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ABSTRACT

Aims. We study kink waves in a magnetic flux tube modelled as a straight core surrounded by a magnetically twisted annulus, both
embedded in a straight ambient external field, and derive the dispersion relation for this configuration.
Methods. The existence and behaviour of the kink modes are examined with specific attention to the effect that the addition of
magnetic twist has on phase speeds and periods. Analytic expansions to the short and long wavelength approximations are also
considered.
Results. The magnetic twist is found to introduce of an infinite set of body modes into solutions of the dispersion relation not present
in the untwisted case. Moreover, for the kink modes, the width of interval of this infinite set, generally found to occupy phase speeds
around the annulus’ longitudinal Alfvén speed, increases for longer wavelengths. Two surface modes are also present in the solution,
one at each surface: the internal and the external edges of the annulus. The magnetic twist is found to increase or decrease the phase
speeds of these surface modes that are depending on the ratio of internal and external Alfvén speeds in the flux tube.
Conclusions. The magnetic twist of the annulus region of a flux tube is found to have a marked effect on the phase speeds of occurring
modes. A straight annulus layer increased (or decreased) the periods of the surface modes for a tube modelled as a density (magnetic)
enhancement. The addition of twist reduces the periods of the modes in both cases.
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1. Introduction

Oscillations of magnetic tubes in the form of a magnetic core and
shell have been investigated in detail by, amongst others, Carter
& Erdélyi (2004, 2007), Mikhalyaev & Solov’ev (2004, 2005),
and Erdélyi & Carter (2006). These works extended the much
studied model of a single straight magnetic tube embedded in a
straight external magnetic field put forward by Edwin & Roberts
(1983) to a co-axial double flux tube consisting of a core and
shell region each with distinct magnetic field. In the single tube
case, for a slender flux tube, one may define two characteristic
speeds of propagation. These are the subsonic, sub-Alfvénic tube
speed cT given by

cT =
c0vA

(c2
0
+ v2

A
)1/2
,

for sound speed c0 and Alfvén speed vA and the kink speed, ck,
given by

c2
k =
ρ0v

2
A
+ ρev

2
Ae

ρ0 + ρe

,

in which the densities and Alfvén speeds inside and outside the
tube are ρ0, vA, ρe and vAe, respectively. Note here that the kink
speed, ck, is independent of the sound speed (and hence com-
pressibility). In the limit of incompressibility this speed plays
further roles for MHD waves in a magnetised plasma. E.g. it
is the phase speed of a long wavelength kink disturbance or is
the common speed of both the sausage and kink modes in the
short wavelength (wide cylinder) limit of oscillating magnetic
flux tubes.

For the core-shell type flux tube model without a mag-
netic twist, Mikhalyaev & Solov’ev (2005, hereafter MS05) and
Carter & Erdélyi (2007) found that there are twice as many sur-
face modes as for the single tube case and moreover that the
modes have different properties. MS05 showed the slow modes
in the thin tube occur for all azimuthal wave numbers m while
the fast modes exist only for m > 0. For coronal conditions, i.e.
vA ≫ cs, the two slow modes are trapped in the tube – one by
the core, the other by the shell. The fast modes are also trapped
by the core and the shell provided the shell Alfvén speed lies
between the Alfvén speeds in the core and external regions, e.g.
vAi < vA0 < vAe. (In this paper we shall use the subscripts i, 0
and e to denote quantities corresponding to the core, shell and
external regions, respectively).

Carter & Erdélyi (2007) investigate, for the incompressible
non-twisted case, the effect of the shell width on the periods
of propagating waves for both the sausage and kink modes of
oscillation. They find that for typical photospheric parameters
(vAi > vA0 ≫vAe) the periods of the modes are decreased by the
existence of an annulus layer whereas periods are increased in
the case of a dense tube (vAi < vA0 < vAe).

A natural extension of these previous works is that of the
addition of magnetic twist. A uniformly twisted magnetic tube
embedded in a straight magnetic environment was studied for an
incompressible plasma by Bennett et al. (1999); Erdélyi & Fedun
(2006, 2007). Some new features arising due to the introduction
of twist were found. Most prominent was the existence of an
infinite set of body modes which is absent in the incompress-
ible straight field case and is centered around the internal Alfvén
speed, vAi, for the sausage modes and in shorter wavelengths
for the kink modes. Another aspect was the coupling of the
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degenerated magneto-acoustic mode to the Alfvén mode even
in linear theory of the incompressible limit.

Erdélyi & Carter (2006) further extended the studies of
MHD waves in a twisted flux tube by considering a magneti-
cally twisted shell geometry. Specific modes of propagation and
associated phase speeds were studied for a magnetic configura-
tion in which a uniform twist is applied to the shell region. Only
the more tractable sausage modes were considered. By introduc-
ing a magnetic twist to the shell it was found that, where there
were only surface modes before, there now existed an infinite
set of body modes which increased in width as the strength of
the twist was increased. It was also found that the phase speeds
of the surface modes were changed significantly (up to 5%) by
increasing the twist just a small amount.

In this paper, intended as a natural extension to Erdélyi &
Carter (2006), we analyse a similar magnetic shell structure for
the kink modes, with specific attention given to the modes of
oscillation present and to the effect of the applied twist on wave
periods of kink oscillations.

We investigate kink mode propagation in a magnetic tube
consisting of a straight magnetic core and twisted magnetic an-
nulus, or shell, embedded in a straight magnetic ambient external
environment. We apply the general dispersion relation, as found
by Erdélyi & Carter (2006), to two applicable situations in the
solar atmosphere: (i) to a tube as a magnetic enhancement with a
weak magnetic environment and (ii) to a tube defined by a den-
sity enhancement. For further insight into behaviour of the kink
modes, long and short wavelength approximations are consid-
ered.

Since the kink modes, in general, are highly incompress-
ible the limit of incompressibility is of great interest, not just
for wave studies in the deeper part of the solar atmosphere (e.g.
where the plasma-beta is high) but can also be directly applica-
ble from the lower solar atmosphere to the corona.

For observational motivation supporting the study of MHD
wave oscillations in magnetic waveguides see, for exam-
ple, reviews by Aschwanden (2004), Banerjee et al. (2007),
Nakariakov & Verwichte (2005). These reviews give insight
into the current state-of-the-art of solar magneto-seismology, a
rapidly emerging field of solar physics, with several more ref-
erences to specific MHD waves and oscillations observed in
the magnetised and highly structured solar atmosphere. As a
specific example, Kukhianidze et al. (2006), Zaqarashvili et al.
(2007) recently discovered Doppler oscillations in spicules in the
lower atmosphere with estimated periods ranging between 20
and 110 s. They attributed these motions to kink waves in a re-
gion in which motions are approximated by incompressibility.

It is useful to note here that by Fourier analysing the lin-
ear MHD equations like eimθ and by taking m = 1 (kink modes
only) we are considering a non-axisymmetric mode of oscilla-
tion. The torsional Alfvén mode, being axisymmetric, is now re-
moved from the system and hence will not interact with modes
present in the analysis of this paper (see e.g. Erdélyi & Fedun
2007).

2. The magnetic annulus

2.1. The dispersion relation

We restrict our investigation to an incompressible plasma for
which the fast waves are removed from the system and we
also lose phase speed distinction between the Alfvén and slow
modes, the modes being distinguishable by direction of propa-
gation only. A magnetic flux tube is modelled as a magnetically

Fig. 1. Configuration of the magnetic tube consisting of a twisted mag-
netic annulus and straight core embedded in an ambient straight external
magnetic field.

twisted annulus (or shell) layer surrounding a straight magnetic
core all embedded in a straight magnetic ambient environment as
shown in Fig. 1. This equilibrium configuration was investigated
previously by Erdélyi & Carter (2006) and can be given by

B =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Bi = (0, 0, Bi), r < a,
B0 = (0, A0r, B0), a < r < R,
Be = (0, 0, Be), r > R,

(1)

with equilibrium pressure p0(r) taken to be

p0(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

pi, r < a,

p0(a) − A2
0
r2

µ
, a < r < R,

pe, r > R,

(2)

where pi and pe are the uniform plasma pressures in the un-
twisted internal and external regions and p0(a) is the plasma
pressure at the inner boundary of the twisted annulus layer. The
pressure perturbation is found to be

pT = αI1(kzr), (3)

for the core region (r < a),

pT = δK1(kzr), (4)

for in the environment (r > R) and

pT =

{

βI1(m0r) + γK1(m0r) m2
0

> 0,

βJ1(n0r) + γY1(n0r) n2
0
= −m2

0
> 0,

(5)

in the twisted annulus (a < r < R) where α, β, γ and δ are
arbitrary constants determined by the boundary conditions. The
general dispersion relation can then be found for a magnetic flux
tube with a straight magnetic core and uniform magnetic twist in
the annulus region to take the following form:

ΞaK − Ξi + ΞaKΞi
A2

0

µ

ΞaI − Ξi + ΞaIΞi
A2

0

µ

Km(m0a)

Im(m0a)
=

Km(m0R)

Im(m0R)

ΞRK − Ξe + ΞRKΞe
A2

0

µ

ΞRI − Ξe + ΞRIΞe
A2

0

µ

, m2
0 > 0, (6a)
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for purely surface waves, and

ΞaY − Ξi + ΞaYΞi
A2

0

µ

ΞaJ − Ξi + ΞaJΞi
A2

0

µ

Ym(n0a)

Jm(n0a)
=

Ym(n0R)

Jm(n0R)

ΞRY − Ξe + ΞRYΞe
A2

0

µ

ΞRJ − Ξe + ΞRJΞe
A2

0

µ

, m2
0 < 0, (6b)

for body waves. Here

ΞαX =
(ω2 − ω2

A0
)

m0αX′m(m0α)

Xm(m0α)
− 2mA0ωA0√

µρ0

ρ0(ω2 − ω2
A0

)2 − 4A2
0
ω2

A0

µ

,

where the dash ′ denotes the derivative with respect to the ar-
gument of the Bessel functions, X denotes the corresponding
Bessel function J, Y or modified Bessel function I, K, and α
is replaced by a,R for the corresponding internal or external
boundary of the annulus. Further,

Ξi =
|k|aI′m(|k|a)

ρi(ω2 − ω2
Ai

)Im(|k|a)
,

Ξe =
|k|RK′m(|k|R)

ρe(ω2 − ω2
Ae

)Km(|k|R)
,

m2
0 = k2

z

⎛

⎜

⎜

⎜

⎜

⎝

1 −
4A2

0
ω2

A0

µρ0(ω2 − ω2
A0

)2

⎞

⎟

⎟

⎟

⎟

⎠

= −n2
0. (7)

The Alfvén frequencies in the annulus, internal and external
regions are given by ωA0, ωAi, and ωAe, respectively such that

ωA0 =
1
√
µρ0

(mA0 + kzB0),

ωAi =
kzBi√
µρi

, ωAe =
kzBe√
µρe

·

A0 measures the strength of the uniform magnetic twist in the
annulus region. Erdélyi & Carter (2006) investigated this dis-
persion relation for sausage modes only, i.e. in the case when
m = 0. Here we embark to analyse the mathematically perhaps
more complicated m = 1 kink modes.

3. Analysis and results

Two specific examples, distinct through the ratios of Alfvén
speeds in each region, are used for the analysis of the general
dispersion relation Eqs. (6a,b): vAi > vA0 ≫ vAe and vAi < vA0 <
vAe. In the analysis that follows the value of the twist Bθ(r)/Bz is
taken at the internal core-annulus boundary r = a.

3.1. Magnetically enhanced tubes

Let us assume that the tube is distinct to its environment due
to a magnetic enhancement and that it has otherwise uniform
density throughout (Bi > B0 ≫ Be, ρi = ρ0 = ρe) so that the
Alfvén speeds for each region satisfy the rendering vAi > vA0 ≫
vAe. These conditions may be applicable to subsurface or lower
solar atmosphere up to the chromosphere and, since we consider
kink modes only, incompressibility will, of course, less restrict
a wider direct application even in the higher solar atmosphere.
Further, we shall consider only weak twists i.e. Bθ/Bz < 1.

Fig. 2. Plot of solutions to Eqs. (6a,b) for typical photospheric param-
eters (vAi > vA0 ≫ vAe) for a magnetic twist (Bθ/Bz) of 0.1 and rela-
tive core width a/R = 0.8. Shown are the infinite set of body (dotted)
modes, two surface (solid) modes and the dashed envelope separating
the modes given by m2

0
≡ 0.

Fig. 3. Same as Fig. 2 but for a magnetic twist of 0.5.

Figures 2 and 3 show, for a twist, Bθ/Bz, of 0.1 and 0.5, the
dispersion curves for Eqs. (6a,b) for the m = 1 (kink) modes
for a fixed annulus width (the emphasis here is on the effect of
the applied magnetic twist) so that a/R = 0.8. As in the case of
sausage waves (Erdélyi & Carter 2006), there exists an infinite
set of body modes that broadens as twist is increased. The en-
velope separating body and surface modes (m2

0
≡ 0, indicated

by the dashed lines) is not, anymore, symmetrical about vA0 but
stretches to larger phase speeds as kza decreases. The set of body
modes follows this trend; the phase speeds of modes becom-
ing increasingly larger as wavelength increases indicating strong
dispersion. The two surface modes, given by the solid curves in
Figs. 2 and 3, are trapped, as in the untwisted case (MS05; Carter
& Erdélyi 2007), one by the core, the other by the annulus, and
they propagate with phase speeds in the proximity of cki and cke,
respectively, the latter showing somewhat more dispersion. For
larger twists, the separating envelope (the dashed curves sepa-
rating the region where body modes exist and the region where
we find surface modes only) expands meaning that the surface
waves are only solutions for shorter wavelengths. The surface
modes do not appear to change behaviour into body modes di-
rectly across the m0 = 0 separating envelope as with the single
twisted tube (as in Bennett et al. 1999) and so it would seem that
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Fig. 4. Plot, for photospheric parameters, of the relative difference, P∗,
between the period, P, of the surface mode with phase speed approx-
imately cki and the period, PER, of the straight, single monolithic tube
with internal Alfvén speed equal to the core Alfvén speed, vAi, in the
core-shell model (P∗ := (P − PER)/PER). Shown are lines for kza = 0.5
(solid), 1 (dot), 1.5 (dash), 2 (dot-dash), 3 (3dot-dash) and 4 (long dash).
a/R = 0.8.

Fig. 5. Same as Fig. 4 but for the core-shell model surface mode with
phase speed approximately cke for a single tube internal Alfvén speed
equal to the shell Alfvén speed, vA0.

the twisted annulus configuration acts to cause a “splitting” of
the hybrid modes.

Let us now investigate the effect of a twisted annulus on
wave periods. Figures 4 and 5 show the relative changes in sur-
face mode periods compared to an incompressible straight mag-
netic monolithic tube (as in Edwin & Roberts 1983) for differ-
ent degrees of twist. In plots throughout the paper we use the
relative period difference, P∗, between the period, P, of the sur-
face mode in question and the period, PER, of the straight, single
monolithic tube with a certain given internal Alfvén speed where
P∗ = (P − PER)/PER.

Figure 4 shows the relative difference, P∗, between the pe-
riod, P, of the surface mode at r = a shown in Figs. 2 and 3
as the upper of the two surface modes and the period, PER, of
the straight, single monolithic tube with internal Alfvén speed
taken as equal to the core Alfvén speed, vAi, in the core-shell
model. The introduction of a straight annulus layer originally
decreased the periods of the mode and it is found that the appli-
cation of twist to the configuration further reduces these periods.
The percentage change in phase speed due to the twist from the

Fig. 6. Plot of the solution to the dispersion relation Eqs. (6a,b) for pa-
rameters approximating a dense tube (vAi < vA0 < vAe) for a magnetic
twist (Bθ/Bz) of 0.1.

single straight tube is much greater for longer wavelengths. For
kza = 0.5 a 10% difference due to the annulus is increased to
16% by a twist, Bθ/Bz, of just 0.05 whereas a twist an order of
magnitude larger, of over 0.5, is necessary for a similar increase
when kza = 4. The value of P∗ when there is no twist (when
Bθ/Bz = 0) does not change linearly with kza, instead there is
a maximum value that occurs between kza = 0.5 and kza = 2
which is discussed in Carter & Erdélyi (2007) (see Sect. 2.4.1
and Fig. 6).

A similar effect is found for the other surface mode at r = R,
with a phase speed in the vicinity of cke, compared with a single
tube with inner Alfvén speed vA0 (see Fig. 5). Here we find that
single tube to straight annulus period differences of 4, 11 and
13%, for example, are increased to 7, 16 and 18% for an applied
twist of 0.2 for ka = 4, 1 and 0.5, respectively.

3.2. Dense tubes

We now model the tube as a density enhancement with uniform
longitudinal magnetic field strength throughout (ρi > ρ0 ≫ ρe,
Bi = B0 = Be) so that vAi < vA0 ≪ vAe. Figures 6 and 7 show,
for twist of 0.1 and 0.5, the dispersion curves for Eqs. (6a,b) for
the m = 1 (kink) modes for dense tube parameters. Again, the
infinite set of body modes is apparent and it broadens as twist is
increased. The body/surface mode separation envelope is, as in
the photospheric tube case, asymmetric and stretches to larger
phase speeds as kza decreases as do the phase speeds of the
body modes. Short wavelength body modes are highly disper-
sive while the two surface modes are practically non-dispersive.
The relative difference, P∗, between the periods, P, of the surface
modes found in the twisted annulus case and the periods, PER, of
the surface mode found in the straight incompressible magnetic
tube case are plotted in Figs. 8 and 9.

Figure 8 is the relative change in period for the surface mode
at the inner boundary, r = a, (the mode at cki in Figs. 8 and 9)
with single tube inner Alfvén speed equal to the core Alfvén
speed in the annulus model and Fig. 9 is for the other surface
mode at r = R (with phase speed around cke) compared to the
single tube with internal Alfvén speed equal to the annulus’
Alfvén speed. In both cases the addition of the uniform twist
reduces the period of the mode, countering the increase in pe-
riod found to occur due to the annulus region. Since the two
effects on period seem to work against each other, this may be
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Fig. 7. Same as Fig. 6 but for a magnetic twist of 0.5.

Fig. 8. Same as Fig. 4 but for parameters appropriate for a dense tube.

Fig. 9. Same as Fig. 5 but for parameters appropriate for a dense tube.

harder to observationally justify. By studying the intersection of
the plotted lines of P∗ with the y-axis (when twist= 0) in Fig. 8
we conclude that, for the straight annulus, the period of the sur-
face mode, compared to the period of the mode for the single
tube, is increased by just up to 3%. A uniform twist applied to
the annulus region reduces this effect and the phase speed of the
mode is reduced to up to 10% below that of the single tube.

Figure 9 shows the difference between the period, P, of
the other surface mode at the external surface, r = R, with
phase speed close to cke and the straight tube period, PER. This
mode, apparent from Figs. 6 and 7, does not exist for longer

Fig. 10. Curves of marginal stability (ω ≡ 0) for a single twisted tube
(left) and for a twisted annulus configuration with a straight magnetic
core with relative annulus width a/R = 0.2 (solid) and 0.9 (dotted).

wavelengths unless the twist is particularly small which makes
the analysis on the mode less conclusive. The general trend,
however, is still clear. While the annulus layer acts to increase
the periods of the modes (in comparison to the single tube peri-
ods) the addition of twist counters this and for a twist, Bθ/Bz, of
around 0.3 the periods are approximately equal to those of the
straight tube with neither twist nor annulus.

4. Stability

It is known that the existence of twist to a flux tube gives rise
to a current sheet at the boundaries which introduces a factor of
instability (Dungey & Loughhead 1954; Roberts 1956) and the
kink (m = 1) mode is the most unstable. In the analysis of this
paper we assume that the applied twist is sufficiently weak that
the modes studied remain stable. It is not our intention in this pa-
per to make a rigorous analytical study of stability aspects of the
current configuration. It is possible, however, by setting ω ≡ 0 in
the dispersion relation Eqs. (6a,b), to numerically plot the curves
of marginal stability. These are shown in Fig. 10 where we plot
the dimensionless wavenumber kza as a function of dimension-
less pitch kz p where 2πp = B0/A0. Modes found to occur below
these marginal stability curves are stable whilst modes above are
unstable. Figure 10 shows that the addition of a straight core re-
gion to a twisted tube has a stabilising effect on the system. The
left hand plot is for the case of a single twisted tube (Bennett
et al. 1999) and the right hand plot shows the stability curves for
the current configuration for two different relative core widths.

5. Asymptotic expansion

It is now of interest to consider the cases of large (and small) kza,
kzR corresponding to the short (and long) wavelength approxi-
mations. This allows us to have a first insight into oscillations
and MHD waves in a magnetically twisted core-shell problem
for the kink oscillations. In addition, we investigate what hap-
pens to the solutions when the annulus has small twist and when
the annulus is comparatively thin.
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Fig. 11. Plot of the solutions to Eq. (11) of the body kink modes in
the long wavelength approximation for typical photospheric parameters
(vAi > vA0 > vAe) for twists (Bθ/Bz) of (a) 0.1 and (b) 0.5.

5.1. Long wavelength (kza< kzR≪1)

First we focus on the long wavelength approximation for surface
modes. It is required that

4c2
aθ
v2

A0

(c2
ph
− v2

A0
)2
< (kza)2 (8)

to ensure m2
0
> 0 (surface mode criteria). For the long wave-

length approximation, the inequality kza ≪ 1 implies that the
LHS of Eq. (8) is also much less than 1. For this to occur for
all considered magnitudes of twist (and hence for any caθ) we
require that (c2

ph
− v2

A0
)/v2

A0
≫ 1, i.e. the phase speed is greatly

different to the longitudinal component of Alfvén speed in the
annulus, vA0, so that (cph/vA0) ≫ 1. This restriction, alongside
the allowable range of phase speeds means that there are no sur-
face modes for longer wavelengths. This is a result also seen in
the single tube plots found by Bennett et al. (1999).

When studying the body modes (−m2
0
= n2

0
> 0) it is first

useful to note that for kza < kzR≪ 1 we find that

kzaI′
1
(kza)

I1(kza)
≈ 1 (9)

and

kzRK′
1
(kza)

K1(kzR)
≈ −1 (10)

for Bessel functions I and K, and in which the dash ′ denotes the
derivative with respect to the argument. The general dispersion
relation, Eq. (6b), in the long wavelength approximation then
reduces to

(c2
ph
− v2

A0
)Ya − 2caθvA0

kza
+ 4v2

A0

(c2
ph
− v2

A0
)Ja − 2caθvA0

kza
+ 4v2

A0

Y1(n0a)

J1(n0a)
=

Y1(n0R)

J1(n0R)

(c2
ph
− v2

A0
)YR − 2cRθvA0

kzR
+ 4v2

A0

(c2
ph
− v2

A0
)JR − 2cRθvA0

kzR
+ 4v2

A0

(11)

in which Ya = n0aY′
1
(n0a)/Y1(n0a) and Ja =

n0aJ′
1
(n0a)/J1(n0a) where a is interchangeable for R, the

latter corresponding to the external boundary. Solutions to this
approximate dispersion relation are plotted in Figs. 11 and 12

Fig. 12. Same as Fig. 11 but for parameters modelling a dense tube
(vAi < vA0 < vAe).

for characteristic photospheric tube and dense tube parameters
and for different values of twist. The plots clearly show that the
phase speeds of the body modes for long wavelengths increase
as kza decreases and the broadening and increase in phase
speeds of modes in the infinite set as twist becomes larger.

For the case of small twist ((caθ/vA0) ≪ 1) we are able to
simplify Eq. (11) and reduce the approximate dispersion relation
to

ln(n0a) = (R/a)2 ln(n0R) (12)

with solution for cph given by

c2
ph = v

2
A0 ±

2vA0cRθ
(

(kzR)2 + (a/R)2a2/(R2−a2)
)1/2
· (13)

5.2. Short wavelength, kzR> kza≫1

It can be shown, see e.g. Spruit (1982) or Edwin & Roberts
(1983) that, for an incompressible plasma,

div u ∼ (kza)m (14)

for azimuthal wavenumber m. For the kink modes m = 1 and for
a low-β plasma this indicates that there are no incompressible
kink waves in this kzR > kza ≫ 1 limit, since otherwise the as-
sumption of incompressibility would be satisfied rather poorly.
Therefore, the analysis here is carried out for the photospheric
type model only in which the short or even intermediate wave-
length approximation remains still valid.

For kzR > kza≫ 1 let us first consider the body waves. Since

(m0a)2 = (kza)2 −
4c2

aθ
v2

A0

(c2
ph
− v2

A0
)2

(15)

and for body modes we require m2
0
< 0, it follows that

4c2
aθ
v2

A0

(c2
ph
− v2

A0
)2
> (kza)2 ≫ 1. (16)

This inequality is satisfied for very large twist (which is un-
realistic as the tube would obviously become unstable) or for
(c2

ph
− v2

A0
)2 ≪ 1 so that the phase speed, cph, is approximately

the longitudinal Alfvén speed, vA0. This is consistent with the
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short wavelength tendencies in the full problem dispersion dia-
grams, Figs. 2 and 3.

When studying the surface modes we first notice that for the
short wavelength approximation (kzR > kza ≫ 1), since Eq. (15)
holds, that m0a,m0R ≫ 1 is also true (this is for any caθ and
provided cph � vA0). Expanding the Bessel functions I1(z), I′

1
(z),

K1(z) and K′
1
(z) for z ≫ 1 we are able, for kzR > kza ≫ 1, to

reduce the dispersion relation Eq. (6a) to

ρicdi(m0a − 1) + ρ0m0acd0 + ρ0c2
aθ

(m0a + 1
2
)

ρim0acdi − ρ0m0acd0 + ρ0c2
aθ

(m0a − 1
2
)

×e2m0(R−a)

(

1 +
3(R − a)

4m0aR

)

=

ρem0Rcde − ρ0m0Rcd0 − ρ0c2
Rθ

(m0R + 1
2
)

ρecde(m0R − 1) + ρ0m0Rcd0 − ρ0c2
Rθ

(m0R − 1
2
)
, (17)

in which cdi = c2
ph
− v2

Ai
, cd0 = c2

ph
− v2

A0
, and cde = c2

ph
− v2

Ae
.

Solutions to Eq. (17) are plotted for parameters approximat-
ing a photospheric tube with different values of twist in Figs. 13.
The plots indicate a relatively non-dispersive nature of the modes
for large kza which is also apparent in the full dispersion plots
(Figs. 2 and 3).

In the thin annulus limit, m0(R − a)≪ 1, and by noting that,
for short wavelengths, m0a and m0R can be approximated by

m0a = kza

√

1 − 4caθvA0

(c2
ph
− v2

A0
)2(kzR)2

≈ kza,

m0R = kzR

√

1 − 4cRθvA0

(c2
ph
− v2

A0
)2(kzR)2

≈ kzR,

it is possible to further reduce Eq. (17) to a quadratic one in c2
ph

yielding

c2
ph = c2

kmod
+

ρ0(c2
Rθ
− c2

aθ
)

ρi(1 − 1
2kza

) + ρe(1 − 1
2kzR

)
(18)

valid as kza, kzR→ ∞, in which

c2
kmod
=
ρiv

2
Ai

(1 − 1
2kza

) + ρev
2
Ae

(1 − 1
2kzR

)

ρi(1 − 1
2kza

) + ρe(1 − 1
2kzR

)
· (19)

6. Conclusions

In this paper we extend the study of sausage modes in a mag-
netic flux tube structured as a magnetically twisted annulus and
straight core embedded in a straight magnetic ambient incom-
pressible plasma (Fig. 1) investigated previously by Erdélyi &
Carter (2006) to include the kink modes.

The general dispersion relation (Eqs. (6a,b)) is now studied
for the m = 1 (i.e. kink) modes. Numerical solutions to this
dispersion relation show, as in the m = 0 sausage mode case,
an infinite set of body modes occurring due to the introduction
of magnetic twist. In the sausage mode case this set is found
to be symmetrical about the longitudinal component of Alfvén
speed in the twisted annulus region, vA0. The set of kink body
modes, however, is not symmetrical, the twist is found to in-
crease the phase speeds of the modes proportional to 1/kza so
that they approach infinity at longer wavelengths. For shorter
wavelengths the body modes do in fact approach vA0 from above
as cRθ/kzR→ 0.

Fig. 13. Plot of solutions to Eq. (17), the short wavelength approxima-
tion for the surface kink modes, for typical photospheric parameters
(vAi > vA0 > vAe) for a twist (Bθ/Bz) of 0.1 (solid), 0.3 (dotted) and 0.5
(dashed).

Two surface modes exist for the twisted shell configuration,
one due to each surface (at r = a and r = R), where one mode
is trapped by the inner tube, the other by the annulus itself. Two
characteristic speeds arise for this configuration, the inner sur-
face kink speed, cki and the external surface kink speed, cke

given by

c2
ki =
ρ0v

2
A0
+ ρiv

2
Ai

ρ0 + ρi

, c2
ke =

ρ0v
2
A0
+ ρev

2
Ae

ρ0 + ρe

· (20)

By studying the relative (i.e. normalised) percentage change of
periods compared to the single straight monolithic tube we are
able to deduce more clearly the effect that the existence and mag-
nitude of the twist has on the periods of these surface modes.
For each of the two surface modes we have two natural options
of normalisation. For the mode at the inner (r = a) surface we
applied the single tube inner Alfvén speed as the core Alfvén
speed, vAi, whereas for the mode on the outer (r = R) surface the
longitudinal component of Alfvén speed in the annulus vA0 was
implemented.

For a physical condition perhaps closer to the one in the so-
lar photosphere (when the core Alfvén speed is greater than in
the annulus and external regions due to an enhancement of the
magnetic field) we find that the twist strengthens the effect of the
straight annulus alone (see Mikhalyaev & Solov’ev 2005; Carter
& Erdélyi 2007). A straight annulus, i.e. when twist, Bθ/Bz = 0,
decreases the periods of the inner surface mode by between 10
and 15% (depending on the value of kza). This decrease is ex-
tended, by a twist of less than 0.5, to between 16 and 19% (see
Fig. 4). A similar result was found for the outer (r = R) surface
mode – an initial reduction of 4−13% is increased to a reduction
of 17−19% for a magnetic twist of 0.2.

For parameters approximating a dense tube (constant mag-
netic field strength but higher density within the tube) the ef-
fect of a twisted magnetic annulus on the oscillation periods was
quite different. While the annulus layer (without twist) increased
the periods of the mode, when twist was applied it acted to de-
crease the periods. For the surface mode at r = a, an initial in-
crease (for an annulus with no twist) of 0–5% is reduced to a
deficit by the addition of a magnetic twist: a decrease in period
of 2–12% is seen for a twist of 0.5. The same trend arose for
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the mode at the outer (r = R) surface with a twist of around
0.3 reducing an increase of 5–18% (with no twist) to zero, es-
sentially negating the effect of the annulus.

This study has given a first insight into the effect of mag-
netic twist in an annulus region on the phase speeds and periods
of propagating kink modes in a magnetically twisted shell. It is
hoped that this work can provide additional information that can
be used in the study of, specifically, lower atmospheric kink os-
cillations such as those observed recently by Kukhianidze et al.
(2006); Zaqarashvili et al. (2007). Future work could include a
twist in the core region, multiple shells or the extension to the
fully compressible case.
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