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Abstract—It is well known that droop control is fundamental
to the operation of power systems and now the parallel operation
of inverters while phase-locked loops (PLL) are widely adopted
in modern electrical engineering. In this paper, it is shown at first
that droop control and PLLs structurally resemble each other.
This bridges the gap between the two communities working on
droop control and PLLs. As a result, droop controllers and PLLs
can be improved and further developed via adopting the advance-
ments in the other field. This finding is then applied to operate the
conventional droop controller for inverters with inductive output
impedance to achieve the function of PLLs, without having a
dedicated synchronization unit. Extensive experimental results
are provided to validate the theoretical analysis.

Index Terms—Droop control, enhanced phase-locked loop
(PLL), sinusoidal tracking algorithm (STA), microgrid, smart
grid integration, inverters, self-synchronization, parallel opera-
tion, synchronous machines, autonomous systems

I. I NTRODUCTION

In order to address the energy and sustainability issues being
faced worldwide nowadays, more and more renewable energy
sources are being connected to power systems, often via
DC/AC converters (also called inverters) [2]. These inverters
are required to synchronize with the system connected to,
before and after being connected. There are many ways to
synchronize an inverter with the grid but the most com-
monly adopted strategies are based on phase-locked loops
[2]–[4], of which some examples can be found in the grid
connection of renewable energy [5], [6], FACTS devices
[7], [8], active power filters [9], UPS applications [10] and
power quality control [11]. Phase-locked loops are also widely
adopted in other areas of modern electrical engineering, e.g.
communication and signal processing. A recent search from
http://ieeexplore.ieee.org/ with “phase-locked loops” has found
13,000 papers.

Another important requirement for these inverters is that
they should take part in the regulation of system frequency
and voltage, in particular, when the penetration of renewable
energy exceeds a certain level. This often requires the in-
verters to be operated as voltage-controlled suppliers instead
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of current-controlled suppliers, which currently dominate the
market. What is fundamental to the operation and regulation of
the frequency and voltage of a power system is the so-called
droop control strategy. It was originally adopted to operate
synchronous generators and have recently been adopted to
operate inverters connected in parallel [12]–[21]. The gen-
erators and/or inverters change the reactive power and real
power output according to the system voltage and frequency
autonomously. It has also been applied in the synchronverter
technology to make inverters behave like synchronous genera-
tors [22], [23]. A recent search from http://ieeexplore.ieee.org/
with “droop control” has found about 2000 papers.

To the best knowledge of the authors, no links between these
two strategies have been reported in the literature. Following
the conference version [1] of this paper, it is shown in this
paper that these two strategies are actually closely related,
which bridges the gap between the two communities. This
also provides the theoretical explanation why a dedicated syn-
chronization unit, which has been deemed to be a must-have
component for grid-connected inverters, could be removed to
implement self-synchronized synchronverters, as proposed in
[24]. The significance of this lies in that the problem caused
by (multiple) phase-locked loops [25]–[28] is removed and the
system performance and reliability are improved. It also estab-
lishes a link between the two communities who are working
on droop control and phase-locked loops. With comparison
to the conference version [1] of this paper, a section is added
to operate the conventional droop control strategy for inverters
with an inductive output impedance to achieve synchronization
after some minor changes, as an example to demonstrate the
possible applications of the findings in this paper. Moreover,
extensive experimental results are provided to validate the
theoretical analysis.

In order to improve the readability, the main tool adopted
in this paper is block diagrams, which are commonly used
in control engineering, instead of mathematical equations. If
needed, the block diagrams can be transformed into differential
equations. The rest of the paper is organized as follows. The
PLLs and droop control are briefly reviewed in Sections II and
III, respectively, and their link is established in Section IV. The
application of the findings in this paper to the conventional
droop controller is shown in Section V. Experimental results
are presented in Section VI, with conclusions and discussions
provided in Section VII.

II. B RIEF REVIEW OF PHASE-LOCKED LOOPS(PLL)

A basic phase-locked loop (PLL), as shown in Figure 1,
adopts a control loop to track the phase of an input signal. It
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Figure 1. A basic PLL

can provide the frequency information of the signal as well,
but normally without the information of the voltage amplitude.

In order also to obtain the amplitude information of the input
signal, an enhanced PLL (EPLL) [29], [30] can be adopted.
This method was introduced with several different names, e.g.
the sinusoidal tracking algorithm (STA) [31], the amplitude
phase model (APM) and amplitude phase frequency model
(APFM) [32].

 

v 

- 

 )
1

( 32
s

+µµ  

  
s

1
 

 

e 

 
s

1
 

θ 

1µ  

 sin  

X 

 cos  

X 

X 
E 

2  

 

Figure 2. The enhanced phase-locked loop (EPLL) or the sinusoidal tracking
algorithm (STA)

The enhanced PLL can be designed by using the gradient
descent method [33]. Assume that a typical periodic voltage
v (t) has the general form of

v (t) =

∞
∑

i=0

√
2Vi sin θgi + n (t)

whereVi and θgi = ωgit + δ are the RMS value and phase
of the i-th harmonic component of the voltage, andn(t)
represents the noise on the signal. The objective of a PLL
can be regarded as extracting the componente (t) of interest,
which is usually the fundamental component, from the input
signalv (t). Denote the estimated or recovered signale(t) as

e (t) =
√
2E (t) sin(

∫ t

0

ω (τ) dτ + δ (t)),

where E (t) is the estimated RMS voltage,ω (t) is the
estimated frequency andθ (t) =

∫ t

0
ω (τ) dτ + δ (t) is the

estimated phase ofe (t). Then the problem of designing a
PLL can be formulated as finding the optimal vectorψ(t) =
[

E(t) ω(t) δ(t)
]T

that minimizes the cost function

J (ψ (t) , t) =
1

2
d2 (t) =

1

2
[v (t)− e (t)]

2
,

whered (t) = v(t) − e(t) is the tracking error. According to
the gradient descent method [33], this optimization problem
can be solved via formulating

dψ (t)

dt
= −µ∂J (ψ (t) , t)

∂ψ (t)

whereµ is the diagonal matrixdiag{ 1
2µ1,

1
2µ2, µ3} chosen to

minimize J along the direction of−∂J(ψ(t),t)
∂ψ(t) . The resulting

set of differential equations can be found as [31], [32]














dE(t)

dt = µ1d sin θ,
dω(t)

dt = µ2Ed cos θ,
dθ(t)
dt = ω + µ3

dω
dt .

(1)

Since the variation ofE is relatively small with comparison to
the variation ofd, the major dynamics ofω(t) is from d and
the effect ofE can then be combined with the proper selection
of µ2. As a result, the enhanced PLL can be constructed as
shown in Figure 2.

Comparing the enhanced PLL shown in Figure 2 to the basic
PLL shown in Figure 1, it can be seen that the enhanced PLL
contains an amplitude channel to estimate the amplitude of the
input signal, in addition to the frequency channel that is very
similar to the basic PLL.
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Figure 3. Power delivered to a voltage source through an impedance

 

 
n - e 

E
*
 

 
s

1
 m 

ω 

*
 

v 

i E 

θ 

Q 

P - ω 

2  

 sin  

X 

 
C

al
cu

la
tio

n
(a) without considering the integral effect

 

 
 - 

 

ω 

*
 

E 

Q 

P 

n 

m 

E
*
 

- 
 

Js

1
 

 
Ks

1
 

ω 

- 

- 
v 

i e 

 
s

1
 

θ 

2  

 sin  

X 

 

C
al

cu
la

tio
n

(b) with the hidden integral effect explicitly considered

Figure 4. Conventional droop control scheme (for inductive impedance)

III. B RIEF REVIEW OF DROOPCONTROL

Figure 3 illustrates a voltage sourcee =
√
2E sin θ with θ =

ωt + δ delivering power to another voltage source (terminal)
v =

√
2V sinωt through an impedanceZ∠φ. The voltage
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source could be a conventional synchronous generator or a
voltage-controlled inverter. Since the current flowing through
the impedance is

Ī =
E∠δ − V ∠0◦

Z∠φ

=
E cos δ − V + jE sin δ

Z∠φ
,

the real power and reactive power delivered by the source to
the terminal via the impedance can be obtained as

P = (
EV

Z
cos δ − V 2

Z
) cosφ+

EV

Z
sin δ sinφ,

Q = (
EV

Z
cos δ − V 2

Z
) sinφ− EV

Z
sin δ cosφ,

whereδ is the phase difference between the supply and the
terminal, often called the power angle. This is the basis of the
droop control [2], [15], [34]–[37], that is widely adopted in
power systems and recently in parallel-operated inverters.

When the impedance is inductive,φ = 90◦. Then

P =
EV

Z
sin δ and Q =

EV

Z
cos δ − V 2

Z
.

Whenδ is small, there are

P ≈ EV

Z
δ and Q ≈ V

Z
E − V 2

Z
,

and, roughly,
P ∼ δ and Q ∼ E.

As a result, the conventional droop control strategy for an
inductiveZ takes the form

E = E∗ − nQ, (2)

ω = ω∗ −mP, (3)

whereE∗ is the rated RMS system voltage. This strategy, as
shown in Figure 4(a), consists of theQ−E andP −ω droop,
i.e., the voltageE is regulated by controlling the reactive
powerQ and the frequencyf is regulated by controlling the
real powerP .

The droop control strategy takes different forms when the
impedance is of different types [2], [21]. When the impedance
is capacitive, the droop control still takes the form ofQ− E

andP −ω droop but with positive signs. When the impedance
is resistive, the droop control takes the form ofQ − ω and
P −E droop. Note that the (output) impedance of an inverter
is normally inductive but can be changed to resistive or
capacitive; see [2], [38] for more details. The conventional
droop control strategy has some fundamental limitations and
is not able to maintain accurate sharing of both real power
and reactive power when there are component mismatches,
parameter shifts, numerical error, disturbances and noise etc.
A robust droop controller is presented in [2], [12] to overcome
these issues, which has recently been shown to be universal for
inverters with different types of output impedance [21]. These
do not affect what is discussed in this paper so the analysis
will be based on the conventional droop control strategy for
the sake of simplicity.

IV. T HE STRUCTURAL RESEMBLANCE BETWEENDROOP

CONTROL AND PHASE-LOCKED LOOPS

A. When the Impedance is Inductive

One insightful observation about droop control pointed out
in [12] is that the voltage droop control actually includes
an integrator becauseE can be obtained via dynamically
integrating

∆E , E∗ − E − nQ

until ∆E = 0 instead of settingE = E∗ − nQ statically.
This is also true for the frequency droop control, where the
frequencyω can be obtained via integrating

∆ω , ω∗ − ω −mP

until ∆ω = 0. The droop control strategy with this hidden
integral effect explicitly considered is shown in Figure 4(b),
where the integral time constants are chosen asJ and K
for the frequency and voltage channels, respectively. This is
equivalent to adding a low-pass filter1

Js+1 to the frequency
(real power) channel and a low-pass filter1

Ks+1 to the voltage
(reactive power) channel shown in Figure 4(a), respectively. In
the steady state, the inputs to the integrators are zero, which
recovers the droop control strategy (2-3). Apparently, Figure
4(b) becomes Figure 4(a) when the integral time constants are
chosen asK = 0 andJ = 0.

The currenti flowing through the impedanceZ = Ls+R

in Figure 3 is

i = − v − e

Ls+R
.

This can be adopted to close the loop betweenv and e in
Figure 4(b), as shown in Figure 5. Note thati = 0 whene = v

and, in this case, the voltagee accurately recovers or estimates
the voltagev. In other words, the voltagee is synchronized
with the inputv.

Normally, the real powerP and reactive powerQ are
calculated via measuring the terminal voltagev and the current
i. Actually, it is better to use the voltagee than the terminal
voltage v for this purpose becausee is available internally.
This leaves out the power losses of the filter inductor but it
does not matter. The physical meaning of this is to droop the
voltage and frequency according to the real power and the
reactive power generated by the voltage sourcee. To some
extent, this is more reasonable than using the terminal voltage
v because it reflects the genuine real power and reactive power
delivered by the voltage sourcee. In this case, the real power
is

P =
1

T

∫ t

t−T

e× i dt, (4)

whereT is the period of the system. Applying the Laplace
transform, this is equivalent to passing the instantaneous real
powerp = e× i through the hold filter

H(s) =
1− e−Ts

Ts

to obtain the (averaged) real powerP . The reactive power can
be obtained similarly. Define the voltage

eq =
√
2E sin(θ − π

2
) = −

√
2E cos θ,
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Figure 5. The droop controller shown in Figure 4(b) with the (inductive) impedance taken into account

which has the same amplitude ase but with a phase angle
delayed byπ2 rad. Then, the reactive power can be calculated
as

Q =
1

T

∫ t

t−T

eq × i dt. (5)

For example, for the currenti =
√
2I sin θi, there is

Q =
1

T

∫ t

t−T

2EI sin(θ − π

2
) sin θidt = EI sin(θ − θi),

which is indeed the reactive power generated bye =√
2E sin(θ) and i. Note that it is not compulsory to use the

hold filter. A low-pass filter with the appropriate bandwidth
could be used as well. This does not affect the main reasoning
here.

 

)(sH v RLs +

1

- 

 
s

K f

 
s

Ke  

ω 

e 

 
s

1
 

θ 

2  

 sin  

X 

)(sH

 cos  

X 

X 

X 

eq 

E 

e 

1−

 

(a) when the impedance is inductive

 

)(sH v R

1
- 

 
s

K f

 
s

Ke  

ω 

e 

 
s

1
 

θ 

2  

 sin  

X 

)(sH

 cos  

X 

X 

X 

eq 

E 

e 

 
(b) when the impedance is resistive

Figure 6. Droop control strategies in the form of a phase-locked loop

When the droop controller is operated in the droop mode,
the voltage set-pointE∗ and the frequency set-pointω∗ can
be set as the rated system values whether it is connected to
the grid or it is operated in the standalone mode. They can

also be set as the grid voltageE and the grid frequencyω
for grid-connected applications to send the desired real power
Pset and reactive powerQset to the grid (this is not shown in
Figure 5 but can be easily implemented by changing−P to
Pset − P and−Q to Qset −Q). If E∗ is set asE andω∗ is
set asω1, as shown in Figure 5 by the dashed lines, then the
voltagee is the same asv in the steady state. This effectively
cancels the loop around the integrators1

Js
and 1

Ks
. Hence, the

block diagram shown in Figure 5 can be redrawn as shown in
Figure 6(a), after connecting the dashed lines and calculating
the power by usinge, as described in (4) and (5). The gains
are lumped asKe =

n
K

andKf = m
J

. This is similar to the
widely-used enhanced PLL [29], [30] or the sinusoid-tracking
algorithm [31], [39] (which are essentially the same) shown
in Figure 2, apart from three major differences: 1) thesin
and cos functions are swapped; 2) there is a low-pass filter

1
Ls+R , or an integrator whenR = 0; 3) there is a negative
sign in the amplitude channel of Figure 6(a). The hold filter
H(s) is to filter out the ripples and could/should be inserted
into the EPLL/STA to improve the performance so it does not
cause any major difference. Note that, when there is no power
exchanged with the grid, a droop controller actually behaves
like an PLL and achieves synchronization withe = v. When
the amplitude channel is not considered, the frequency channel
is the same as the basic PLL shown in Figure 1. In other
words, the frequency droop control structurally resembles the
basic PLL.

B. When the Impedance is Resistive

When the impedanceZ is resistive,φ = 0◦. Then

P =
EV

Z
cos δ − V 2

Z
and Q = −EV

Z
sin δ.

Whenδ is small, there are

P ≈ EV

Z
δ − V 2

Z
and Q ≈ −EV

Z
δ,

and, roughly,

P ∼ E and Q ∼ −δ.

1Note that this just changes the operational point of the controller, without
changing its structure.
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As a result, the conventional droop control strategy for resis-
tive impedance takes the form

E = E∗ − nP,

ω = ω∗ +mQ.

The difference from the inductive case is that the positions of
P andQ are swapped and the sign beforeQ is changed to
positive.

Following the same reasoning in the previous section, this
droop controller can be described in the form of a phase-locked
loop as shown in Figure 6(b). Comparing it to the enhanced
PLL or the STA shown in Figure 2, they are structurally the
same, without any major difference. As explained before, the
hold filterH(s) is to filter out the ripples and could/should be
included in the STA or EPLL to improve the performance so
it does not cause any major difference. If the parameters are
selected asR = E, µ1 = Ke, µ2 = Kf andµ3 = 0, and the
hold filterH(s) is removed, then the two diagrams are exactly
the same. In other words, this droop controller structurally
resembles an enhanced phase-locked loop. It behaves as an en-
hanced phase-locked loop when there is no power exchanged
with the terminal and it functions as a droop controller when
it exchanges power with the terminal. As a result, the same
droop controller can be utilized as a synchronization unit to
achieve per-synchronization and then as a droop controller to
regulate the power flow. Again, when the amplitude channel
is not considered, the frequency channel is more or less the
same as the basic PLL shown in Figure 1. In other words, the
frequency droop control structurally resembles the basic PLL.

V. OPERATION OF THEDROOPCONTROLLER TOACHIEVE

SYNCHRONIZATION

In order to demonstrate the findings in this paper, the
droop controller shown in Figure 4(a) for inverters with
inductive output impedance is slightly changed so that the
synchronization function can be explicitly demonstrated. As
shown in Figure 7, two integrators are added to the voltage
channel and the frequency channel, one each, to make the
hidden integral effect explicit. A virtual impedancesL + R

is added to generate the virtual currentiv according to the
voltage differencevo−vg. The current feeding into the power
calculation block can be the grid currentig or the virtual
current iv. The two integrators can be enabled or disabled
by switchesSP andSQ, respectively. This allows the droop
controller to work in the synchronization mode or the set
mode (sendingPset andQset to the grid), in addition to the
normal droop mode (changing the real power and reactive
power according to the grid frequency and voltage). In the
synchronization mode, the virtual currentiv is used because
the inverter is not connected to the grid and the grid current
ig is 0. After the inverter is synchronized with the grid, the
circuit breaker can be turned ON. When the circuit breaker is
ON, the switchSc should be turned to Positiong so that the
grid currentig is fed into the power calculation block, which
operates the inverter in the set mode. Then, if needed, the
switchesSP andSQ can be turned ON to operate the inverter
in the droop mode. The operation modes are summarized as

shown in Table I. Note that the switchesSP andSQ can be
operated independently when the switchSc is at Positiong so
it is possible to operate the real power and the reactive power
in the set mode or the droop mode independently.

Table I
OPERATIONMODES

Mode SwitchSC SwitchSP Switch SQ

Synchronization mode s OFF OFF
Set mode g OFF OFF

Droop mode g ON ON

VI. EXPERIMENTAL VALIDATION

A single-phase inverter controlled by the controller shown
in Figure 7 was built and tested. The parameters of the system
are shown in Table II. The control circuit of the system was
constructed based on TMS320F28335 DSP, with the sampling
frequency of 4 kHz. The droop coefficients used in the
experiments are calculated asn = 0.1KeE

∗

S
andm = 0.01ω∗

S
,

whereS is the rated apparent power of the inverter, according
to [12], so that10% increase of the voltageE results in100%
decrease of the reactive powerQ and 1% increase of the
frequencyf results in100% decrease of the real powerP .

Table II
PARAMETERS OF THE INVERTER

Parameters Values
Grid voltage (RMS) 110 V
Line frequencyf 50 Hz
Switching frequencyfs 19 kHz
DC-bus voltageVDC 200 V
Rated apparent powerS 300 VA
InductanceLs 2.2 mH
ResistanceRs 0.2 Ω

InductanceLg 2.2 mH
ResistanceRg 0.2 Ω

CapacitanceC 10 µF

A. Synchronization with the Grid

The time needed for synchronization is different for dif-
ferent voltagevg. Here, two typical cases withvg = 0 and
vg = Vg are considered. The corresponding results are shown
in Figure 8(a) and (b), respectively. For the case withvg = 0
when the synchronization was started, as shown in Figure 8(a),
the voltage difference between the output voltage and the grid
voltage, i.e.,vo − vg, quickly became very small. It took less
than one cycle for the whole synchronization process. For the
case withvg = Vg when the synchronization was started, as
shown in Figure 8(b), the synchronization took longer, about
12 cycles. This is still acceptable for grid-connected inverters.
This shows indeed the droop controller can be applied to
achieve synchronization before connecting the inverter to the
grid, without the need of a dedicated synchronization unit.

B. Connection to the Grid

After the synchronization process is finished, the inverter is
ready to be connected to the grid. This involves turning the
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Figure 7. The conventional droop controller shown in Figure 4(a) after adding two integrators and a virtual impedance.

           

t: [40 ms/div] 

vg: [200 V/div] vo: [200 V/div] 

vo- vg: [200 V/div] 

ig: [5 A/div] 
Synchronisation starts 

(a)

           

t: [40 ms/div] 

vg: [200 V/div] vo: [200 V/div] 

vo- vg: [200 V/div] 

ig: [5 A/div] 
Synchronisation starts 

(b)

Figure 8. The synchronization of the droop controller shown in Figure 7: (a)
whenvg crosses0; (b) whenvg is at the peak valueVg .

relay ON and the switchSC to the Positiong, which shifts the
current used for calculatingP andQ from the virtual current
iv to the grid currentig. As shown in Figure 9, the grid current
ig was well maintained around zero without large spikes, as
expected becausePset = 0 andQset = 0.

C. Operation in the Droop Mode

In order to test the droop function of regulatingP andQ
corresponding to the variations off andE, the inverter was
continuously operated in the droop mode while being con-
nected to the public grid. The results are shown in Figure 10.
The real powerP is almost symmetrical to the grid frequency
f while the reactive powerQ is symmetrical to the voltage
E, as expected. When the frequency is higher (lower) than
the rated frequency, the real power is automatically reduced

           

t: [40 ms/div] 

vg: [200 V/div] vo: [200 V/div] 

ig: [5 A/div] 

Grid-connection 

Figure 9. Connection of the droop controlled inverter to the grid

                   

t: [100 s/div] 
 Q: [200 Var/div] 

 f: [0.1667 Hz/div] 

P: [100 W/div] 

E: [7.334 V/div] 

150 W 

50 Hz 

0 Var 

110 V 

Figure 10. Regulation of the grid frequency and voltage in the droop mode.

(increased) proportionally. Similar regulation capability can be
seen from the reactive power against the voltage. It is worthy
emphasizing that the inverter kept in synchronization with the
grid after being connected to the grid, without a dedicated
synchronization unit. The synchronization is achieved by the
droop controller itself. The voltage did not change much
during the experiment but the trend is very clear.

D. Robustness of Synchronization

In order to test the robustness of the synchronization, the
DC-bus voltageVDC was changed when the system was oper-
ated in the set mode withPset = 150W andQset = 150Var.
At first, VDC was suddenly dropped from200V to 180V.
As shown in Figure 11(a), there was no problem with the
synchronization. The grid currentig dropped initially because
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t: [40 ms/div] 

vo: [50 V/div] 

ig: [5 A/div] 

(a)

           

t: [40 ms/div] 

vo: [50 V/div] 

ig: [5 A/div] 

(b)

Figure 11. Robustness of synchronization against DC-bus voltage changes:
(a) when the DC-bus voltageVDC was changed from200V to 180V and
(b) when the DC-bus voltageVDC was changed from180V to 200V.

of the droppedVDC but, after about 10 cycles, it recovered to
the original value before the voltage change to maintain the
real power and reactive power sent to the grid. Then,VDC was
suddenly increased from180V to 200V. Again, there was no
problem with the synchronization, as shown in Figure 11(b).
The grid currentig increased initially but after about10 cycles
it recovered to the original value before the voltage change.

E. When the Operation Mode was Changed

                   

t: [2 s/div] 

 Q: [200 Var/div] 

 f: [0.1667 Hz/div] 

P: [100 W/div] 

E: [7.334 V/div] t=0 s 

150 W 

50 Hz 

0 Var 

110 V 

Figure 12. System responses when the operation mode was changed

The frequency, voltage, real power and reactive power of the
system when the mode of the droop controller was changed in
the sequence of the synchronization mode, connection to the
grid, the set mode and the droop mode are shown in Figure
12. At t = 0 s, the synchronization was enabled. As shown
in Figure 12, both the real power and the reactive power were
controlled around zero. When the inverter was connected to
the grid at3 s, there was not much transient and both the real
and reactive power were maintained around zero. The real and
reactive power references were changed att = 6 s andt = 9

s to 150W and 150 Var, respectively. The real power and
reactive power responded quickly, with some coupling effect.
There was some dynamics in the frequency but it settled down.
The voltageE increased because of the increased real power
and then the increased reactive power output. Att = 10.5 s,
Qset was changed back to0. At t = 12 s, the droop mode
was enabled for the reactive power. The reactive power started
changing according to the voltage, nearly symmetrically. At
t = 15 s, the droop mode was enabled for the real power. The
real power started changing according to the frequency, nearly
symmetrically as well. This has demonstrated that the droop
controller with the changes shown in Figure 7 can function
properly without a dedicated synchronization unit.

VII. C ONCLUSIONS

In this paper, it has been shown that a droop controller
structurally resembles an enhanced phase-locked loop. This
builds up a link between the droop control community and the
PLL community, and offers fundamental understanding about
the operation of power systems dominated by droop-controlled
renewable energy sources interfaced by inverters. As a result,
there is no need to have a extra synchronization unit in addition
to the droop controller for synchronization. The link is shown
for the case when the impedance is resistive, but can be
easily extended to investigate the cases when the impedance
is inductive or capacitive to find the equivalent structure of
phase-locked loops. Indeed, the case with inductive output
impedance has been demonstrated by extensive experimental
results.

What is described in this paper actually provides the theoret-
ical explanation why a dedicated synchronization unit for grid-
connected inverters that has been deemed to be a must-have
component for grid-connected inverters [40] can be completely
removed, as demonstrated in [24] for the first time. Because
of the inherent synchronization mechanism of droop control
strategies revealed in this paper, there is no longer a need to
use a phase-locked loop in conjunction with a droop controller
and a droop controller can be used for synchronization as well.
In other words, the synchronization function and the power
sharing function of an inverter can be integrated in a droop
controller. This avoids the problems brought by PLL to grid-
tied inverters, e.g. competing with each other, difficulties in
tuning PLLs and performance degradation etc.
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