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Abstract 

Public-domain software is currently available in order to allow designers to incorporate 

the enhancement of fire resistance due to tensile membrane action of composite slabs 

into their analysis of building behaviour in fire.  It embodies an updated simplified 

calculation model based on the Bailey-BRE Method for the design of composite slab 

panels for the fire limit state.  It optimises reinforcement size to generate an enhanced 

slab capacity at large deflections, so that it is capable of bearing the fire limit state 

loading at the required fire resistance time, expressed in terms of an allowable-

deflection limit.  The method assumes that protected edge beams maintain absolute 

vertical support of the slab panel at its boundaries, only allowing for failure of 

compartmentation integrity by tensile fracture of mid-panel reinforcement or by 

concrete crushing at the corners.  However, these protected edge beams deflect under 

their enhanced loading in fire, which can cause a structural failure of the slab panel 

before the required fire resistance time.  It is therefore imperative to determine the real 

contribution of the area of reinforcement to tensile membrane action, given adequate 

consideration of the loss of vertical edge support.  This paper, as an extension to a 

previous paper on the effects of protected edge beams on slab tensile membrane action, 

presents a series of finite element studies conducted with the software Vulcan, 

compared with the current Bailey-BRE Method and the public-domain TSLAB 

software, to determine the influence of reinforcement area on the failure of slab panels 

at elevated temperatures. 

Keywords: buildings, structures & design; composite structures; design methods & 

aids; fire engineering; slabs & plates; steel structures; thermal effects 
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1 Introduction 

Recent trends aimed at ensuring the fire resistance of structures have encouraged 

increased use of performance-based approaches, which are now often categorised as 

structural fire engineering.  These methods attempt to model, to different degrees, the 

actual behaviour of the three-dimensional structure, taking account of realistic fire 

exposure scenarios, the loss of some load from the ultimate to the fire limit state, actual 

material behaviour at elevated temperatures and interaction between various parts of the 

structure.  Assessment of the real behaviour of structures in fire has shown that the 

traditional practice of protecting all exposed steelwork can be wasteful in steel-framed 

buildings with composite floors, since partially-protected composite floors can generate 

sufficient strength to carry considerable loading at the fire limit state, through a 

mechanism known as tensile membrane action, provided that fire-compartmentation is 

maintained and that connections are designed with sufficient strength and ductility.  

Tensile membrane action is a load-bearing mechanism of thin slabs under large vertical 

displacement, in which an induced radial membrane tension field in the central area of 

the slab is balanced by a peripheral ring of compression.  In this mechanism the slab 

capacity increases with increasing deflection. This load-bearing action offers economic 

advantages for composite floor construction, since a large number of the steel floor 

beams can be left unprotected.  The conditions necessary for the effective use of this 

mechanism are two-way bending and vertical support along the slab�s edges.  In the 

current UK structural fire engineering implementation of performance-based methods, 

buildings are designed to comply with a list of agreed acceptance criteria, including a 

range of typical fires, causing realistic temperatures of the beams, columns and slabs, 

allowable deflection limits to avoid integrity failure, and acceptable connection forces at 

elevated temperatures.  These requirements make nonlinear finite element methods ideal 

for structural fire engineering assessments, as the behaviour of an entire building (or a 

substantial part of it) can be monitored.  However, numerical analyses are time-

consuming processes, and so simplified methods which provide good preliminary 

estimates of structural behaviour are always an advantage. 

The BRE membrane action method, devised by Bailey and Moore (2000), is one 

such procedure, which assesses composite slab capacity in fire by estimating the 

enhancement which tensile membrane action makes to the flexural capacity of the slab.  
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It is based on rigid-plastic theory with large change of geometry.  The method assumes 

that a composite floor is divided into rectangular fire-resisting �slab panels� (see Fig. 1), 

composed internally of parallel unprotected composite beams, vertically supported at 

their edges which usually lie on the building�s column grid.  In fire the unprotected steel 

beams within these panels lose strength, and their loads are progressively borne by the 

highly deflected thin concrete slab in biaxial bending.  The increase in slab resistance is 

calculated as an enhancement of the traditional small-deflection yield-line capacity of 

the slab panel.  This enhancement is dependent on the slab�s aspect ratio, and increases 

with deflection.  The method, initially developed for isotropically reinforced slabs 

(Bailey, 2000), has been extended to include orthotropic reinforcement (Bailey, 2003).  

A more recent update by Bailey and Toh (2007a) considers more realistic in-plane stress 

distributions and compressive failure of concrete slabs.  The deflection of the slab has to 

be limited in order to avoid an integrity (breach of compartmentation) failure.  Failure is 

defined either as tensile fracture of the reinforcement in the middle of the slab panel or 

as compressive crushing of concrete at its corners.  The deflection limit, shown as 

Equation (1), is defined on the basis of thermal and mechanical deflections and test 

observations: 
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in which: 

 v is the allowable vertical displacement 

 Į is the coefficient of thermal expansion of concrete 

 T2 is the slab bottom surface temperature 

 T1 is the slab top surface temperature 

 L  is the length of the longer span of the slab 

 l is the length of the shorter span of the slab 

 h is the effective depth of the slab, as given in BS EN1994-1-2 Annex D 

(BSI British Standards, 2005) 

 fy  is reinforcement yield stress 

 E is the elastic modulus of the reinforcement 
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The first term of Equation (1) accounts for the �thermal bowing� deflection, assuming a 

linear temperature gradient through the depth of a horizontally-unrestrained concrete 

slab.  The second part considers deflections caused by applying an average tensile 

mechanical reinforcement strain, of 50% of its yield strain at 20°C, across the longer 

span of the slab, assuming that its horizontal span stays unchanged.  This part of the 

allowable deflection is further limited to l/30.   In normal structural mechanics terms 

this superposition of two components of the total deflection is not acceptable, because 

of their incompatible support assumptions, but nevertheless it is the deflection limit 

used. The limiting deflection has been calibrated to accord with large-scale fire test 

observations at Cardington (Bailey, 2000).  In particular, in Equation (1) Į is taken as 

18x10
-6

/°C, the recommended constant value (BSI British Standards, 2005) for simple 

calculation, for normal-weight concrete, and the difference (T2-T1) between the bottom 

and top slab surface temperatures is taken as 770°C for fire resistance periods up to 90 

minutes, and 900°C for 2 hours, based on the test observations (Bailey, 2001). 

A primary advantage of the method is the simplicity of its calculations; it is 

therefore suitable for implementation in spreadsheet software.  The Steel Construction 

Institute (SCI) has further developed the method, and has implemented it in the 

Microsoft-Excel-based spreadsheet TSLAB (Newman et al., 2006).  Whereas the basic 

method limits slab deflections using the assumption of nominal temperatures based on 

the Cardington fire tests, the vertical deflection limit in TSLAB is calculated by using 

T2 and T1 values obtained from a thermal analysis of the slab cross-section.  A plot of 

the limiting deflections from the two processes, for a 9m x 9m x 130mm deep normal-

weight concrete slab panel cast on ComFlor 60 steel decking, is shown in Fig. 2.  The 

deflection limits are compared against the general (span/20) deflection criterion which 

is the upper limit in the Standard Fire test (BSI British Standards, 1987).  It is observed 

that, although TSLAB embodies the calculation process of the Bailey-BRE Method, 

there are differences between their limits.  A direct comparison of the two approaches 

has also indicated (Toh and Bailey, 2007) that there are discrepancies between the 

original Bailey-BRE equations and their interpretation in TSLAB.  On inspection it is 

evident that, not only does the Bailey-BRE limit assume a constant temperature 

difference between the top and bottom surfaces of the slab, but it also uses a higher 

coefficient of thermal expansion for normal-weight concrete than that used in TSLAB. 
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 The Bailey-BRE Method and TSLAB both assume that full vertical support is 

available at all the slab panel boundaries.  In practice, this is achieved by protecting the 

slab panel�s edge beams, which must lie on the column grid of the building (see Fig. 1).  

When the unprotected secondary beams lose most of their strength at very high 

temperatures there is a re-distribution of the loads carried by these protected edge 

beams; the primary beams lose load because of the loss of load capacity of the 

unprotected beams whose ends they support, whereas the protected secondary beams 

gain load by tending to support the floor area with which they would be associated in a 

non-composite two-way-spanning slab.  The Bailey-BRE method therefore requires that 

the protected secondary beams are designed for their increased load ratios at the fire 

limit state.  As the protected beams lose strength with time, and the load re-distribution 

at the Fire Limit State causes increased deflections at the panel boundaries, the 

assumption of continuous vertical support along the panel�s edges becomes 

progressively less valid.  The use of yield-line theory as the baseline for the strength 

enhancement also dictates that a slab panel�s capacity increases with increased 

reinforcement area unless duly arrested by a compressive failure criterion, as identified 

by Bailey and Toh (2007).  However, since the primary requirements for tensile 

membrane action to be mobilised are double-curvature bending, large deflections and 

vertical edge support, excessive deflections of the protected edge beams can result in the 

double-curvature bending being converted into single-curvature bending.  In 

consequence the panel may fail structurally in sagging, so that the reinforcement�s 

tensile strength is not usefully employed. 

Previous studies by Bailey and Toh (2007), Huang et al. (2002, 2004b) and 

Foster (2006) have compared the Bailey-BRE method both with experiments and with 

more detailed analytical approaches based on finite element analysis.  These have 

highlighted a number of shortcomings in the simplified method.  One which has 

attracted particular interest is the effect of increased slab reinforcement ratios.  The 

Bailey-BRE method indicates that a modest increase in the reinforcement ratio can 

result in a disproportionately large increase in composite slab capacity, whereas the 

finite element analyses indicate a much more limited increase.  The finite element 

studies by Huang et al. (2002, 2004b) examined slabs with some continuity along their 

edges.  The Bailey-BRE method was developed assuming that slab reinforcement 
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fractures in hogging over its edge supports, leaving simply-supported edges which 

allow horizontal pull-in.  Recent research (Abu et al., 2008, Abu, 2009) has shown that 

the behaviour of edge beams affects the failure mode and failure time of slab panels in 

fire.  For panels which lie on the perimeter of a building, the lack of in-plane and 

rotational restraint along their free edges implies a reliance on the selection of 

reinforcement area and adequate sizing and protection of edge beams. 

This paper extends the investigation of the effects of edge beam behaviour on 

slab panel failure (Abu et al., 2008) by examining the effects of increasing 

reinforcement areas.  The study is conducted by comparing results from Vulcan finite 

element analyses of isolated slab panels with those of the Bailey-BRE method, in order 

to determine the influence of reinforcement area on slab panels at elevated 

temperatures, and to identify the range of applicability of the method�s assumptions.  

The paper does not include material type, ductility, surface texture or orthotropic 

reinforcement effects on slab panel failure.  It is clear that these could significantly 

influence the behaviour of these panels, as observed by Foster et al. (2004) and Bailey 

and Toh (2007b).  With practical structural fire engineering design in mind, the 

comparisons are done with respect to the deflection criteria of TSLAB, the original 

Bailey-BRE Method and the Standard Fire Test (l/20). 

2 Studies comparing Vulcan and the Bailey-BRE Method 

The three slab panel layouts shown in Fig. 3 were used for the structural 

analyses.  The 9m x 6m, 9m x 9m and 9m x 12m panels were designed for 60 minutes� 

standard fire resistance, assuming normal-weight concrete of cube strength 40MPa and 

a characteristic imposed load of 5.0kN/m
2
, plus 1.7kN/m

2
 for ceilings and services.  

Using the trapezoidal slab profile shown in Fig. 4, the requirements of SCI P-288 

(Newman et al., 2006) and the slab specifications given in Table 1, the floor beams 

were designed according to BS 5950-3 (BSI British Standards, 1990) and BS 5950-8 

(BSI British Standards, 2003), assuming full composite action between steel and 

concrete, and simple support to all beams, in line with common British engineering 

practice.  The �Office� usage class is assumed, so that the partial safety factors applied 

to loadings are 1.4 (dead) and 1.6 (imposed) for ULS and 1.0 and 0.5 for FLS.  The 
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assumed uniform cross-section temperatures of the protected beams were limited to 

550°C at 60 minutes.  The ambient- and elevated-temperature designs resulted in 

specification of the steel beam sizes shown in Table 2. 

As previously mentioned, the assessment in this paper is presented as a 

comparison between the Bailey-BRE method and Vulcan finite element analysis.  Both 

the Bailey-BRE Method and TSLAB implicitly assume that the edges of a slab panel do 

not deflect vertically.  The progressive loss of strength of the intermediate unprotected 

beams is captured by a reduction in the steel yield stress with temperature.  The reduced 

capacity of the unprotected beams (interpreted as an equivalent floor load intensity) is 

compared with the total applied load at the Fire Limit State to determine the vertical 

displacement required by the reinforced concrete slab (whose yield-line capacity also 

reduces with temperature) to generate sufficient enhancement to carry the applied load.  

The required displacement is then limited to an allowable value.  The Vulcan finite 

element analysis, on the other hand, properly models the behaviour of protected edge 

beams, with full vertical support available only at the corners of each panel.  Vulcan 

Huang et al., 2003a, 2003b, 2004a) is a three-dimensional geometrically nonlinear 

specialised finite element program which also considers nonlinear elevated-temperature 

material behaviour.  Nonlinear layered rectangular shell elements, capable of modelling 

both membrane and bending effects, are used to represent reinforced concrete slab 

behaviour, while beam or column behaviour is adequately modelled with segmented 

nonlinear beam-column elements.  The different layers and segments of the elements 

can be assigned different temperatures, with corresponding thermal strains and stress-

strain characteristics in fire, thereby giving the elements the capability to model the 

effects of differential thermal expansion in a structure.  Concrete failure follows a 

biaxial peak-stress interaction surface assuming �smeared� cracking. 

The analyses are initially performed with the standard isotropic reinforcing mesh 

sizes A142, A193, A252 and A393.  These are respectively composed of 6mm-, 7mm-, 

8mm- and 10mm-diameter bars of 500N/mm
2
 yield strength, all at 200mm spacing.  

The required mid-slab vertical displacements of the Bailey-BRE approach and the 

corresponding predicted deflections of the Vulcan analyses are compared with the 

TSLAB, BRE and Standard Fire Test (l/20) deflection limits; the structural properties of 

the two models are selected to be consistent with the assumptions of the Bailey-BRE 
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Method (Bailey, 2001).  The results are also compared with a simple slab panel failure 

mechanism (Abu, 2009), shown in Fig. 5.  This mechanism determines the time at 

which the horizontally unrestrained slab panel loses its load-bearing capacity due to 

biaxial tensile membrane action, and goes into single-curvature bending (simple plastic 

folding), due to the loss of plastic bending capacity of the protected edge beams.  Using 

a work-balance equation, it predicts when the parallel arrangements of primary or 

secondary (intermediate unprotected and protected secondary) composite beams lose 

their ability to carry the applied fire limit state load because of their temperature-

induced strength reductions.  The expressions for plastic folding failure across the 

primary and secondary beams are shown in Equations (2) and (3) respectively: 

Primary beam failure 

0
4

2
 

a

Mwab p
         (2) 

Secondary beam failure 

0
44

2











 

b

M

b

Mwab us
       (3) 

In the equations above a and b are the lengths of the primary and secondary 

beams; w is the applied fire limit state floor loading and Mu, Ms and Mp are the 

temperature-dependent capacities of the unprotected, protected secondary and protected 

primary composite beams, respectively, at any given time. 

The observations from early analyses led to a more detailed investigation of the 

combined effects of edge-beam stability and the reinforcement ratios on slab panel 

failure in fire.  For the most like-against-like comparison against Bailey-BRE and 

TSLAB, the slab panel temperature conditions generated by TSLAB needed to be 

reproduced in the Vulcan analyses.  The unprotected intermediate beam temperatures 

from TSLAB were also applied directly to the other two models.  TSLAB generates 

weighted mean temperatures of the slab top surface, bottom surface and reinforcement.  

These were applied directly to the Bailey-BRE models.  The same could not be assumed 

for the Vulcan analyses, as fictitious temperatures would have needed to be assumed for 
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the other layers in the slab�s cross-section.  These assumptions could adversely 

influence both thermal and stress-related strains in the model.  Thus, following the 

earlier research (Abu et al., 2008), a one-dimensional thermal analysis of the average 

depth (100mm) of the profiled slab was performed with the software FPRCBC-T 

(Huang et al., 1996).  The temperatures (shown in Fig. 6) correlated very closely with 

those from TSLAB.  These temperatures were applied in the Vulcan analyses. 

3 Results 

The results of the comparative analyses, shown in Figs. 7-9, show slab panel 

deflections with different reinforcement mesh sizes.  For ease of comparison, in each 

graph the A142-reinforced panels are shown as dotted lines, while those reinforced with 

A193, A252 and A393 are shown as dashed, solid and chain-dot lines respectively.  For 

clarity the required vertical displacements for the Bailey-BRE Method and the predicted 

actual displacements from the Vulcan analyses are shown on separate graphs (�a� and 

�b�) for each slab panel size.  Displacements predicted by Vulcan at the centres of the 

slab panels are also shown relative to the deflections of the midpoints of the protected 

secondary beams in graphs �c� for comparison.  This illustration is appropriate because 

the deflected slab profile in the Bailey-BRE method relates to non-deflecting edge 

beams; a more representative comparison with Vulcan therefore requires a relationship 

between its slab deflection and deflected edge beams.  Further, this approach has the 

advantage of de-congesting the figures for more accurate interpretation.  The limiting 

deflections, and the times at which plastic folding of the slab, including the protected 

edge beams, takes place (referred to as the �collapse time�) are also shown.  Regardless 

of the layout of a panel, it can be observed that the single-curvature fold line always 

occurs across secondary beams; the associated collapse times are indicated by the 

vertical lines in the figures.  The temperatures of the various intermediate and protected 

secondary beams at failure for the three slab panel layouts are shown in Table 3.  Apart 

from the 9m x 6m panel it can be seen that failure occurs when the protected secondary 

beams are below their own limiting temperatures (see Table 2).  The results are 

discussed in terms of slab aspect ratio (defined as Longer slab span /shorter slab span), 

and the panel capacity with respect to each limiting deflection.  It is to be expected that 
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square slab panels should have the highest enhancement of their capacity due to tensile 

membrane action. 

3.1 Slab panel analyses 

9m x 6m Slab Panel 

SCI P-288 (Newman et al., 2006) specifies A193 as the minimum reinforcing 

mesh required for 60 minutes� fire resistance.  Fig. 7(a) shows the required Bailey-BRE 

displacements together with the deflection limits and the slab panel collapse time.  

A193 mesh satisfies the BRE limit, but is inadequate for 60 minutes� fire resistance 

according to TSLAB.  A252 and A393 satisfy all deflection criteria.  It should be noted 

that there is no indication of failure of the panels according to Bailey-BRE, even when 

the collapse time is approached.  This is partly due to their neglect of the behaviour of 

the edge beams; runaway failure of Bailey-BRE panels is only evident in the required 

deflections when the reinforcement has lost a very significant proportion of its strength.  

Vulcan predicted deflections are shown in Fig. 7(b).  It is observed that the A393 mesh 

just satisfies the BRE limiting deflection at 60 minutes.  It can also be seen that the 

deflections of the various Vulcan analyses converge at the �collapse time� (82min) of 

the simple slab panel folding mechanism.  This clearly indicates the loss of bending 

capacity of the protected secondary beams.  Comparing Figs. 7(a) and 7(b), the Bailey-

BRE Method predicts substantial enhancement of the panel fire resistance with 

increasing reinforcement mesh size, while Vulcan shows a marginal increase.  Also the 

Bailey-BRE approach is found to be conservative with A142 and A193 and 

unconservative with the larger mesh sizes.  As the slab panel edges in the Bailey-BRE 

and TSLAB methods are assumed to stay vertical, the required displacements shown in 

Fig. 7(a) should be considered as relative values.  Relative displacements of the slab 

centre with respect to the deflected protected secondary beams in the Vulcan model are 

shown in Fig. 7(c).  If this principle is accepted, a comparison of Figs. 7(a) and 7(c) 

indicates that the Bailey-BRE predictions for A142 and A193 are conservative.  Results 

for A252 in these two figures correlate closely.  However, for A393, the Bailey-BRE 

method appears unconservative.  Further examination of Fig. 7(c) shows that A252 and 

A393 meshes satisfy all the limiting deflection criteria, while A193 is adequate 

according to the TSLAB and BRE limit criteria.  It should be noted that a reduction in 
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the relative displacement is an indication of incipient runaway failure of the slab panel, 

since the deflection of the protected secondary beams begins to catch up with that of the 

unprotected intermediate beams, forming a single-curvature failure mechanism by 

folding of the whole panel. 

9m x 12m Slab Panel 

In the previously-discussed 9m x 6m slab panel the secondary beams are longer 

than the primary beams.  In the 9m x 12m layout this is reversed.  However, its large 

overall size requires its minimum mesh size to be A252 (Newman et al., 2006).  From 

the required displacements shown in Fig. 8(a), A252 mesh satisfies a 60-minute fire 

resistance requirement with respect to the Bailey-BRE limit.  It is observed from this 

graph that increasing the mesh size from A252 to A393 results in an increase in the slab 

panel capacity from about 37min to over 90min, relative to the TSLAB deflection limit.  

The same cannot be said for the Vulcan results (Fig. 8(b)), which show very little 

increase in capacity with larger meshes.  It is shown that A252 and A393 meet the fire 

resistance requirement at 60 minutes with respect to the BRE limiting deflection.  It is 

also observed that the Vulcan deflections appear to converge on a slab panel collapse 

time of 68min.  At failure, the protected secondary beams are at 594°C, which is 

considerably below their limiting temperature.  Note that, in this study, sufficient 

protection is applied to all protected beams to ensure that their design temperature (at 60 

minutes) is limited to 550°C.  Typically in an economic design, beams would be 

protected to a temperature just below their critical temperature at the required fire 

resistance time.  This would potentially cause structural failure of the panel earlier than 

68min.  The displacement of the centre of the panel relative to the mid-span deflection 

of the protected secondary beams is shown in Fig. 8(c).  A393 mesh is seen to satisfy all 

deflection criteria, while A193 and A252 satisfy the TSLAB and BRE limits.  

Comparing Figs. 8(a) and 8(c), the Bailey-BRE method is the more conservative of the 

simplified procedures.  However it is important to note that the use of relative 

deflections may require either heavy protection of edge beams or limitation of their 

deflections to Standard Fire test deflection limits (l/20). 
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9m x 9m slab panel 

Fig. 9 shows results for the 9m x 9m slab panel, plotted together with the edge 

beam collapse mechanism and the three deflection criteria.  The discrepancy between 

the Bailey-BRE limit and TSLAB is evident once again; the recommended minimum 

reinforcement for 60 minutes� fire resistance, A193, is adequate with respect to the BRE 

limit, but fails to meet the TSLAB limit.  As reported for the other panel layouts, an 

increase in mesh size results in a disproportionately large increase in the Bailey-BRE 

panel resistance (Fig. 9(a)) while Vulcan (Fig. 9(b)) shows a more modest increase.  

Failure of the protected secondary beams at 73min (also Fig. 9(b)) limits any 

contribution the reinforcement might have made to the panel capacity.  A comparison of 

the relative displacements (Fig. 9(c)) with the required Bailey-BRE displacements 

indicates that the latter method is the more conservative for A142 and A193 meshes. 

The comparisons in Figs. 7-9 show that finite element modelling indicates only 

marginal increases in slab panel capacity with increasing reinforcement size.  The 

Bailey-BRE method, on the other hand, shows huge gains in slab panel resistance with 

larger mesh sizes, even when compared to the relative displacements given by the finite 

element analyses.  Results for the 9m x 6m and 9m x 9m slab panels have shown that 

the Bailey-BRE method is conservative with the lower reinforcement sizes, while it 

overestimates slab panel capacities for higher mesh sizes.  The 9m x 12m panel, 

however, requires higher reinforcement sizes in any case.  The Vulcan results show that 

slab panel capacity is affected more by geometry than by reinforcement area.  Better 

correlations were recorded between the required displacements and relative 

displacements from the finite element model than with absolute displacements.  

However, the use of relative displacements in assessing slab panel capacity should be 

considered in conjunction with an evaluation of the capacity of protected edge beams.  

There is a need to incorporate the effect of edge beams into the simplified Bailey-BRE 

analysis, and so a more detailed study of the effect of reinforcement area relative to slab 

panel failure is now undertaken. 
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3.2 Effects of reinforcement ratio 

The comparison in the previous section shows that the Bailey-BRE Method can 

predict very high increases of slab panel capacity as a result of small changes in 

reinforcement area, while Vulcan on the other hand indicates only marginal increases.  

The fact that the structural response of the protected secondary beams is ignored seems 

to be the key to this over-optimistic prediction by the Bailey-BRE Method.  Therefore, 

to investigate the real contribution of reinforcement ratios, structural failure of the panel 

as a whole by plastic folding has been incorporated as a further limit to the Bailey-BRE 

deflection range.  Fictitious intermediate reinforcement sizes have been used, in 

addition to the standard meshes, in order to investigate the effects of increasing 

reinforcement area on slab panel resistance.  The range of reinforcement area is 

maintained between 142mm
2
/m and 393mm

2
/m; the additional areas are 166, 221, 284, 

318 and 354 mm
2
/m.   The investigation in this section examines failure times of the 

slab panel with respect to the three limiting deflection criteria (TSLAB, the generic 

BRE limit and Span/20) normalised with respect to the time to creation of a panel 

folding mechanism, since this indicates a real structural collapse of the entire slab panel.  

Results for the 9m x 6m, 9m x 12m and 9m x 9m panels are shown in Fig. 10.  The 

lightly-shaded curves show required deflections from the Bailey-BRE Method.  The 

deflections predicted by Vulcan are shown as darker curves.  The dotted, solid and 

dashed lines refer respectively to failure times with respect to the short span/20 

criterion, the TSLAB deflection limit and the BRE limit. 

Fig. 10(a) shows how the normalised 9m x 6m slab panel failure times vary with 

increasing reinforcement mesh size for the 60-minute design case.  The results confirm 

the earlier observation of modest increases in slab panel capacity in the finite element 

model and over-optimistic predictions in the Bailey-BRE Method model.  Looking at 

the BRE limit, the increase in slab panel resistance between reinforcement areas of 

142mm
2
/m and 166mm

2
/m is 26%.  However, increasing the reinforcement area from 

166mm
2
/m to 193mm

2
/m results in a capacity increases of over 100%.  Similar 

observations are made with respect to the other deflection limits with reinforcement 

areas above 200mm
2
/m.  Vulcan on the other hand registers a maximum capacity 

increase of only 30% between 142mm
2
/m and 393mm

2
/m.  A comparison of the two 
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analytical models shows that the Bailey-BRE Method is conservative in this case up to a 

reinforcement area of about 200mm
2
/m for the 9m x 6m slab panel.  A similar trend is 

observed for the 9m x 12m slab panel (Fig. 10(b)).  However, this large panel requires a 

larger area of reinforcement to mobilise tensile membrane action.  Thus the 

conservatism of the Bailey-BRE Method extends to about 300mm
2
/m, depending on the 

selection of the deflection limit.  The Vulcan failure times also increase rapidly between 

142mm
2
/m and 250mm

2
/m and experience a gradual increase thereafter, indicating that 

a minimum reinforcement area is necessary to realise the effects of tensile membrane 

action.  A comparison of normalised failure times for the 9m x 9m slab panel with 

respect to reinforcement area is shown in Fig. 10(c). The effect of the square aspect 

ratio is evident.  The Vulcan analysis records an increase in slab panel capacity of 97% 

between 142mm
2
/m and 393mm

2
/m relative to the TSLAB limit.  The Bailey-BRE 

Method on the other hand indicates that a 60-minute slab rating can be achieved with 

isotropic reinforcement mesh area between 166mm
2
/m and 250mm

2
/m. 

The comparisons in Fig. 10 further confirm that the Bailey-BRE Method is 

conservative for the lower areas of reinforcement, but is otherwise unconservative.  The 

method depends on the calculation of an enhancement to the small-deflection yield-line 

capacity which increases with increasing reinforcement size.  Disproportionately higher 

slab capacities are obtained with higher reinforcement ratios, if the capacity of the 

protected edge beams is not adequately considered.  The results show that the finite 

element analyses give a more logical indication of the contribution of the reinforcement 

area to slab panel capacity.  The Vulcan 60-minute analyses show a steady increase in 

slab resistance with increasing reinforcement area, as they realistically consider the 

behaviour of edge beams and the failure properties of concrete and reinforcement.  For a 

more general assessment of the effect of reinforcement on slab panel failure, 90- and 

120-minute fire resistance design scenarios are now examined with Vulcan. 

The 9m x 6m, 9m x 12m and 9m x 9m slab panels are re-designed for these 

higher fire resistance times by selecting appropriate beam sizes, fire protection and slab 

thicknesses to ensure that the load ratios of all beams lie between 0.4 and 0.5, 

considering increased loadings on the protected secondary beams at the fire limit state.  

Also, the reinforcement depth is maintained at 45mm from the top surface of the slab.  

Again the fire protection ensures that the protected beam temperatures reach a 
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maximum of 550°C at the respective fire resistance times, on exposure to the standard 

fire curve.  The beam specifications for the 90- and 120-minute cases are shown in 

Table 4.  The slab panel collapse times and corresponding intermediate and protected 

secondary beam temperatures are shown in Table 5.  Vulcan Failure times for the 9m x 

6m, 9m x 12m and 9m x 9m slab panels with respect to the TSLAB, BRE and Span/20 

deflection limits for 60-, 90- and 120-minute panels are plotted together in Fig. 11.  

Since the 60-minute designs have already been highlighted in Fig. 10, they are shown as 

thinner lines, in the background of each figure.  The line codings used in the previous 

figure are maintained for Fig. 11. 

From Fig. 11(a), it is seen that lower reinforcement area does not significantly 

influence slab panel failure times for the 90- and 120-minute cases.  Mesh sizes above 

280mm
2
/m show significant increases in capacity with increasing reinforcement.  A 

similar trend is observed in the 9m x 12m slab panel (Fig. 11(b)).  An examination of 

the results of the 9m x 9m slab panel in Fig. 11(c) reveals a general increase in failure 

time with increasing reinforcement area.  However, it is observed that mesh sizes below 

240mm
2
/m hardly influence slab panel capacity, especially in the higher fire resistance 

category.  To investigate the phenomenon further four extra fictitious reinforcement 

mesh sizes (236.5, 244.25, 260 and 268 mm
2
/m) are included in the 120-minute 9m x 

9m slab panel analyses.  By examining the failure time curve relative to the TSLAB 

deflection limit for the 120-minute design scenario, even with the increased number of 

reinforcement areas, it is evident that two conditions exist for failure.  The same 

phenomenon is however not recorded in the 60-minute case (Fig. 10(c)), which shows a 

continuous increase in slab panel capacity with increasing reinforcement size. 

For tensile membrane action to be the most significant load-carrying 

mechanism, the unprotected beams need to lose considerable strength.  This commences 

when a temperature of 400°C is attained.  However, for unprotected beam load ratio of 

0.467, corresponding to a limiting temperature of 622°C, the slab panel system behaves 

as a set of individual composite beams until the stage where the individual unprotected 

beams lose significant load-bearing resistance and deflect rapidly, ultimately reaching 

the point where the slab, in biaxial bending, relies on tensile membrane action to bear 

the applied loading.  After reaching the limiting temperature of the composite secondary 

beams, large deflections develop in the central area of the slab, allowing transfer of load 
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to membrane action of the slab.  Typically, the unprotected beams in the 120-minute 9m 

x 9m slab panel are at 740°C at about 25min and deflect rapidly.  Lower reinforcement 

areas are unable to arrest this deflection before the TSLAB deflection limit is reached 

(Fig. 12).  However this is not observed with the higher reinforcement areas such as 

A393, as they contribute more to the initial bending resistance of the slab, thereby 

allowing it to utilise fully the extra capacity that membrane action provides, hence 

increasing the failure time.  Although the increased thickness in the 120-minute panel 

reduces the thermal gradient in the slab, its restrained in-plane expansion, against much 

colder perimeter beams, induces higher initial deflections than in the 60-minute model.  

In addition, the �h� term in Equation (1) increases, thereby reducing the vertical 

deflection limits of TSLAB and BRE, thus causing early �failure� of the less highly 

reinforced panels and implying higher minimum reinforcement areas for higher fire 

resistance times. 

In tensile membrane action the extent of the central tensile area is an indication 

of the tensile capacity of the slab.  For a given reinforcement size, an increase in the 

central tensile area is accompanied by an increase in vertical deflections.  Conversely, 

for a given deflection, the central tensile area is expected to increase with an increase in 

the reinforcement area.  In the studies so far, slab panels (composite beam-slab systems) 

have been discussed.  The slab behaviour is therefore the result of contributions from 

both the reinforcement and the composite beams.  An attempt is now made to quantify 

the effects of reinforcement alone on slab capacity at elevated temperatures.  Fig. 13(a) 

shows the variation of the central tensile area of three square concrete slabs (6m x 6m, 

9m x 9m and 12m x 12m) with reinforcement area.  The results are shown for a 

span/deflection ratio of 20.  The slabs are 120mm thick, have an isotropic reinforcement 

mesh at an average depth of 60mm from the top surface of the slab, support a load of 

3.11kN/m
2
, and are supported on simple vertical supports.  The slabs have the same 

reinforcement yield strength of 500MPa.  The reinforcement mesh sizes are 142, 166, 

221, 252, 284, 318, 354 and 393 mm
2
/m in each orthogonal direction.  The results are 

obtained by examining the membrane traction results in the Vulcan (Huang et al., 

2003a, 2003b, 2004a) analyses, and determining the transition points between tensile 

and compressive tractions.  In Fig. 13 the radius of the tensile traction for each 

reinforcement area is indicated by triangles for 12m x 12m; squares for 9m x 9m and 
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diamonds for 6m x 6m slabs.  Third-order polynomials are then fitted to the data to 

observe the trends.  From Fig. 13(a), the 9m x 9m and 12m x 12m slabs show that the 

radius of the tensile region reduces with increasing reinforcement area, while the 6m x 

6m slab indicates the opposite.  Fig. 13(b) is a normalised form of the same results, 

which confirms this observation and further indicates that, beyond a 280mm
2
/m mesh, 

the increase in reinforcement area has a negligible effect on the extent of the central 

area, and hence on the tensile capacity of the slab.  Fig. 13(c) suggests an explanation of 

this behaviour.  It shows the yield-line failure loads and the corresponding membrane 

enhancements at the times when the individual slabs attain a span/deflection ratio of 20.  

It can be seen that most of the 9m x 9m and 12m x 12m slabs had yield line failure 

loads below the applied loading (3.11kN/m
2
), and therefore required significant 

enhancement to carry them.  The results in Figs 13(a) and 13(b) therefore indicate that 

these slabs need to achieve large deflections to generate the membrane capacity required 

to bear the applied load.  With each increase in reinforcement area the need for this 

enhancement reduces, and therefore the membrane capacity required to attain span/20 

deflection also reduces.  With the 6m x 6m slab however, the context differs.  The yield 

line failure loads are increasingly higher than those required to carry the applied load, 

until significant reductions in the reinforcement tensile strength force reductions in yield 

strengths beyond a reinforcement area of 250mm
2
/m.  The temperature of the 

284mm
2
/m reinforcement is 614°C at the point when the deflection of that slab reaches 

300mm (span/20).  The significant loss in yield strength thereafter requires a higher 

reinforcement area to generate the required 3.11kN/m
2
 load capacity.  Fig. 13 therefore 

suggests that for �small� slabs an increase in reinforcement area has a positive influence 

on the slab�s capacity (but heavy reinforcement makes little contribution), while large 

reinforcement areas are required, by default, for larger slabs. 

4 Conclusions 

 The analyses and comparisons made in this investigation confirm a 

discrepancy between the original Bailey-BRE Method and its development to TSLAB, 

in their interpretation of deflection limits.  The results also show that, even after recent 

development, the Bailey-BRE Method loses its conservatism with higher reinforcement 

ratios.  The method�s reliance on calculating the deflection required to enhance the 

traditional yield-line capacity, without adequate consideration of the stability of the 
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edge beams, results in very optimistic predictions of slab panel resistance with larger 

mesh sizes.  On the other hand the finite element analyses show that, when load 

redistributions, aspect ratios and edge beam deflections are considered, only marginal 

increases in slab panel capacity are obtained with increasing reinforcement size, and the 

slab panel eventually fails by edge beam failure.  The simple edge-beam collapse 

mechanism is found to give accurate predictions of slab panel runaway failure.  The 

comparison indicates that this mechanism needs to be added to the Bailey-BRE Method, 

since edge beams do not stay cold throughout a fire. 

 Further analyses of the effect of reinforcement size on slab panel capacities 

reveals that, for small sized panels and lower fire resistance requirements, increasing 

reinforcement size does not significantly increase the panel capacity.  However, it is 

simply logical that larger mesh sizes are required for large panels.  Higher 

reinforcement ratios are also required for slabs designed for longer fire resistance 

periods, in order to resist the high initial thermal bending which occurs.  In terms of 

membrane enhancement however, increasing the mesh size has little influence. 
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Figure Captions 

Fig. 1:  Schematic diagram of the Bailey-BRE Method. 

Fig. 2:  Slab deflection limits. 

Fig. 3:  Slab panel sizes. 

Fig. 4:  Concrete slab cross-section, showing the trapezoidal decking profile. 

Fig. 5:  Slab panel folding mechanism. 

Fig. 6:  Beam and slab temperature evolution for R60 design. 

Fig. 7a: Bailey-BRE Method - 9m x 6m slab panel.  Required vertical 

displacements (R60). 

Fig. 7(b): Vulcan � 9m x 6m slab panel.  Central vertical displacements (R60). 

Fig. 7(c): Vulcan � 9m x 6m slab panel.  Displacements of slab centre relative to 

protected secondary beams (R60). 

Fig. 8(a): Bailey-BRE Method - 9m x 12m slab panel.  Required vertical 

displacements (R60). 

Fig. 8(b): Vulcan � 9m x 12m slab panel. Central vertical displacements (R60). 

Fig. 8(c): Vulcan � 9m x 12m slab panel.  Displacements of slab centre relative to 

protected secondary beams (R60). 

Fig. 9(a): Bailey-BRE Method - 9m x 9m slab panel.  Required vertical 

displacements (R60). 

Fig. 9(b): Vulcan � 9m x 9m slab panel.  Central vertical displacements (R60). 

Fig. 9(c): Vulcan � 9m x 9m slab panel.  Displacements of slab centre relative to 

protected secondary beams (R60). 

Fig. 10(a): Bailey-BRE and Vulcan 9m x 6m slab panel comparison (R60). 

Fig. 10(b): Bailey-BRE and Vulcan 9m x 12m slab panel comparison (R60). 

Fig. 10(c): Bailey-BRE and Vulcan 9m x 9m slab panel comparison (R60). 

Fig. 11(a): Vulcan normalised failure times vs. reinforcement area � 9m x 6m slab 

panel. 

Fig. 11(b): Vulcan normalised failure times vs. reinforcement area � 9m x 12m slab 

panel. 
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Fig. 11(c): Vulcan normalised failure times vs. reinforcement area � 9m x 9m slab 

panel. 

Fig. 12: Vulcan � 9m x 12m slab panel central vertical displacements (R120). 

Fig. 13(a): Vulcan � Variation of radius of central tensile area with reinforcement 

area. 

Fig. 13(b): Vulcan � Normalised variation of radius of central tensile area with 

reinforcement area. 

Fig. 13(c):  Yield-line loads and enhancement factors for the slab results in Figs. 

13(a) and 13(b). 

 

Table Captions 

Table 1:  Slab panel requirements (R60). 

Table 2:  Protected beam design data (R60). 

Table 3:  Slab panel failure times and corresponding secondary beam temperatures 

(R60). 

Table 4:  Protected beam design data for R90 and R120. 

Table 5:  Slab panel failure times and corresponding secondary beam temperatures 

(R90 and R120). 
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Tables  

Table 1: Slab panel requirements (R60) 

Slab Panel size 9m x 6m 9m x 9m 9m x 12m 

Dead load (kN/m2) 4.33 4.33 4.33 

Live load (kN/m2) 5.0 5.0 5.0 

Additional load (kN) 14 37 49 

Beam design factor 0.77 1.00 0.83 

Min. Mesh size A193 A193 A252 
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Table 2: Protected beam design data (R60) 

Slab Panel 

Size 
Beam Type Beam Section 

Load 

Ratio 

Limiting 

Temperature 

Temperature at 

60 minutes 

9m x 6m Secondary 356 x 171 x 57 UB 0.426 636°C 548°C 

Primary 406 x 178 x 60 UB 0.452 627°C 549°C 

9m x 9m Secondary 356 x 171 x 67 UB 0.442 630°C 550°C 

Primary 533 x 210 x 101 UB 0.446 629°C 548°C 

9m x 12m Secondary 406 x 178 x 67 UB 0.447 629°C 548°C 

Primary 610 x 305 x 179 UB 0.471 620°C 547°C 
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Table 3: Slab panel failure times and corresponding secondary beam temperatures (R60) 

 

 
Slab 

panel 
Failure Time 

Intermediate beam 

temperature 

Secondary beam 

temperature 

R60 

9m x 6m 82min 983°C 663°C 

9m x 9m 73min 963°C 621°C 

9m x 12m 68min 952°C 594°C 
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Table 4: Protected beam design data for R90 and R120 

 Slab Panel 

Size 

Beam 

Type 
Beam Section 

Load 

Ratio 

Limiting 

Temperature 

R90 or R120 

temperature 

R90 

9m x 6m Secondary 356 x 171 x 57 UB 0.440 631°C 549°C 

Primary 406 x 178 x 60 UB 0.453 627°C 549°C 

9m x 9m Secondary 356 x 171 x 67 UB 0.451 627°C 550°C 

Primary 533 x 210 x 101 UB 0.447 628°C 549°C 

9m x 12m Secondary 406 x 178 x 67 UB 0.470 621°C 549°C 

Primary 610 x 305 x 179 UB 0.473 620°C 549°C 

R120 

9m x 6m Secondary 356 x 171 x 57 UB 0.445 629°C 549°C 

Primary 406 x 178 x 60 UB 0.453 626°C 550°C 

9m x 9m Secondary 356 x 171 x 67 UB 0.459 624°C 550°C 

Primary 533 x 210 x 101 UB 0.452 627°C 549°C 

9m x 12m Secondary 457 x 152 x 67 UB 0.447 629°C 550°C 

Primary 686 x 254 x 170 UB 0.454 626°C 550°C 
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Table 5: Slab panel failure times and corresponding secondary beam temperatures (R90 and 

R120) 

 
 Slab 

panel 

Failure 

Time 

Intermediate beam 

temperature 

Secondary beam 

temperature 

R90 

9m x 6m 124min 1051°C 673°C 

9m x 9m 113min 1036°C 637°C 

9m x 12m 101min 1018°C 593°C 

R120 

9m x 6m 163min 1103°C 673°C 

9m x 9m 148min 1083°C 634°C 

9m x 12m 136min 1067°C 601°C 
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Figures 

 

 

 

 

Fig. 1: Schematic diagram of the Bailey-BRE Method 
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Fig. 2: Slab deflection limits 
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Fig. 3: Slab panel sizes 

Secondary 

beams 

Intermediate 

beams 
Primary 

beams 

9m x 6m 9m x 9m 9m x 12m 

Protected Unprotected



31 

 

 

 

 

 

 

 

Fig. 4: Concrete slab cross-section, showing the trapezoidal decking profile 
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Fig. 5: Slab panel folding mechanism 
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Fig. 6: Beam and slab temperature evolution for R60 design 
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Fig. 7(a): Bailey-BRE Method - 9m x 6m slab panel.  Required vertical displacements (R60) 
 

 

 
Fig. 7(b): Vulcan � 9m x 6m slab panel.  Central vertical displacements (R60) 

 
 

 
 

Fig. 7(c): Vulcan � 9m x 6m slab panel.  Displacements of slab centre relative to protected 

secondary beams (R60). 
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Fig. 8(a): Bailey-BRE Method - 9m x 12m slab panel.  Required vertical displacements (R60) 

 

 

 
 

Fig. 8(b): Vulcan � 9m x 12m slab panel. Central vertical displacements (R60) 

 

 

 
 

Fig. 8(c): Vulcan � 9m x 12m slab panel.  Displacements of slab centre relative to protected 

secondary beams (R60) 
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Fig. 9(a): Bailey-BRE Method - 9m x 9m slab panel.  Required vertical displacements (R60) 

 

 

 
 

Fig. 9(b): Vulcan � 9m x 9m slab panel.  Central vertical displacements (R60) 

 

 

 
 

Fig. 9(c): Vulcan � 9m x 9m slab panel.  Displacements of slab centre relative to protected 

secondary beams (R60) 
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Fig. 10(a): Bailey-BRE and Vulcan 9m x 6m slab panel comparison (R60) 

 

 

 
Fig. 10(b): Bailey-BRE and Vulcan 9m x 12m slab panel comparison (R60) 

 

 

 
Fig. 10(c): Bailey-BRE and Vulcan 9m x 9m slab panel comparison (R60) 
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Fig. 11(a): Vulcan normalised failure times vs. reinforcement area � 9m x 6m slab panel. 

 

 

 
Fig. 11(b): Vulcan normalised failure times vs. reinforcement area � 9m x 12m slab panel. 

 

 

 
Fig. 11(c): Vulcan normalised failure times vs. reinforcement area � 9m x 9m slab panel 
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Fig. 12: Vulcan � 9m x 12m slab panel central vertical displacements (R120) 
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Fig. 13(a): Vulcan � Variation of radius of central tensile area with reinforcement area 

 
 

 
Fig. 13(b): Vulcan � Normalised variation of radius of central tensile area with reinforcement 

area 

 

 

 
Fig. 13(c): Yield-line loads and enhancement factors for the slab results in Figs. 13(a) and 13(b) 
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