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A UNIFIED RHEOLOGICAL MODEL FOR MODELLING STEEL 

BEHAVIOUR IN FIRE CONDITIONS 

Neno Torić 1* and Ian W. Burgess 2 

Abstract: 

This paper presents a newly developed rheological model capable of modelling the 

behaviour of carbon steel at high temperature under stress- and strain-rate controlled tests. 

By combining two serial Kelvin elements with the appropriate spring-and-damper 

constitutive behaviour models it is possible to model creep strain development under 

stationary and transient heating conditions. Furthermore, the model is able to take into 

account the inherent increase of the yield strength if the strain rate is raised to moderately 

high levels usually expected in a fire-induced collapse of the structure. Constitutive 

behaviour models for each of the rheological elements are based on the test data from 

which the Eurocode 3 stress-strain law originated. The model was verified by using the test 

results of constant stress- and strain-rate tests from various sources. Overall comparison of 

results indicates the applicability of the proposed rheological model to structural fire 

engineering analysis for steel grades S275 and S355.  
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1. INTRODUCTION 

Constitutive material modelling within the finite element method is based on the 

provision of a suitable material model which closely matches the material behaviour 

exposed to external load during the service life-time of a structure. The selected material 

model should be able to take into account as many significant material effects as possible 

so that the engineer is provided with a reliable calculation on which to judge the structure’s 

load bearing capacity. Fire action represents one of the possible events during the service 

life-time of a building. In case of fire acting on a structure, a reduction of the material’s 

resistance capacity and change of loading conditions often occurs. The former refers to the 

reduction of all of the material’s mechanical strength and stiffness properties, and the latter 

refers to the thermally-induced change of force level and strain rate. These effects are 

accompanied by temperature distributions which depend on the variation of heating rate 

which occurs in a natural fire event. 

Most of the accepted constitutive stress-strain models for representing steel 

behaviour at high temperature are based on a set of temperature-dependent stress-strain 

curves. Generally, the mathematical representation of these curves is generated by fitting 

the test data obtained from stress- or strain-rate-controlled testing of coupons heated under 

quasi-static conditions. Test data obtained under transient heating conditions is also used to 

generate material models. Strain-rate-controlled tests are usually conducted by applying 

strain rates which are codified to a standard testing procedure for determining steel strength 

[1,2]. The strain rate range used for testing is usually restricted to approximately 0.00025-

0.0025s-1, and the codified stress rate range is between 6-60 MPas-1 [2]. Tests under 

transient heating conditions are also conducted using constant heating rates in the range 5-

20°C/min, with 10°C/min being more frequently used than others in generating stress-strain 

models which are deemed to include creep implicitly [3,4]. 

The shape of the stress-strain model for steel at high temperature is essentially 

nonlinear for all models. However, there are differences between them in certain parts of 

the stress-strain curve, especially in the transition zone before the yield plateau starts [5]. 



At present there are a few stress-strain models which are used frequently in 

performance-based fire engineering. The older steel models [3, 6] used in modelling 

structural behaviour are based on a Ramberg-Osgood form of relationship. This type of 

model is based on a monotonically increasing curve which utilizes temperature-dependent 

coefficients to fit experimental data. 

In Europe, the most widely-used stress-strain law is incorporated in the steel and 

composite structure Eurocodes [7, 8] for low-carbon structural and reinforcing steels, and 

for prestressing steel; this model comprises linear and elliptical zones, followed by a yield 

plateau. The model originates from a comprehensive coupon-study based largely on the 

transient-heating test methodology at 10°C/min [4]. 

Codified design models in the USA are given in the ASCE manual [9], and are 

based on a bilinear elasto-plastic temperature-dependent stress-strain model. The origin of 

the ASCE model is uncertain [5], but the shape of the stress-strain model suggests that the 

test data is probably taken from constant-temperature coupon tests conducted at a fast strain 

rate. Various researchers have proposed other types of stress-strain model, mostly based on 

curve-fitting of constant-temperature and transient test data [10-12]. 

Looking at the origins of general and codified design models it can be deduced that 

a stress-strain law determined from any particular set of test parameters should be limited in 

application to conditions similar to those under which the test results were obtained. The 

important parameters to which this applies are the applied heating rate, strain rate and stress 

rate during the test.  As has been mentioned earlier, apart from the reduction of mechanical 

properties, changes of load level, strain rate and heating rate occur in steel during a natural 

fire event. A more comprehensive stress-strain model, which is sensitive to the crucial 

thermo-mechanical parameters which can change during fire exposure, needs to be 

developed for use in thermo-structural analysis. In order to develop such a constitutive law, 

the most convenient way is to develop a stress-strain model based on general rheological 

principles.  Most previous research which has utilized rheological principles for high 

temperature analysis, such as the Burgers [13] and “standard” [14] solid models, has been 



based on the creation of rheological models for creep in steel at high temperature. The 

motivation for developing a unified rheological model in this study is the desire to unify the 

analysis of steel structures across the whole range of fire scenarios, taking into account all 

of the complex and time-dependent strain components which occur in the steel. The unified 

rheological model postulated in this paper aims to allow analysis which is temperature-, 

stress-, heating-rate- and strain-rate-sensitive.  These are the major thermo-mechanical 

variables in fire. 

The theoretical background for the developed rheological model is given in this 

paper, including a verification for each of its constitutive components. Several available 

material test studies have been used to test the model’s capabilities and to verify its 

performance in constant-temperature and transient heating conditions in order to show the 

applicability of the model. 

2. THEORETICAL BACKGROUND OF THE UNIFIED 

RHEOLOGICAL MODEL 

2.1 Description of the rheological sub-models and the unified model 

Three strain components can be defined [11] for steel at any temperature: 

 tot th cr( ) ( , ) ( , , )T T T t        (1) 

in which: tot  is the total strain, th( )T is the temperature-dependent thermal strain, 

( , )T   is the stress-related strain (dependent on the applied stress  and the temperature 

T) and cr( , , )T t   is the creep strain (dependent on stress, temperature and time). The 

second and third of these are the most complex to determine, due to their dependency on a 

large number of thermo-mechanical variables. Since thermal strain depends only on 

temperature it can be modelled with relative ease, and it will not be considered as a separate 

strain variable within the rheological models. The unified model presented in this section 

and illustrated in Figure 1, is capable of providing only stress-related and creep strains. 



Four different rheological models (three sub-models and a unified model) are 

presented in this chapter to represent the strain evolution in steel during fire, including the 

creep and strain-rate effects. The sub-models are used to calibrate each of the constitutive 

rheological components which are later implemented in the unified rheological model. 

Model R1 is applied at very low strain rates, R2 at moderate strain rates and R3 at 

very fast strain rates. A unified rheological model proposed by the authors, which contains 

the physical attributes of the first three rheological sub-models, is denoted R4. This 

rheological model is intended to be applied over a wide range of strain rates. Variation of 

yield strength and the evolution of creep strain are taken into account for different 

rheological models by combining sub-models. The Kelvin-Voight element in model R2 is 

used for modelling the evolution of creep strain, and in model R3 is for modelling change 

of yield strength with strain rate. 

Model R1 comprises a series combination of two spring elements, with each strain 

component being represented by a single nonlinear spring. The first spring represents a 

mechanical (stress-related) strain component which is based on a nonlinear stress-strain 

law, and the second spring represents long-term creep strain at lower strain rates. In this 

arrangement of elements there are no dampers connected in parallel to the springs, since the 

model is used for analyzing the strain response at very low strain rates, taking into account 

the reduction of yield strength which has been experimentally observed at very low strain 

rates. Since a series combination of rheological elements is used, the total strain is the sum 

of individual strains: 

                    1 2 1 1 2 2; ; k ; k                    (2) 

in which: 1 and 2 are the strain components of the first and second Kelvin-Voight 

elements, 1 and 2 represent the stress components of the spring elements for the first and 

second Kelvin-Voight elements, k1 and k2 are the temperature- and stress- dependent 

functions and T is temperature. 

The second model R2 comprises a spring element and a Kelvin-Voight element. 

The spring element represents the mechanical strain without accounting for the influence of  

change of strain rate, and the Kelvin-Voight element represents the viscous creep strain 



component. This type of rheological model is assumed to be valid for moderate strain rate 

ranges in which the strain-rate effects on the strain output can be treated as negligible. The 

stress-strain relationship for the spring element in R2, the differential equation for the 

Kelvin element and the total strain rate equation can be expressed as: 

           2
1

2 2

k
k ; ; const =

c c

     


           

       
   

 (3) 

in which:   and  represent the strain rate components of the first and second 

Kelvin-Voight elements, c2 is the temperature- and strain rate- dependent function. 

Model R3 represents a single Kelvin-Voight element, comprised of a nonlinear 

spring element and a nonlinear damper element in parallel. This element represents a 

mechanical strain component with the ability to increase its yield strength because of the 

strain-rate effect, which generally increases the yield strength of steel. The damping 

coefficient in this rheological model is assumed to have a very high value so that it has its 

main effect at higher strain rates. At such high strain rates the creep strain component is 

expected to be very low compared to the mechanical strain. A parallel connection between 

the elements divides the total stress into the two components: 

                         1 2 1 1 2 1; k ; c ,T              
 

 (4) 

The fourth model, R4 comprises a series combination of two Kelvin-Voight 

elements. The first of these represents the mechanical strain component in the same way as 

model R3; the second represents viscous creep strain. The damping coefficient of the 

former element is assumed to have a very low value compared to the damping coefficient 

of the latter. Both damping coefficients are assumed to have temperature- and strain-rate-

dependency. The differential equation for each of the Kelvin elements of model R4, and the 

total strain rate, can be expressed as: 

i
i i

i i

k
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for


            (5) 



In this case two differential equations have to be integrated with respect to time, and 

the appropriate strain rate solution at a current time interval is the sum of the individual 

rates for the two elements.  Equation (5) can be solved using Euler integration, which is 

utilized in the solver presented in Figure 3 by using small time increments for integration. 

Two different types of solution are developed for the presented rheological models.  

These are strain-rate- and stress-controlled, and are used for modelling of these respective 

types of test. 

2.2 Test studies for calibration and verification 

A wide range of test studies has been used to calibrate and verify the constitutive 

components of the unified rheological model. These studies are based on both transient and 

strain-rate-controlled coupon tests of steel grades currently available in Europe. 

The central study selected for verification of the unified model is that by Kirby et al. 

[4,15]. This study was used as a basis for creating the original Eurocode 3 stress-strain law, 

and consisted of a series of transient coupon tests. The heating rates were varied in the 

range 2.5-20°C/min, with stress levels ranging between 25 and 350MPa. British standard 

steel grades designated 43A and 50B were tested in the study; these correspond to the 

current Eurocode 3 steel grades S275 and S355, respectively. 

A study by Latham and Kirby [16] was selected for determination of the damper 

constant c1. This study was based on a series of constant-strain-rate tests on steel of grade 

Fe430A (S275). Temperatures ranging from 20-800°C and strain rates from 0.002-0.1/min 

were used in these tests. 

A study by Boko et al. [17] was used for verification of the unified rheological 

model. The study was conducted on a small series of transient coupon tests of a more recent 

alloy, of steel grade S355, at various stress levels between 50 and 400MPa. A single 

heating rate of 10°C/min was used in these transient tests. In addition, coupon tests at a 

fixed strain rate of 0.0002/s in the temperature range 20-750°C were conducted to 

determine the stress-strain relationship of the tested steel grade. 

Tests conducted by Renner [18] studied the influence of different strain rates on the 

stress-strain material law of steel grade S275 in the range 400-700°C.  In total 25 coupons 



were tested at three different displacement speeds (0.7-6.0 mm/min) at each temperature 

level. This study was selected for verification of the unified rheological model. 

A study conducted by Harris [19] was based on the analysis of the effects of short-

term creep on the stress-strain material law of steel grade S275. Three strain rates (0.00047-

0.00165 s-1) within the temperature range 400-650°C were used in this study, which was 

used for verification of the damper constant c1. 

A study conducted by Bull et al. [20] involved high-temperature constant-strain-rate 

tests on M20 grade 8.8 bolts. Strain rates ranging from 0.002-0.02 min-1 and temperatures 

from 550-700°C were analysed within the study, which was used for verification of the 

unified model in order to test its capabilities outside the range of contemporary steel grades. 

2.3 Constitutive rheological components 

The constitutive relationships of all four rheological models are functions of their 

spring and damper components. As mentioned earlier, the spring component represents the 

basic mechanical strain model. The constitutive model for spring k1 in this study was 

chosen to be the recently-developed creep-free Eurocode 3 stress-strain model [21]. This 

decision was made since the Eurocode 3 stress-strain law is based on experimental data 

using standardized testing regimes, and is appropriate for modelling mechanical strain in 

the medium-strain-rate test range. An additional reason for using this particular model was 

that the Eurocode 3 form of stress-strain curve is widely accepted in performance-based 

structural fire design across Europe and in the scientific community. 

This type of modified (creep-free) model follows the original Eurocode 3 model, 

except that the yield strain y,  is reduced to 1% in order to exclude the implicit creep 

content. The details of the procedure for extracting implicit creep can be found in [22]. The 

shape of the modified Eurocode 3 model and its comparison with the original are presented 

in Figure 2. 

The constitutive model for spring k2 is identical to that for spring k1. The only 

difference is that the temperature-dependent yield strength y,f  of k2 has been reduced to 

80% of the original yield strength of k1. This reduction has been chosen to match the slow-

strain-rate tests by Latham and Kirby [16], since a reduction of yield strength of up to about 



20% has been experimentally observed at very low strain rates. This study was chosen to 

calibrate the constitutive model of spring k2. Figure 4 presents a comparison between 

modelling results using model R1 and the test results from [18-19], for the k2 spring model. 

The equations which describe the k1 and k2 constitutive models plotted in Figure 2 

(modified EC3) are defined by the following expressions [7]: 

 a,   E    ( for p,   ) (6) 

 
0.52 2
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Parameters a2, b2 i c can be obtained from the following expressions: 
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Where: p, p, a,/    f E  and y, 0.01  . Parameters p,f , y,f , a,E  are respectively 

the proportional limit, yield strength and modulus of elasticity at temperature  which are 

defined in [7]. For strain values higher than 0.04 within the temperature range of 400°C, 

strain hardening of steel is taken into account according to the Annex A of EN1993-1-2. 

Both damper parameters c1 and c2 are dependent on the damper stress level and 

strain rate. Damper c1 represents the increase of yield strength as strain rates increase. 

Values for c1 are determined from the fast-strain-rate tests of Latham and Kirby [16], with 

the help of rheological model R3 which does not have a creep strain component. The 

damper values for c1 and c2 are determined using the following nonlinear relationship: 

i

i

c ; i 1,2id 


 (10) 

The relationship between stress and strain rate for damper c1 was obtained using the 

test data from Latham and Kirby’s study, which is presented in Figure 5(a). Table 1 



presents the values of damper stress which is plotted in Figure 5(a). As mentioned earlier, a 

comparison with other fast-strain-rate test results [18-19] and the rheological model R3 is 

given in Figure 5(b). The damping coefficient c1 always has a smaller value than that for c2 

when utilizing equation (10). The damping coefficient c2 is determined using a logarithmic 

relation between strain rate and temperature. This type of relationship is presented in Figure 

6(a) and can be obtained by using any creep model or stationary creep test data. The 

relationship presented in Figure 6(a) is obtained by creating a strain rate against 

temperature relationship from a series of curves of creep strain against temperature, 

obtained with the help of a prescribed creep model at constant stress levels and pre-defined 

heating rates. 

Within the study, a single creep model was used as a background for determining 

this kind of relationship. Harmathy’s creep model [24] has proved sufficiently accurate in 

previous studies [21,22, 23] modelling creep of European steel grades in fire.  This model is 

based on a time-hardening rule. The creep strain is expressed as: 

    
Z
cr,0cr,0

cr 2
0.693

ș
-1

0= cosh ș < ș
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  cr cr,0 0Z        (12) 

 0 cr,0 / Z   (13) 

 R
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In which TR is the temperature (K), R is the universal gas constant (J/molK), ǻH is the 

creep activation energy (J/mol), Z is the Zener-Hollomon parameter (h-1), cr,0 is a 

dimensionless creep parameter, t represents time and ș represents temperature-compensated 

time. In order to utilize the creep model, the material parameters Z, ǻH/R and cr,0 are 

borrowed from a research study conducted by Harmathy and Stanzak [25] for American 

steel Grade A36, whose yield strength is similar to Eurocode steel Grade S275. The results 

of calibration for the second Kelvin element in rheological model R2, which uses the 

constitutive model from Figure 6(a) and the creep model Cr_1 is given in Figure 6(b). 



3. VERIFICATION OF THE UNIFIED RHEOLOGICAL 

MODEL R4 

3.1 Stationary coupon tests 

In this section the performance of the unified rheological model R4 is shown, and a 

comparison with different strain-rate-controlled test studies is presented. This comparison 

is presented in order to illustrate the applicability of the proposed rheological model for 

modelling high-temperature strain development in various steel grades.   

Figure 7(a) presents a comparison of results from the study by Boko et al. [17] and 

the model R4.  Boko’s study is based on high-temperature strain-rate tests of steel coupons 

at 0.0002s-1. Figure 7(b) compares the model predictions with the study by Bull et al. [20], 

which reports medium-speed strain-rate tests on bolts of Grade 8.8. Figure 7(c) shows a 

further comparison against the study by Renner [18] for medium-strain-rate coupon tests of 

steel of Grade S275. 

3.2 Transient coupon tests 

 This section shows how the unified rheological model R4 performs in modelling the 

strain development of steel coupons under transient heating conditions. Figure 8(a) presents 

a comparison of results between the model R4 and the study of Boko et al. [17] in 

modelling the strain development of steel coupons of Grade S355 at a heating rate of 

10°C/min. Figures 8(b)-8(e) present comparisons of results between the model R4 and the 

tests by Kirby and Preston [15], which were based on transient heating of coupons of Grade 

S355 steel at heating rates of 2.5, 5, 10 and 20°C/min.  Figures 9(a)-9(b) present similar 

comparisons between the model and test results of S275 coupons from the same study at 

heating rates of 10-20°C/min. A summary of the input parameters for the rheological model 

R4 used in modelling the test results from Figures 8(a)-8(e) is given in Table 2.  Table 3 

gives the analytical equations of the temperature- and strain-rate-dependent model of 

damper c2.  The functionality of model R4 is illustrated in Figure 10, which shows the 

reduction of the damping constant c2, and its comparison with the value of creep strain 



which represents the output strain of the second Kelvin element for a simulation of S275 

coupon response exposed to a stress of 100 MPa at a heating rate of 5°C/min. 

4. DISCUSSION OF RESULTS 

4.1 Spring component verification 

A comparison between the maximum stress level obtained by the constitutive slow 

strain rate model R1 and the test results of Renner [18] and Harris [19] from Figure 4 

indicates that the material models for the first and second springs of the rheological model 

R1 provide good predictions of the maximum stress in both test studies within the 

temperature range 500-700°C. The slow-strain rates in Renner’s study varied between 

0.0001-0.0002s-1 and in Harris’s study between 0.0002-0.0005s-1. This comparison was 

conducted in order to verify the material constitutive model for both springs of the unified 

rheological model, reflecting the steel response under slow strain rates at which a small 

reduction of yield strength occurs. 

4.2 Damper component verification 

Verification of the material model for damper c1, which is used for modelling strain-

rate effects in steel is presented in Figure 5(b). A comparison between the results from 

rheological model R3 (which is considered as a representative model for fast-strain-rate 

analysis) and the fast-strain-rate test results of Renner [18] and Harris [19] shows 

particularly good correlation when compared with Harris’s results, giving support to the 

stress-strain rate dependency for damper c1 shown in Figure 5(a). The fast-strain rates in 

Renner’s study varied between 0.0007-0.0012s-1, and in Harris’s study between 0.0008-

0.0015s-1. 

The verification of the damper model c2 for modelling the development of creep 

strain is presented in Figure 6(b), and comparing this with the predictions of the analytical 

creep model Cr_1 indicates that the proposed temperature-strain rate dependency shown in 

Figure 6(a) is applicable.  The rheological model used for calibration of the damper c2 with 

creep model Cr_1 was R2, which is applicable for cases where creep-strain values are 



relatively high compared with the expected values of mechanical strain. The comparisons 

presented in Figures 4-6 are for verification of the material model for each of the 

rheological components which are an integral part of the unified rheological model R4. 

4.3 Verification of stationary response 

Further verification has been conducted by comparing the strain output of model R4 

with selected test studies of steel coupons exposed to stationary heating conditions. This 

attempts to test the performance of model R4, using its previously calibrated constitutive 

components, in re-creating the strain output over temperatures between 500-700°C. The 

comparison with the results of stationary coupon tests in Figure 7(a, b) shows very good 

prediction of the stress-strain outputs of the tests from studies [17] and [20], indicating the 

applicability of the constitutive material components of model R4 for different steel grades; 

in particular, the damper c1, which models strain-rate effects, seems applicable to steel 

grades S275, S355 and the bolt steel grade 8.8. Some discrepancy in predicting the yield 

strengths at 550 and 600°C is observed in Figure 7(c) from Renner’s study. 

4.4 Verification of transient response 

Additional verification of the unified rheological model has been done by modelling 

the comprehensive transient-heating tests by Kirby and Preston [15]. These include 

transient tests at heating rates of 2.5, 5, 10 and 20°C/min for steel grade S355, plus 10 and 

20°C/min for steel grade S275, as shown in Figures 8(a-e) and Figures 9(a-b). Slight 

discrepancies are observed from comparison with the tests at 20°C/min, for which the strain 

output from model R4 indicates earlier failure of the coupon than the experiment showed.  

This can potentially be explained through an additional strength gain of the steel due to the 

very high strain rate which occurred at this particular heating rate, and probably falls 

outside the range of strain rates for which damper c1 was calibrated. This discrepancy is 

particularly observed in the transient tests [15] at 20°C/min when a very high stress level is 

applied; these stresses were 200 MPa for S275 and 300 MPa for S355. 

The overall accuracy of the rheological model R4 can be appreciated from Table 3 

by comparing the test results from this study and the model output for transient tests of 



S355 at 150 MPa, at heating rates of 5 and 10°C/min. Verification of the model with the 

selected transient tests indicates that model R4 can reproduce the strain output very 

accurately at heating rates of 20°C/min and lower, where creep strain value is comparable 

to, or even greater than, stress-related strain. 

It can also be seen from Figures 9 and 10 that the damper c2 shows very high 

sensitivity to heating rates 2.5-5-10°C/min, indicating the substantial increase in creep 

strain evolution within this heating rate region. 

4.5 Applicability of the proposed model 

Comparison of results at heating rates between 2.5-20°C/min shows a very good 

match with the predictions of the unified model R4, indicating that it is applicable in 

transient heating conditions and at varying strain rates, which would generally describe the 

heating scenario for structural steel during a building fire event. The general applicability of 

the model R4 was demonstrated using a wide range of experimental data from different 

sources in order to test the reliability of the proposed model and its constitutive 

components. 

Additionally, the results suggest that R4 is applicable for modelling the strain 

development in common low-carbon steel grades such as S275 and S355. This fact, 

combined with the good predictions for selected stationary and transient coupon test 

studies, indicates that the unified rheological model R4 is valid over a wide range of 

expected strain and heating rates. 

5. CONCLUSION 

 A rheological model for modelling the strain development in structural steel during 

a fire scenario has been presented, together with verification studies which make use of 

previous test studies which include both stationary and transient heating regimes. The 

constitutive components of the rheological model have proved sufficiently accurate in 

predicting strain development in common steel grades, such as S275 and S355, used in 

Europe. The material models of each of the constitutive components can easily be adapted 



to different steel types and grades; this will of course demand some testing for calibration 

of the creep and strain rate enhancement elements. Therefore, in principle it can be applied 

to any type of steel, which makes its potential application universal. Further research 

regarding the model development will include the treatment of strain reversal in steel at 

high temperatures in order to fully capture the strain changes which occur in fire-affected 

steel-framed structures. Considering the comparisons which have been presented so far the 

following conclusions can be postulated: 

 The unified rheological model has been shown to be applicable for modelling strain 

development in fire-affected steel for heating rates in the range 2.5-20°C/min; 

 The constitutive components of the rheological model are sufficiently accurate to 

represent the strain development for low-carbon steel grades S275 and S355, on the 

basis of the verification of the unified model over a broad range of test studies; 

 The model is applicable to any type and grade of steel, provided that the constitutive 

components are calibrated with respect to the material strain-rate enhancement 

effects and creep strain development. 
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Figure Captions 

Figure 1: Proposed rheological models 

Figure 2: Constitutive stress-strain model for spring 1 

Figure 3:  Integration scheme for strain rate solver 

Figure 4:  Comparison of results between rheological model R1 and slow strain rate test 
results 

Figure 5:  Comparison of results between rheological model R3 and fast strain rate test 
results 

Figure 6:  Comparison of results between rheological model R2 and medium strain rate 
test results 

Figure 7:  Comparison with different stationary coupon tests 

Figure 8:  Comparison with different transient coupon tests for steel S355 

Figure 9:  Comparison with different transient coupon tests for steel S275 

Figure 10:  Comparison of damper c2 value and the increase of creep strain value for 
simulation of the transient test of grade S275, at 100 MPa with heating rate of 
5°C/min 

 

Table Captions 

Table 1: Factors for determining damper parameter c1 

Table 2: Input parameters for the rheological model R4 from selected studies 

Table 3: Constitutive equations for the damper coefficient c2 at various stress levels 

Table 4: Accuracy of the rheological model R4 for steel S355 at 150 MPa from study 
[15] at heating rates of 5-10°C/min 
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Figure 4 
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(a) Temperature and strain rate dependency for damper parameter c1 (Adapted from study 
of Latham and Kirby [16]) 
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(b) Comparison with the fast strain rate results from studies of Renner [18] and Harris [19] 

Figure 5 
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(a) Temperature and strain rate dependency of damper parameter c2 (Adapted from creep 
model Cr_1 at 5°C/min) 
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(b) Comparison of the strain output from Kelvin element 2 of rheological model R2 and the 
creep model Cr_1 

Figure 6 

Eq. (a1) 

Eq. (a6) 
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(a) Comparison with results from study [17] – strain rate 0.0002s-1, steel grade S355 
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(b) Comparison with results from study [20] – medium strain rate 0.01min-1, bolt grade 8.8  
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(c) Comparison with results from study [18] – medium strain rate (550°C – 0.0006152s-1, 
600°C – 0.0006750 s-1, 700°C -0.0006033 s-1 ), steel grade S275 

Figure 7 
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(a) Comparison with results from study [17] – heating rate 10°C/min , steel grade S355 

             

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0 20 40 60 80 100 120 140 160 180 200 220

St
ra

in

Time (min)

Exp_250 MPa

Exp_300 MPa

Model R4_250 MPa

Model R4_300 MPa

 

(b) Comparison with results from study [15] – heating rate 2.5°C/min , steel grade S355 
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(c) Comparison with results from study [15] – heating rate 5°C/min , steel grade S355 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 10 20 30 40 50 60 70 80

St
ra

in

Time (min)

Exp_50 MPa
Exp_100 MPa
Exp_150 MPa
Exp_200 MPa
Exp_250 MPa
Exp_300 MPa
Model R4_50 MPa
Model R4_100 MPa
Model R4_150 MPa
Model R4_200 MPa
Model R4_250 MPa
Model R4_300 MPa

 

(d) Comparison with results from study [15] – heating rate 10°C/min , steel grade S355 
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(e) Comparison with results from study [15] – heating rate 20°C/min , steel grade S355 

Figure 8 
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(a) Comparison with results from study [15] – heating rate 10°C/min , steel grade S275 
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(b) Comparison with results from study [15] – heating rate 20°C/min , steel grade S275 

Figure 9 
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(a) Reduction of the value of damper c2 with respect to time 
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(b) Output strain values of the second Kelvin element 

Figure 10 



Table 1 

Strain rate (min-1) / 

Temperature (°C) 
0.002 0.02 0.1 

400 111.0 111.0 111.0 

500 66.6 74.0 83.3 

550 44.4 55.5 69.4 

600 22.2 37.0 55.5 

650 - 18.5 41.6 

700 - - 27.8 

 

 

Table 2 

Study/steel grade 

Yield strength 

fy,20 - 20°C 

(MPa) 

Modulus of 

elasticity Ey,20 

- 20°C (MPa) 

Incremental 

time step t  

 (min) 

Reduction factors for 

yield strength and 

modulus of elasticity 

Kirby & 

Preston 

[15] 

S275 267.0 185000.0 

1.0E-04 
EN1993-1-2 (carbon 

steel) S355 357.0 185000.0 

Boko et 

al. [17] 
S355 362.4 209000.0 1.0E-04 

EN1993-1-2 (carbon 

steel) 

Renner 

[18] 
S275 308.0 193400.0 1.0E-04 

EN1993-1-2 (carbon 

steel) 

Harris 

[19] 
S275 341.0 195833.0 1.0E-04 

EN1993-1-2 (carbon 

steel) 

Bull et al. 

[20] 

Bolt 

grade. 

8.8. 

603.0 210000.0 1.0E-04 EN1993-1-2 (bolts) 



Table 3 

Background model Cr_1, 5°C/min 

Equations from Figure 6a 

10 10log (T) = 0.05488208 log ( )+ 3.04615288 50MPa    (a1) 

10 10log (T) = 0.05055587 log ( )+ 2.96789280 100MPa    (a2) 

10 10log (T) = 0.05240341 log ( )+ 2.93324938 150MPa    (a3) 

10 10log (T) = 0.05343190 log ( )+ 2.89970035 200MPa    (a4) 

10 10log (T) = 0.05808014 log ( )+ 2.88001807 250MPa    (a5) 

10 10log (T) = 0.05393024 log ( )+ 2.83296461 300MPa    (a6) 
 

 

Table 4 

Temperature 

(°C) 

Exp 5°C/min 

[15] 

Exp 10°C/min 

[15] 

R4 - 5°C/min  

 

R4 - 10°C/min  

 

601 1.00 0.80 1.278 0.924 

607 1.20 1.00 1.548 1.105 

611 1.40 1.13 1.649 1.167 

615 1.80 1.33 1.895 1.358 

618 2.00 1.50 2.06 1.454 

 


