 3;
524,288 data points

4.4 Synthetic Poroperm2 Cross-Plots

Synthetic poroperm cross-plots were constructed from the reservoir model that is shown in
Fig. 5. It is possible to do this for the entire model or for each individual layer. Figure 6 shows
the poroperm cross-plot for the entire reservoir. During themodelling it has become clear that
the characteristics of the poroperm cross-plot depend upon the standard deviation of reservoir
property distributionmore than anything else. It is also controlled by the degree of interaction
between the three parameters defining the permeability (φ, and d). If the cementation factor
and the grain size have similar geometrical distribution to porosity, the poroperm cloud will
collapse to a single trend curve. More work is needed to be carried out in order to understand
these effects. However, it is clear that this approach to reservoir modelling is, in fact, also an
approach to poroperm modelling.

4.5 Fluid Saturations and Relative Permeability Modelling

The last major unknown parameter is the fluid saturation of each voxel. The capillary entry
pressure of each voxel has been calculated and compared with the capillary pressure it would
have for that voxel to contain water or hydrocarbons according to its height above the free
water level. For the purposes of this study the free water level was taken as the base of the
bottom layer. Accordingly, Brooks and Corey (1966) equation, which describes the capillary
pressure as a function of water saturation Pc(Sw), was used. Brooks and Corey (1966) found
experimentally that the fluid saturation can be related to capillary and capillary entry pressures
by

Pc = Pe(S
∗
w)−

1
λ , (18)

where Pc is the capillary pressure, Pe is the capillary entry pressure, S∗
w is the reduced

saturation of the wetting phase, and λ is the pore size distribution index. Although this
relation is purely empirical, Li (2004) derived, theoretically, this model from fractal theory
of porous media where its fractal dimension D is related to λ by

λ = 3 − D. (19)

2 Poroperm stands for porosity–permeability.
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where 2 < D < 3. Equation 18 can be rearranged to obtain the reduced wetting phase
saturation

S∗
w =

(
Pe
Pc

)λ

. (20)

S∗
w is defined during imbibition of the wetting phase by

S∗
w = Sw − Swr

1 − Swr − Snwr
, (21)

and during drainage as

S∗
w = Sw − Swr

1 − Swr
, (22)

where Sw is thewetting phase saturation, Swr is thewetting phase residual saturation, and Snwr
is the non-wetting phase residual saturation (Li and Horne 2006). In this study, imbibition
displacements where a non-wetting invading fluid (oil) is displaced by a wetting fluid (water)
are considered.

This approach requires us to know Pc and Pe for each voxel. The capillary pressure in
each layer above the free water level is related to the height above the free water layer and
the difference in density between the fluids occupying the pores according to

Pc= g�ρ h, (23)

where h is the height above the free water level (in m), g is the acceleration due to gravity
(taken as 9.81m/s2 in this work), and �ρ is difference in density between the oil and the
water (taken as 140 kg/m3 in this work).

Independently, the capillary pressure when two immiscible fluids occupy a capillary tube
is defined as

Pc=2σ cos θ

rtube
, (24)

where σ is the interfacial surface tension (taken as 0.035 N/m) and θ is the fluids contact
angle (taken as 0 in this work), and rtube is the radius of the capillary tube. Assuming that pore
throats can be approximated by tubes, and setting rtube = dpt/2, where dpt is the effective
diameter of the pore throats, Eq. 24 can be rearranged to give the capillary pressure of pore
throats as

Pc=4σ cos θ

dpt
, (25)

where dpt is the diameter of the pore throats (in m).
The grain diameter can be converted into a pore diameter using the theta transformation

(Glover and Walker 2009)

dpore= 2dgrain

√
2φ2m

am2 , (26)

where dpore is the diameter of the pores (in m), dgrain is the diameter of the grains (in m),
and all other symbols have been previously defined. Glover and Déry (2010) extended this
conversion to pore throat diameters by defining and calculating a constant conversion for
randomly distributed grains, of clastic rocks, such that

dpore = A dpt , (27)
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Fig. 7 Water saturation map for the model reservoir. The x, y, and z axes represent the number of blocks at
each direction which are (128 × 128 × 32; 524,288 voxels) in this particular example

where A is constant (A = 1.655). Equations 15 and 27 can be combined with the definition
of capillary pressure for capillary pore throats (Eq. 25) to give

Pc = 2Aσ cos θ

dgrain

√
am2

2φ2m . (28)

Similarly, the corresponding capillary entry pressure will be

Pe = 2Aσ cos θ

dlargest grain

√
am2

2φ2m , (29)

where dlargest grain is the largest grain size at each voxel (assumed to be 1.2 bigger than the
mean grain size). Equations 23 and 29 can now be used to calculate the capillary pressure
Pc as a function of height above the free water level and the capillary entry pressure Pe. The
reduced water saturation can now be calculated for each voxel from Eq. 20 if the value of λ

is known. The water saturation for each voxel can then be calculated using Eq. 21 or 22. In
this work, it was assumed that water is the wetting phase fluid, while oil is the non-wetting
phase fluid. Hence, water saturation can be calculated by rearranging Eq. 22 as

Sw = S∗
w (1 − Swr − Sor) + Swr, (30)

where Swr and Sor are the irreducible water and residual oil saturations, respectively. Figure 7
shows a water saturation map calculated for the reservoir model shown in Fig. 5 for the
imbibition case.

4.6 Relative Permeability

Synthetic wetting and non-wetting relative permeability curves for each cell of the model
were calculated from the reduced water saturation that was calculated in the previous step
together with the λ value by using the Brooks–Corey–Mualem model (Chen et al. 1999)

krw = (
S∗
w

) 4+5λ
2λ , (31)

krnw = (
1 − S∗

w

) 1
2

[
1 − (

S∗
w

) 1+λ
λ

]2
. (32)

Figure 8 shows an example of relative permeability curves generated for the reservoir shown
in Fig. 5 for both drainage and imbibition cases. In this figure we have imposed irreducible
water and residual oil saturations both of 20%.
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Fig. 8 Calculated relative permeability curves using the imbibition and drainage forms of reduced water
saturation equations (Eqs. 21, 22)

4.7 Comparison with Existing Reservoir Modelling Practice

The current practice of reservoir heterogeneity modelling, for the purpose of flow simulation,
is generally doneby reservoir geostatisticalmodelling (Pyrcz andDeutsch 2014;Ringrose and
Bentley 2015). For example, porositymodels can be generated by calculating semivariograms
to capture the heterogeneity, and then they can be used in a facies-based sequential Gaussian
simulation “sGs” geostatistical algorithm (AlQassab et al. 2000). It is possible to calculate the
variogram of the fractal model and apply sequential Gaussian simulation before comparing
the results to a variogram-based model flow. However, given the scope of the paper, this will
not be carried out herein.

Standard criteria of reservoir modelling have been established (Pyrcz and Deutsch 2014),
including: (i) conditioning the model to data from wells and seismic of the reservoir to be
modelled, (ii) heterogeneity, (iii) realisations for uncertainty, (iv) efficiency, and (v) acces-
sibility to reservoir geologists and engineers. The motivations for developing this modelling
are to look at the effects of heterogeneity and anisotropy not in a given reservoir but in
general terms (i.e. using synthetic data), and so at this stage no effort has been put into con-
ditioning the models to a specific reservoir. The strength of this approach is that the effects
of heterogeneity and anisotropy can be examined without the specific characteristics of a
given reservoir getting in the way. Although this approach has been developed for looking
at heterogeneity and anisotropy in a generic way, research is underway to see whether this
type of modelling can be conditioned for use with specific reservoirs and can also be applied
to the modelling of fractures within reservoirs, whose length and aperture also follow fractal
laws. Additionally, since those models are not stochastic, as explained earlier, there is no
uncertainty in such a fully determined model. Moreover, run times depend on how big the
analysed model is and on the number of wells used. Regarding the accessibility, it depends
on how the final model is integrated into existing software. There are no outstanding issues
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Fig. 9 A reservoir model under test representing a coarse-grained reservoir with high porosity and permeabil-
ity. The parameters that were used to create the model are given in Table 4. This particular case has a fractal
dimension D = 3.5 and an anisotropy factor of χ = 1.0. The x, y, and z axes represent the number of blocks
at each direction which are (128 × 128 × 32; 524,288 voxels)

that need to be overcome before such an approach can begin to be incorporated into existing
large-scale software.

In particular, this paper describes the feasibility, mathematical background, and develop-
ment of the technique together with a few examples. Further examples, including simulation
that examines the heterogeneity and anisotropy affects, are the subject of a further paper that
is currently being written.

5 Modelling Implementation for Test Reservoirs

Reservoir simulationswere used in order to quantify the effect of heterogeneity and anisotropy
of reservoir properties on oil production. Using the methodology explained earlier, a model
with different scenarios of heterogeneity defined by the fractal dimensions (D = 3.1, 3.3,
3.5, 3.7, and 3.9) and vertical anisotropy factors (χ = 1, 3, and 5) was tested. The model
represents a coarse grain, high porosity, and high permeability reservoir having unimodal
property distributions.

All normalised reservoir volumes that were generated were tested to ensure that their dis-
tributions conformed to a Gaussian distribution. Once renormalised each calculated reservoir
property (porosity, grain size, and cementation exponent) was also tested for the accuracy of
its distributions, that its fractal dimension and anisotropy conformed to that imposed on it, and
that the mean value of the reservoir property and its standard deviation matched the desired
values. Those volumes which were calculated from the initially modelled reservoir properties
such as the permeability and the fluid saturations were also tested to ensure that their distrib-
utions, means, standard deviations, fractal dimensions, and anisotropies conformed to what
was expected and represented a reasonable description of the physical property in real reser-
voirs. One of the requirements is that the permeability distribution follows an approximately
log-normal distribution, as observed for real reservoirs.

Figure 9 shows one scenario of the tested model, while Table 4 summarises the physical
property parameters used for model creation together with the main tests carried out on
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Table 4 Parameter summary of the reservoir shown in Fig. 9

Physical
property

Parameter Symbol Imposed
value

Tested
value

% Error

Porosity Fractal dimension Dϕ 3.5 3.497 0.08

Anisotropy factor χϕ 1.0 NA NA

Distribution peak φ 0.18 0.18 0

Distribution standard
deviation peak

�φ 0.03 0.03 0

Grain size (diameter) Fractal dimension Dd 3.5 3.535 1.0

Anisotropy factor χd 1.0 NA NA

Distribution peak d 120μm 120μm 0

Distribution standard
deviation peak

�d 5.5μm 5.5μm 0

Cementation exponent Fractal dimension Dm 3.5 3.456 1.2

Anisotropy factor χm 1.0 NA NA

Distribution peak m 1.7 1.7 0

Distribution standard
deviation peak

�m 0.05 0.05 0

Lateral permeability Fractal dimension Dk Not defined 3.459

Anisotropy factor χk NA

Distribution peak k 103

Distribution standard
deviation peak

�φ 98.4

Also, testing data for the reservoir model implemented with a fractal dimension D = 3.5 and an anisotropy
factor of c = 1.0 are shown
NA no analysis tool is available to test it

these parameters. Irreducible water saturation and residual oil saturation of 20% have been
implemented in all cases. Note that the pore size distribution index has been fixed to 1.2 at
all scenarios.

6 Initial Simulation Results

Simulation of themodels shown in Fig. 9 was carried out using the finite difference Tempest®

simulator (version 7.0.4) on a distributed WindowsTM 7 platform at the University of Leeds.
The initial fluid pressure and temperature were taken to be 2300 psi and 120 ◦C to be in
accordance with those typical values for real reservoirs. The model was composed of 32
layers each 3 m thick. Each layer was composed of 128 × 128 cells which were 100m by
100m in lateral extent, making up a total of 524,288 voxels, extending 12.8km in each lateral
direction and 96m vertically.

The solution was run with a black oil model simulator over 60 years. Dynamic simulations
on our models invoke water flooding with 15 vertical injectors injecting at a constant rate
of 5000m3/day at oil industry standard conditions (1 atmosphere pressure and 60 ◦F or
15.55 ◦C), and a total of 26 vertical producers producing at a constant rate of 2000 standard
m3/day distributed as shown in Fig. 10. Water injection was used to support the reservoir
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Oil Producer 
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Fig. 10 Well pattern map

fluid pressure from the start until the end of the simulation. Producers and injectors have
constant bottom hole pressure of 10,000 psi, respectively.

The following parameters were simulated: (i) reservoir fluid pressure, (ii) oil production,
(iii) gas production, (iv) water production, and (v) mean relative permeability differen-
tial, both as reservoir maps and as a function of time. Simulations were initially run for
five different fractal dimensions (D = 3.1, 3.3, 3.5, 3.7, and 3.9) and hence five different
reservoir heterogeneities each at a fixed vertical anisotropy factor (χ = 1, 3, and 5), leaving
all other parameters constant.

Figure 11 shows the oil production rate profiles for the models shown in Fig. 9, which
reveal that the production rates gradually decrease after few years of initial production plateau
initiated as a result of the imposed oil production targets on production wells in all scenarios.
It can be seen that the oil production rates for higher fractal dimensions have initial plateau
that last little longer, but once they begin to decline, they decline faster. This was revealed in
all scenarios. Although this occurs, it was noticed that increasing the heterogeneity has little
effect on oil production.

Figure 12 shows the simulated water cut percentage as a function of production time.
All water cut graphs show that production of water would start only after about 4 years of
production and would increase until the end of the simulation period. They also show that
water production would be rapid in the first few months and then become gradual. It can be
seen that different scenario profiles are really not affected by D.

The effect of water cut is best analysed by breakthrough times, whichwas taken by us to be
awater cut of 10%.Combined plots showing the change ofwater breakthrough times, average
oil production rate, and cumulative oil production over the production time as a function of
heterogeneity and anisotropy for the reservoir together with their relative change as compared
to the most homogeneous scenarios are shown in Fig. 13. Analysis of these plots shows that
neither the overall average rate of oil production nor the overall cumulative oil production
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Fig. 11 Simulated oil production rates (Mstb/day) as a function of time (years) for the reservoir model having
five different fractal dimensions (D = 3.1, 3.3, 3.5, 3.7, and 3.9) and a fixed vertical anisotropy factor of χ = 3

Feb2004 Aug2009 Feb2015 Jul2020 Jan2026 Jul2031 Dec2036 Jun2042 Dec2047 Jun2053 Nov2058
0

10

20

30

40

50

60

70

80
Water Cut Profile

Date

W
at

er
 C

ut
 (%

)

D=3.1, χ=3
D=3.3, χ=3
D=3.5, χ=3
D=3.7, χ=3
D=3.9, χ=3

Fig. 12 Simulated water cut (%) for all producers as a function of time (years) for reservoir-1G having five
different fractal dimensions (D = 3.1, 3.3, 3.5, 3.7, and 3.9) and a fixed vertical anisotropy factor of χ = 3

is greatly affected by the increase in heterogeneity as the change of the simulated values at
different heterogeneities is very small, with a general trend of a slight increase in overall
average production rate, and hence oil cumulative production, as the heterogeneity increases.
The model showed earlier breakthrough times as the increase in heterogeneity was applied.
Nevertheless, the shift in water breakthrough times with different degrees of heterogeneity
does not exceed few months. The difference in breakthrough times even decrease more
as the anisotropy increases, suggesting that there is probably an interaction between the
heterogeneity and anisotropy at high values that decrease the effect of each other.
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Fig. 13 A combined plot showing the change of the water breakthrough times, the average oil production
rate, and the cumulative oil production with fractal dimension and anisotropy factor of the reservoir model

From the above reporting of all tested reservoir realisations, itmay be said that the variation
of the fractal dimension from 3.1 to 3.9 that determines the heterogeneity of the distribution
have an insignificant effect on cumulative oil production and oil production rates.

The insensitivity of these reservoir oil production rates to a change in the fractal dimension
is related to the nature of the generated fractal volumes. The fluid displacement through fractal
volumes depends on the imposed mean values of porosity and permeability generated by
fBm algorithm. As seen before, the shape of the models is defined by (i) seeding the random
number generator used in the fBm generation algorithm, and (ii) the fractal dimension, which
can take the values 3 < D < 4. If the created fBm realisation is considered to reflect all
the available geologic information (i.e. similar to having enough data to describe a reservoir
accurately), changing the fractal dimension of a model does not change the overall shape
of the model. In other words, if any two points in the models are considered, the overall
geometrical distribution between them does not change, and hence the effective transport
property values between them does not change. The only thing that changes is the irregularity
of the distribution. This irregularity makes it harder for the oil to pass through, and hence
longer time plateau, but not with great difference if compared with smoother models because
the effective porosity and permeability values between those two points are almost the same
at all heterogeneities. Thus, providing that the reservoir properties were mapped accurately,
the value of the fractal dimension will not have a significant effect. The problem with real-
world heterogeneous reservoirs is the insufficiency of data available to produce a good model
describing the heterogeneous behaviour between the wells.

The previous results are consistent with the findings by Aasum et al. (1991) and Babadagli
(1999), in that varying D only is not significant, but contradicts the conclusions made by Li
and Xie (2011) which shows that D has a great effect. Aasum et al. (1991) synthesised a 2-D
fractal cross section where porosity and permeability were fractally interpolated between
two wells where they were measured. Then, they studied the effect of D on the miscible dis-
placement process and found it is not significant. Alternatively, Babadagli (1999) generated
synthetic 1-D fBm distributions where he normalised to porosity logs before converting them
to permeability logs using an exponential correlation formula (k = a10�b). After that, he
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generated horizontal cross sections assuming no change horizontally and studied the effect
of D on production performance of these cross sections. He noted that D has little effect.

Obviously, these two studies used 2-D and 1-D fBm, respectively, and assumed nothing
is changing other than D, which they found to be not significantly affecting reservoir’s
performance.

In contrast, Li and Xie (2011) did it the other way around. They studied the effect of D
on production performance of reservoirs in Hailar Basin, China. They obtained the fractal
dimension of core samples from 7 wells across the reservoir, with measured values ranging
between 2.36 and 2.72, using the mercury intrusion experiment. Then, they analysed the
production history of the wells and noted a clear correlation between the fractal dimension of
samples and the oil production andwater cut ofwells, such that oilwells happened to be drilled
in higher fractal dimension reservoirs had the smallest monthly production rate and shortest
breakthrough times. This conclusion agrees very well with the industry experience, as it is
well known that heterogeneous reservoirs are less efficient when compared to homogeneous
ones. Therefore, there must be something other than the fractal dimension, or occurred as a
result of the fractal dimension, that affected the reservoir performance. Note that the fractal
dimension defines the heterogeneity at microscopic scale, while the reservoir performance
is measured at macroscopic scale.

One possibility might be related to fractal capillary pressure. Note that all the previous
models were simulated assuming the same value of the pore size distribution index (λ) used
in Corey–Brooks capillary pressure relation implemented in water saturations calculation
(Eq. 18), resulting in water saturation volumes that share almost the same mean values and
overall geometrical distribution at all heterogeneities.

Nevertheless, in real reservoirs, this might not be the case. Our intension on the previous
tests was to study the effect of accuracy on the porosity and permeability modelling while
assuming everything else is constant. Yet, it is well known that the heterogeneity affects not
only the variation of the distribution, but more importantly, the capillary forces and fluids
saturation across the reservoir. As the heterogeneity increases, the capillary pressure changes
across the reservoir, causing higher irreducible water saturations. This reveals another reason
for heterogeneity being insignificant in the previous tests.

Equation 19 clarifies this concept, as (λ) is related to (D), showing that porous media with
greater heterogeneity have smaller values of λ (Li 2010; Standing 1975). Thus, a relationship
between (Pc) and (D) can be inferred. If the natural logarithm of Eq. 18 is obtained, we get

log Pc = −1

λ
log S∗

w + log Pe (33)

Equation 33 foresees that a log–log plot of Pc as a function of S∗
w reveals a linear relationship

with a slope of (−1/λ), and the intercept at 100% S∗
w is Pe. Figure 14 provides type curves

generated usingEq. 33, showing that steeper slopes result fromhigherλ values,meaning large
variation in pore sizes, and hence poorer-quality reservoirs (Standing 1975). Additionally,
higher λ values imply an upward shift of the fitting curve, and hence greater variations in the
capillary pressure, resulting in higher Swr values, associated with heterogeneous reservoirs.

If the relation between λ and D is taken into account, the water saturation calculation will
differ significantly as the heterogeneity increases, where higher Swr are obtained. Figure 15
shows water saturation volumes and the relative permeability curves of the reservoir model
calculated with λ being a function of D. Figure 15 shows clearly that the fractal dimension
imposed on the reservoir by the modelling process controls the model’s heterogeneity, and
how the heterogeneity, in turn, control the spatial distribution of the initial fluids saturation.
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Fig. 14 A plot of capillary pressure as a function of water saturation having different values of pore size
distribution index λ. Note that the intercept at 100% Sw reveals the capillary entry pressure

(a)

(b)

(c)

Fig. 15 A test of calculating Sw with varying λ according to D using Eqs. 19, 20, and 30, where a D = 3.1;
b D = 3.5; and c D = 3.9. The water saturation (left) calculation will differ significantly as the heterogeneity
increases with higher Swr as shown in the relative permeability curves (right)

With this new implementation, the effect of heterogeneity on reservoir production perfor-
mance was reanalysed. New simulation results of oil production rate and water cut profiles
are shown in Figs. 16 and 17, respectively. Different scenarios of heterogeneity at fixed
anisotropies are shown. Moreover, combined plots of the onset of significant water pro-
duction, the average oil production rates, and overall cumulative oil production over the
production time together with their relative change compared to the homogeneous case are
shown in Fig. 18.
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Fig. 16 Simulated oil production rates (Mstb/day) as a function of time (years) for the reservoir model having
five different fractal dimensions (D = 3.1, 3.3, 3.5, 3.7, and 3.9) and a fixed vertical anisotropy factor of χ = 3
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Fig. 17 Simulated water cut (%) for all producers as a function of time (years) for the reservoir model having
five different fractal dimensions (D = 3.1, 3.3, 3.5, 3.7, and 3.9) and a fixed vertical anisotropy factor of χ = 3

It is immediately clear that the reservoir heterogeneity has nowahuge impact upon allmain
measures of reservoir performance.Thehydrocarbonproductiondeclines sharply 2years after
the start of production for the most heterogeneous reservoir (D = 3.9) and is different by
over 10% one year after the start of production and reaches 40% 8 years later. Additionally,
as shown in Fig. 18, the cumulative hydrocarbon production significantly decrease as the
heterogeneity increases. Furthermore, breakthrough times change enormously depending on
the fractal dimension used (e.g. BT is earlier by 13 years whenD = 3.9 compared toD = 3.1
when χ = 1).

Thus, based on these results, a clear correlation between reservoir’s fractal dimension and
its performance is revealed such that reservoirs with higher microscopic heterogeneity yield
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Fig. 18 A combined plot showing the change of the water breakthrough times, the average oil production
rate, and the cumulative oil production with fractal dimension and anisotropy factor of the reservoir model
after the modification

less hydrocarbon production and greater water cut with early water breakthrough times.
This does not only result from the irregularities introduced by heterogeneity, but is more
importantly because of the consequence effect of the heterogeneity on the capillary pressure.
These results now agree very well with the findings presented by Li and Xie (2011). These
are very significant uncertainties for a hydrocarbon company if the heterogeneity of their
reservoir is not well defined. On this basis, the full effects of heterogeneity and anisotropy
have to be addressed before modelling and simulation is carried out.

7 Conclusions

This paper has shownhow the fractal concept can be used to construct a generic heterogeneous
and anisotropic reservoir model that reproduces faithfully the static and spatial characteristics
that real heterogeneous and anisotropic reservoirs exhibit. The models are not stochastic, but
are completely reproducible when the same random number seeds are used. Different runs
using different random number seeds, but with the same physical characteristics allow a
population of model reservoirs to be built so that the natural variability and uncertainty in
reservoir simulation results may be quantified.

In particular, this paper has evolved a method for generating synthetic (reproducible)
three-dimensional reservoir volumes in which the heterogeneity and anisotropic vertically
and/or laterally are controllable using imposed fractal dimensions, and the anisotropy is
controlled using an anisotropy factor in any direction, respectively. In these models each
voxel is correlated to each of the surrounding voxels in a fractal manner. Testing of the
fractal volumes shows that the values are spatially and vertically correlated according to the
imposed fractal dimension and anisotropy factors to within a very small error.

Basic simulation of the main measures of reservoir performance including the reservoir
fluid pressure, hydrocarbon production rates, and the timing of water breakthrough on reser-
voir models representing heterogeneous reservoirs under test, with a range of heterogeneities
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(fractal dimension) between 3.1 and 3.9, show that oil production and water encroachment
are controlled by permeability heterogeneity, vertical anisotropy, placement of the wells, and,
more importantly, the capillary pressure heterogeneity. In fact, vertical displacement depends
on the permeability of the most impermeable layer.

Supposing that the generated fractal volumes represent all the available geologic informa-
tion of a reservoir, and while the change considered is only heterogeneity and anisotropy of
the property distributions only (i.e. other parameters are not affected), both the heterogeneity
and anisotropy have little effect on reservoirs performance. Thus, providing that the overall
property distributions were mapped with good accuracy, the heterogeneity and anisotropy
have small effect.

Conversely, if the effect of the heterogeneous spatial distribution of reservoir properties,
which is fractal, on other reservoir parameters such as reservoir capillary pressure is taken into
account, heterogeneity can significantly, and destructively, impact the reservoir performance
behaviour. Under such circumstances, a clear correlation between the fractal dimension and
the simulation results is noted such that reservoirs with greater heterogeneity have less oil
production rate, greater water cut, earlier water breakthrough time, faster production decline,
and faster pressure drop. This is due to the fact the heterogeneity causes the capillary pres-
sure to vary across the reservoir, leading to high connate water saturations and greater water
channelling. This shows that the heterogeneity itself, at pore scale, in terms of how the phys-
ical properties are distributed in the reservoir is not significant. However, the heterogeneity
consequences are significant if not taken into account (e.g. capillary pressure variation).

This approach to modelling a reservoir is not suited to describing the specifics of any
given reservoir, but can help us understand the size of the uncertainties in simulation results
that arise from either not knowing or not taking into account the full degree of heterogene-
ity and anisotropy a reservoir exhibits. Given that the majority of modern reservoirs are
both significantly heterogeneous and/or anisotropic, it is important to quantify these effects
proactively.
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