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Abstract

This paper outlines the development of enhanced bivariate polar plots that allow the

concentrations of two pollutants to be compared using pair-wise statistics for exploring the

sources of atmospheric pollutants. The new method combines bivariate polar plots, which

provide source characteristic information, with pair-wise statistics that provide information on

how two pollutants are related to one another. The pair-wise statistics implemented include

weighted Pearson correlation and slope from two linear regression methods. The development

uses a Gaussian kernel to locally weight the statistical calculations on a wind speed-direction

surface together with variable-scaling. Example applications of the enhanced polar plots

are presented by using routine air quality data for two monitoring sites in London, United

Kingdom for a single year (2013). The London examples demonstrate that the combination

of bivariate polar plots, correlation, and regression techniques can offer considerable insight

into air pollution source characteristics, which would be missed if only scatter plots and

mean polar plots were used for analysis. Specifically, using correlation and slopes as pair-wise

statistics, long-range transport processes were isolated and black carbon (BC) contributions

to PM2.5 for a kerbside monitoring location were quantified. Wider applications and future

advancements are also discussed.
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1. Introduction1

Determining how variables are related to one-another is a key component of data analysis2

and statistics. Within the atmospheric sciences, exploring the relationships between chemical3

constituents and meteorological parameters is extremely common and the techniques for4

comparing, correlating, and determining relationships are very diverse. Analysis involving the5

correlation of two pollutants can often be insightful because it can lead to the identification6

of emission source characteristics, as can investigation into ratios or slopes from regression7

analysis between two pollutants (Statheropoulos et al., 1998). Within atmospheric disciplines,8

data analysis can also benefit from being able to integrate wind behaviour (Elminir, 2005).9

The use of wind speed and direction can be informative because it often leads to the suggestion10

of source locations and source characteristics, such as height of emission above the surface11

(Henry et al., 2002; Westmoreland et al., 2007).12

Exploration of relationships among variables can be achieved with many different methods13

that can range from the simple to numerically complex. However, a technique that is used14

very widely is the simple x-y scatter plot (Bentley, 2004). Scatter plots are useful because15

they allow for the visualisation of variables and model fitting can be evaluated quickly and16

simply with visual feedback. Regression techniques, most commonly ordinary least-squared17

regression, are often employed to formally quantify how x and y are related. The use of18

least-squared regression is however technically questionable in many cases, and despite a19

large collection of alternative techniques available, its use remains a persistent feature of20

air quality data analysis. The use of simple scatter plots is usually carried out with entire21

datasets or with simple or superficial filtering and therefore have potential to hide some22

discrete relationships which are present in the global data if they do not conform to the23

mean rate of change (Cade and Noon, 2003).24

Slopes from regression models relating two pollutants to one another are often used in25

applications that use monitoring data such as emission inventories and pollutant models.26
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When measurements are not available, slopes for the unknown pollutants are often substituted27

from the literature, short-term monitoring, or data collected at a near-by location. However,28

the use of simple and static ratios is likely to be deficient in many situations because they29

can be expected to be highly dependent on source (Manoli et al., 2002). To differentiate30

sources in air quality data, techniques other than simple scatter plots often need to be used.31

A common method for source characterisation is the use of bivariate polar plots (Carslaw32

et al., 2006; Westmoreland et al., 2007; Carslaw and Beevers, 2013; Uria Tellaetxe and33

Carslaw, 2014). Polar plots are typically used to visualise and explore mean pollutant34

concentrations for single species based on wind speed and wind direction. In the atmospheric35

sciences, it is intuitive to plot wind direction (from 0 to 360 ◦ clockwise from north) on the36

angular ‘axis’ and wind speed to be used for the radial scale. Aggregation functions other37

than the arithmetic mean can be used and different variables apart from wind speed can be38

used for the radial scale. For example, atmospheric temperature or stability are often useful39

variables to use. The main attribute for the choice of radial-axis variable is that it helps to40

differentiate between different source characteristics in some way due to different source types41

responding differently to values of the angular scale. Despite the range of potential options,42

wind speed is widely used to help discriminate different source types and is particularly43

useful when used together with wind direction and the concentration of a species (Harrison44

et al., 2001; Kassomenos et al., 2012).45

This type of polar plot analysis has, in part, become wide-spread due to the open-source46

polarPlot function available in the openair R package (Carslaw and Ropkins, 2012; R Core47

Team, 2016). Other similar techniques such as non-parametric wind regression have also48

shown their ability to determine source locations for various pollutants by using polar plots49

(Henry et al., 2002, 2009; Donnelly et al., 2011).50

1.1. Objectives51

Combining correlation and regression techniques with those that provide information on52

source apportionment potentially offers considerably more insight into air pollution sources.53

The use of wind behaviour has the potential to evaluate correlation and slopes based on54
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source locations and therefore different processes. It is common for emission inventories to55

use ratios for pollutants when they are not measured or when high quality data is lacking. It56

is hypothesised that the combination of correlation, regression, and polar plots could lead to57

significant additions to data analysis by understanding how different pollutants are related58

to one another depending on source.59

In this paper, the combination of bivariate polar plots approaches with correlation and60

regression techniques is considered for comparing two pollutants. This combination of61

methods is then used to aid the interpretation of air quality data. The primary objectives of62

this paper are as follows. First, to develop methods to combine bivariate polar plot techniques63

with correlation and a range of linear regression approaches. Second, apply the methods to64

commonly available measurements of air pollutants to demonstrate the new insights made65

possible by these techniques. Third, to consider the wider potential uses of the approaches66

in air quality science. The software developed has been released with an open-source licence67

and can be found in the polarplotr R package (Carslaw and Grange, 2016).68

2. Methods69

2.1. Function development70

2.1.1. Kernel weighting and scaling71

The plotting mechanism for polar plots when using wind direction as the polar axis72

generally involves first aggregating a time-series into wind speed and direction intervals73

(or ‘bins’). The specific intervals and numbers of the bins can be altered for a particular74

application, but all combinations of the two types of bins are summarised by an aggregation75

function such as the mean or maximum. In the openair polarPlot function, a smoothed76

surface is fitted to these binned summaries using a generalised additive model (GAM) to77

create a continuous surface which can be plotted with polar coordinates. Further details of78

the approach can be found in Carslaw and Beevers (2013) and Uria Tellaetxe and Carslaw79

(2014).80

When applying a simple aggregation function, the number of observations in a time-series81

which compose a discrete wind speed and direction bin is not critical for the calculation or the82
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visual presentation of the surface, except at the edges of the plot where there are (usually) few83

observations. However, when calculating correlations or relationships between two variables,84

it becomes important to consider the minimal number of observations which would create a85

valid summary. If there are too few observations for a particular bin and a statistic such as86

the correlation or slope is calculated between a pair of variables, it is likely that unreliable87

summaries will be generated due to large variations between neighbouring bins. To overcome88

this limitation, for each wind speed and direction bin, the entire time-series was evaluated89

but observations were weighted by their proximity to a wind speed and direction bin i.e.,90

wind speed or direction values further from the bin centre are weighted less than those closer91

to the centre of the bin. Like previous works such as Henry et al. (2002, 2009), a weighting92

kernel was used to create weighting variables.93

The weighting kernel used was the Gaussian kernel (Equation 1). The Gaussian kernel94

has infinite tails and therefore all input bins are given a non-zero weighting, but observations95

furthest from the bin being analysed have very small weights associated with them. The96

Gaussian kernel was used for weighting both wind speed and direction because it is considered97

more utilitarian than many other kernels such as the Epanechnikov kernel which have finite98

bounds and therefore at times, will give observations weights of zero which can cause99

ambiguity issues.100

K(u) =
1√
2π

e−
1

2
u
2

(1)

To ensure the weighing variable was appropriate for the particular wind speed and direction101

application, the input wind speed and direction variables required scaling. The scaling process102

used was simple; the wind variables were multiplied by an integer to increase their bounds103

and therefore influence within the weighting kernel. The variables were also normalised to104

ensure that all observations had values between zero and one. This normalisation step is not105

strictly necessary when the Gaussian kernel is used, but is needed for some other kernels and106

ensures the output of process always had a known range.107

If the weighting operated too locally, the inherently variable nature of wind behaviour108
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was represented in the plotted surface as noise. Conversely, if weighting was extended too far,109

isolated areas of ‘real’ peaks were obscured due to over-smoothing. It is difficult to determine110

an optimal set of scaling values for wind speed and direction for every application, therefore111

a series of heuristic simulations were performed to determine the ideal integer scaling values.112

It was found that within a central range the final output was rather insensitive to the113

scaling values. One reason for this relative insensitivity will be due to the inherent random114

variability of concentrations as a function of either wind speed or wind direction due to115

atmospheric turbulence. This indicates that within a central band of values, the scaling116

process is not particularly influential. It is possible for other applications these scaling117

magnitudes will have to be tuned and therefore the defaults can be altered by the user.118

An example of the scaling defaults used in the polarPlot function are shown in Figure 1.119

Figure 1 allows visualisation of the Gaussian weighting kernel for both the wind speed and120

direction variables as well as the extent of the default scaling procedure for a single bin for121

4.8m s−1 and 230 degrees.122
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Figure 1: Three-dimensional surface of weights for a single wind speed and direction bin (4.8m s−1 and 230

degrees respectively). The surface is normalised and therefore intensity units are not informative.

After the appropriate weights have been calculated, the calculation of any pair-wise123

statistic that allows for weighting could be calculated between two pollutants. The first124

methods implemented were the Pearson correlation coefficient and two linear regression125

methods. Using these two groups of techniques allowed for the investigation of the correlation126
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between two pollutants and the investigation of the slope between pollutants, but with the127

inclusion of wind speed and direction.128

2.1.2. Correlation129

Correlation is a measure of how well two (or more) variables are associated to one-another.130

Correlation is a useful measure for air pollutants because pollutants which demonstrate high131

levels of correlation are often emitted from the same source, or undergo similar chemical and132

physical transformations in the atmosphere. For use in polar plots, the correlation statistic133

implemented was the weighted Pearson correlation coefficient (r) (Davison and Hinkley, 1997;134

Canty and Ripley, 2016).135

2.1.3. Regression136

Regression is a very common statistical technique and is often used to describe and137

investigate relationships among variables (Kariya and Kurata, 2004). Regression is a large138

topic and only the linear regression techniques considered for the polar plot function will be139

discussed. Of particular interest is the estimate of the slope from a linear regression between140

two species. The slope will often reveal useful information concerning source characteristics,141

for example, the amount of PM10 that is in the fine fraction (PM2.5), or the ratios of142

combustion products such as CO and NOx which can be compared with emission inventory143

estimates.144

The first regression technique implemented was weighted least-squares linear regression.145

This is very similar to ordinary least-squares linear regression, but the weighted sum of146

squares are minimised which has the effect of creating a model which preferentially represents147

a local area of the input data rather than the entire set. Because of the common presence of148

outliers in air pollution time-series measurements, other regression methods such as robust149

regression can offer advantages over the least-squares regression for use in the enhanced polar150

plots.151

Robust regression extends least-squares regression techniques in attempting to better152

handle situations where the parametric assumptions of the least-squares regression method153
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are violated. These violations are usually involved with the presence of outliers and het-154

eroscedasticity (non-equal variances). Primarily, the power of robust regression lies in the155

resistance to the influence of outliers.Robust regression achieves this by substituting the156

least-squares estimator for a more robust estimator (Yohai, 1987). There are many types of157

robust estimators, but they all operate by first classing observations as outliers or not-outliers158

and then reducing the influence of the outliers on the regression model (Huber, 1973). The159

procedures for calculating robust estimators are iterative and more computationally demand-160

ing when compared to the calculation of the least-squares estimator. This is noticeable to161

a user of the polarPlot function because additional run-time is needed when the robust162

regression techniques are used. The robust regression functions were supplied by the MASS163

package (Venables and Ripley, 2002) and the estimator used was the M-estimator because164

this estimator allows the use of weights.165

2.2. Data166

Data analysis was conducted on hourly air quality monitoring data for two sites included167

in the United Kingdom’s Automatic Urban and Rural (AURN) Network. The two sites were168

London Marylebone Road and London North Kensington (Table 1 and Figure 2). Monitoring169

data for 2013 were downloaded using the openair importAURN function. Both monitoring sites170

measure a large complement of chemical and particulate species and achieve high data capture171

rates. The particulate matter measurements were focused on for polar plot analysis and172

PM10 and PM2.5 at London Marylebone Road and London North Kensington are monitored173

by TEOM-FDMS (Tapered Element Oscillating Microbalance-Filter Dynamics Measurement174

System) instruments. This enhanced method is not as susceptible to removing volatile and175

semi-volatile components in the monitored air-stream as standard heated TEOMs (Allen176

et al., 1997; Green et al., 2009). Hourly black carbon (BC) data were also used and these data177

were sourced directly from the AURN monitoring database after personal communication178

with Ricardo Energy & Environment. More detailed site and instrument details can be found179

see at https://uk-air.defra.gov.uk/.180

Meteorological data for 2013 from London Heathrow (a major airport) in western London181
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Table 1: Details of locations of air quality and meteorological monitoring sites in London providing data for

this study.

Site name Latitude Longitude Elevation Site type

London North Kensington 51.5211 -0.2134 5 Urban background

London Marylebone Road 51.5225 -0.1546 35 Urban traffic

London Heathrow 51.4780 -0.4610 25.3 Meteorological only

London North Kensington

London Marylebone Road

London Heathrow

0km 5km 10km

Figure 2: Locations of air quality and meteorological monitoring sites in London providing data for this

study. The map’s internal polygons show London’s Boroughs, the City of London, and the River Thames.

were used to represent regional conditions for the two air quality monitoring sites. Hourly182

data from the London Heathrow site were obtained from the NOAA Integrated Surface183

Database (ISD) and access was gained with the worldmet R package (NOAA, 2016; Carslaw,184

2016). The data from Heathrow Airport were used in preference to other local surface185

measurements, which tend to be strongly influenced by local buildings.186
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PM2.5 = PM10 ⋅ 0.87 − 3.7,  R2 = 0.89

London North Kensington

0

25

50

75

0 30 60 90

Hourly PM10 concentration (µg m−3)

H
o
u
rl
y
 P

M
2
.5

 c
o
n

c
e
n
tr

a
ti
o

n
 (µ

g
 m

−3
)

Figure 3: Simple x-y scatter plot of PM2.5 and PM10 for 2013 at London North Kensington. Fitted line and

equation represents the ordinary least-squared regression model.

3. Results & discussion187

3.1. London North Kensington PM10 and PM2.5188

London North Kensington is an urban background site (Table 1 and Figure 2) and it189

is expected that a wide range of sources will contribute particle concentrations, including190

both local (London) and long-range (continental Europe) sources. A scatter plot of PM2.5191

and PM10 shows that the two particle size fractions showed a good degree of correlation192

during 2013 (Figure 3). From Figure 3 alone there is no obvious indication that different193

source types contribute to the overall scatter of points. The mean ratio between PM2.5 and194

PM10 was 0.87, as determined by the ordinary least-squares linear regression model and it195

explained 89% of the variation (Figure 3).196
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The usual use of polar plots, by calculating the mean concentration for wind speed and197

directions bins, show that the there were multiple sources of PM10 and PM2.5 at London198

North Kensington in 2013 (Figure 4a and Figure 4b). Figure 4 suggests that locally-sourced199

particulate matter were present, as potentially indicated by the elevated concentrations at200

low wind speeds, but the highest concentrations were experienced with easterly winds when201

wind speeds were high (≈ 10m s−1). By contrast, NOx, a pollutant which is dominated202

by local (London) emissions, showed that only when wind speeds were low, were elevated203

concentrations experienced due to a lack of pollutant dispersion (Figure 4c). However, when204

the PM2.5 and PM10 data are plotted with a correlation statistic binned by wind speed and205

direction, the situation is more revealing than the scatter plot and mean polar plots would206

suggest alone (Figure 5).207
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Figure 4: Polar plots of mean concentrations of PM10 (a), PM2.5 (b), and NOx (c) for 2013 at London North

Kensington.

The correlation polar plot of PM2.5 and PM10 demonstrates that during easterly winds,208

the London North Kensington PM2.5 and PM10 concentrations were very highly correlated209

with r ≈ 0.9 (Figure 5). The zone of high correlation is interpreted to be due to long-range210

transport which is characterised by the majority of PM10 being made up of PM2.5. In London,211

and most areas of the UK, long-range transport is most important under easterly conditions212

where air-masses originate from continental Europe (Buchanan et al., 2002; Abdalmogith and213

Harrison, 2005; Liu and Harrison, 2011). Under these conditions the concentrations of fine214

particulate sulphate and nitrate can dominate absolute particle concentrations. The surface of215
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Figure 5 is also smooth and covers a wide range of wind speed and directions which indicates216

a general, and large-scale process which is being appropriately smoothed and represented217

by the weighting procedure (Section 2.1). Other monitoring locations, including London218

Marylebone Road that also measure PM2.5 and PM10 showed similar easterly behaviour (not219

shown).220
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Figure 5: Polar plot of the correlation between PM2.5 and PM10 for 2013 at London North Kensington.

Previous studies such as Querol et al. (2004); Charron and Harrison (2005); Harrison et al.221

(2001); Liu and Harrison (2011) have reported high PM2.5–PM10 ratios for European sourced222

particulate matter in the UK and the correlation presented in Figure 5 is consistent with these223

past works which reported high PM2.5–PM10 ratios. When HYSPLIT (Stein et al., 2015)224

back-trajectories for 2013 were clustered and joined to coincident pollutant observations, the225

cluster representing air-masses from Europe also had the highest PM2.5–PM10 ratio of all226

clusters, consistent with the conclusions inferred from Figure 5.227

The polar plot of the slope between PM2.5 and PM10 at London North Kensington228

demonstrates a similar surface pattern as the correlation polar plot (Figure 6). The long-229

range sourced particulate from the east was indeed primarily composed of PM2.5, as shown230
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by a PM2.5 to PM10 slope of about 90%. For other wind directions, coarser particulate231

matter was a more important contributor to PM10 and the PM2.5 contributions drop to232

approximately 30% (Figure 6). This reduction of PM2.5 to PM10 slope was most likely caused233

the local process of mechanical resuspension. Even though the scatter plot of PM2.5 and234

PM10 (Figure 3) does not indicate different source influences, it is clear from Figure 6 in235

particular that there are at least two major source types affecting particulate concentrations236

at the London North Kensington site. It should be noted that a careful wind speed, wind237

direction subset of the data shown in Figure 3 does confirm the behaviour seen in Figure 6238

with a much lower PM2.5 to PM10 slope for south-westerly winds above 5m s−1.239
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Figure 6: Polar plot of the robust slope between PM2.5 and PM10 for 2013 at London North Kensington.

3.2. London Marylebone PM2.5 and BC240

Unlike PM10 and PM2.5 at London North Kensington, the London Marylebone Road BC241

and PM2.5 correlation was poor in 2013, as shown in Figure 7. Although BC exists primarily242

within the fine particle fraction (Petzold et al., 1997; Viidanoja et al., 2002) and would be243
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BC = PM2.5 ⋅ 0.21 + 2.6,  R2 = 0.24
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Figure 7: Simple x-y scatter plot of BC and PM2.5 for 2013 at London Marylebone Road. Fitted line and

equation represents the ordinary least-squared regression model.

expected to be an important component of PM2.5 at a traffic-dominated location like London244

Marylebone Road, PM2.5 also has a diverse number of other sources including secondary245

inorganic aerosol (Querol et al., 2004). Therefore, at times, BC will be a major contributor246

to PM2.5 while at others it will be a minor component depending on the strength of the247

various sources. Using a scatter plot to investigate this relationship is not immediately useful248

because the two variables do not follow a mean rate of change. Therefore, fitting a simple249

linear regression line to these data is not informative (Figure 7).250

The robust regression slope of BC and PM2.5 binned by wind speed and direction at251

London Marylebone Road demonstrated patterns that were not observed by the simple252

scatter plot alone (Figure 8a). Figure 8a shows that the ratio between BC and PM2.5 was253

highly dependent on wind direction. Winds from the south and west at London Marylebone254
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Road had a higher ratio of BC with ≈ 50% of PM2.5 being composed of BC. BC-PM2.5255

ratios are sparsely reported, however London Marylebone Road’s ratio is consistent with256

what Ruellan and Cachier (2001) reported for a traffic-dominated monitoring location in257

Paris (Porte d’Auteuil) with ratios of 43 ± 20%. When winds were from the north and258

westerly directions, the BC-PM2.5 ratio was lower, usually under 20%. Additionally, winds259

from the north were nearly completely free of BC particulate matter (Figure 8a).260
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Figure 8: Polar plot of the robust slope between BC and PM2.5 at London Marylebone Road (a) and London

North Kensington (b).

The wind direction dependencies inferred from the polar plot are somewhat counter-261

intuitive given that the London Marylebone Road monitoring site is located one metre from262

the kerb on the south-side of an arterial road. However, the site is also within a significant263

street-canyon with a width of 40 m and a height of 41 m which is likely to lead to complex264

recirculation patterns at a range of wind speeds (Charron and Harrison, 2005; Giorio et al.,265

2015). Based on this evidence, accumulation of pollutants on the buildings’ lee-side (south)266

is an important process to consider at London Marylebone Road when interpreting source267

processes.268

London North Kensington also measures BC and PM2.5 and the slope of these two269

pollutants binned by wind speed is rather different compared with London Marylebone Road270
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(Figure 8b). London North Kensington is an urban background site and lacks the large traffic271

source being in immediate proximity which London Marylebone Road experiences. Therefore,272

BC was a much smaller component of PM2.5. In 2013, London North Kensington had a273

maximum contribution of ≈ 15% of BC to PM2.5 (Figure 8b). However, this maximum274

contribution only occurred when wind speeds were low and suggests that this contribution is275

reached only when local traffic emissions influence the monitoring site.276

Based on these results for the two monitoring sites, the clear and consistent BC-PM2.5277

ratio at London Marylebone Road of around 50% shown in Figure 8a in the south-west278

quadrant can be interpreted as a contribution dominated by local traffic sources. The lower279

ratio of between 10–20% mostly to the east is dominated by regional source contributions280

where the concentration of PM2.5 is relatively high but where air masses contain very little281

BC.282

3.3. Future directions283

The examples presented for a single year of data for two air quality monitoring sites284

in London were the first steps for enhancing polar plots to include the functionality of285

pair-wise statistics. The enhancements were able to substantially improve the information286

content available from routinely monitored air pollutants where simple scatter plots and287

‘standard’ polar plots gave no suggestion of the processes subsequently illuminated by the288

correlation/slope polar plots.289

The examples reported were for a few commonly measured species. However, it is expected290

that the use of polar plots using pair-wise statistics for multi-species data such as metal291

or VOC concentrations could be highly informative. Measurement of large numbers of292

metals and other species at higher time resolutions (hourly) is becoming more common.293

A ‘correlation matrix of robust slope polar plots’ would potentially reveal more detailed294

information on common source origins.295

The use of other statistics is another valuable future direction such as non-parametric296

measures of correlation such as Spearman. Other regression techniques such as quantile297

regression (Koenker and Bassett, 1978) could be implemented to provide slope information298

16



across a range of quantile levels, potentially providing more comprehensive information on299

the relationship between two pollutants and give further options when determining pollutant300

sources. The main advantage of quantile regression is likely to be related to resolving two301

or more sources that overlap and where there is not a single dominant slope caused by302

one source. In this case, considering the full distribution of slope values may help better303

resolve competing source contributions. Finally, the weighted statistics approach for paired304

statistics could usefully be extended to model evaluation where two sets of data are compared305

(observed and modelled). In this case, enhanced polar plot analyses could provide valuable306

information concerning where model agreement is good or poor and indicate more clearly the307

conditions under which model performance is acceptable and provide enhanced information308

on where model performance is poor.309

4. Conclusions310

This paper outlined the development of enhanced bivariate polar plots to include pair-wise311

statistics to be used in the atmospheric sciences. Two groups of statistical techniques were312

implemented: correlation and regression. The new development brings together commonly313

used pair-wise statistics and relationships with wind speed and direction, which provides314

enhanced information on pollutant sources beyond currently used techniques.315

Using a single year of data, in a single city, for routinely monitored pollutants demonstrated316

that the enhanced polar plots were capable of determining relationships and processes that317

were not suggested by simple scatter plots and the use of mean polar plots alone. Here we318

have reported that traffic dominated PM2.5 is composed of 50% BC at a London monitoring319

site. This is an important observation and ratios between other pollutants such as elemental320

carbon and organic carbon (EC and OC) is an obvious future application for the enhanced321

polar plots.322

It is expected in the future that enhanced polar plots will be widely used for the323

investigation of ratios for pairs of pollutants and further extended to be a valuable tool for324

teasing apart pollutant sources and processes.325
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Highlights330

• Bivariate polar plots are a common method for exploring pollutant sources.331

• Polar plots were enhanced with the addition of pair-wise statistics.332

• Usage examples of the enhanced polar plots are given for two London monitoring sites.333

• Processes were illuminated that were not detected by other plotting methods.334

• Potential future applications and extensions are discussed for bivariate polar plots.335
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