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ABSTRACT ヲヰ 

Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability ヲヱ 

to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-ヲヲ 

acetylglucosamine (GlcNAc) that form the disaccharide-repeating unit of the ヲン 

peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the ヲヴ 

environment, which is so far unexplored.  Here, we identified a novel transporter system ヲヵ 

of T. forsythia involved in the uptake of MurNAc across the inner membrane and ヲヶ 

characterized a homolog of the Escherichia. coli MurQ etherase involved in the ヲΑ 

conversion of MurNAc-6P to GlcNAc-6P.  The genes encoding these components were ヲΒ 

identified on a three gene cluster spanning Tanf_08γ75 to Tanf_08γ85 located ヲΓ 

downstream from a putative peptidoglycan recycling locus.  We show that the three ンヰ 

genes, Tanf_08γ75, Tanf_08γ80, and Tanf_08γ85, encoding a MurNAc transporter, a ンヱ 

putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. ンヲ 

Complementation of the Tanf_08γ75 and Tanf_08γ80 genes together in trans, but not ンン 

individually rescued the inability of an E. coli mutant deficient in the PTS ンヴ 

(phosphotransferase system)-dependent MurNAc transporter MurP as well as that of a ンヵ 

double mutant deficient in MurP and components of the PTS system to grow on ンヶ 

MurNAc.  In addition, complementation with this two-gene construct in E. coli caused ンΑ 

depletion of MurNAc in the medium, further confirming this observation.  Our results ンΒ 

show that the products of Tanf_08γ75 and Tanf_08γ80 constitute a novel non-PTS ンΓ 

MurNAc transporter system that seems to be widespread among bacteria of the ヴヰ 

Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a ヴヱ 

PTS-independent MurNAc transporter in bacteria. ヴヲ 
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 ン

IMPORTANCE ヴン 

 In this study we report the identification of a novel transporter for peptidoglycan ヴヴ 

amino-sugar N-acetylmuramic acid (MurNAc) in the periodontal pathogen T. forsythia. It ヴヵ 

has been known since the late 1980s that T. forsythia is a MurNAc auxotroph relying on ヴヶ 

environmental sources for this essential sugar.  Most sugar transporters, and the ヴΑ 

MurNAc transporter MurP in particular require a PTS phosho-relay to drive the uptake ヴΒ 

and concurrent phosphorylation of the sugar through the inner membrane in Gram-ヴΓ 

negative bacteria.  Our study uncovered a novel type of PTS-independent MurNAc ヵヰ 

transporter, and although so far unique to T. forsythia, may be present in a range of ヵヱ 

bacteria both of the oral cavity and gut especially of the phylum Bacteroidetes. ヵヲ 

 ヵン 

INTRODUCTION ヵヴ 

Tannerella forsythia is a Gram-negative, obligate anaerobe strongly associated ヵヵ 

with periodontitis, which affects the soft and hard tissues supporting the teeth ultimately ヵヶ 

leading to tooth loss (1, β). This bacterium is frequently found with the oral bacterial ヵΑ 

pathogens Treponema denticola and Porphyromonas gingivalis, together forming a ヵΒ 

pathogenic consortium termed the “red complex” (γ), which in turn is part of a much ヵΓ 

wider dysbiotic microbiota that is thought to cause this widespread inflammatory ヶヰ 

disease (4). Strikingly, unlike other bacteria, T. forsythia depends on exogenous N-ヶヱ 

acetylmuramic acid (MurNAc) for growth (5). It was observed β7 years ago by Wyss that ヶヲ 

the cultivation of T. forsythia required spent broth from Fusobacterium nucleatum (5), or ヶン 

the presence of free MurNAc (6, 7) in the medium. Since MurNAc together with N-ヶヴ 

acetylglucosamine (GlcNAc) forms the peptidoglycan amino sugar backbone in all ヶヵ 
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 ヴ

bacteria this indicated that T. forsythia is unable to synthesize its own peptidoglycan ヶヶ 

amino sugars. The reasons for this auxotrophy for the amino sugar MurNAc became ヶΑ 

evident after the close inspection of the T. forsythia genome sequence which became ヶΒ 

available in β005 (8, 9).  It was noted that the MurA and MurB enzyme homologs ヶΓ 

required for the de novo synthesis of MurNAc and GlcNAc are not present in the Αヰ 

bacterium (10).  In addition, the bacterium lacks GlmS, GlmM, and GlmU enzymes for Αヱ 

biosynthesis of GlcNAc.  Furthermore, evidence collected by analyzing genomes of T. Αヲ 

forsythia strains deposited at the Human Oral Microbial Database indicated that this Αン 

bacterial species lacks a canonical phosphotransferase (PTS) type MurNAc transporter Αヴ 

(MurP), which in E. coli and related Gram-negative bacteria is required for MurNAc Αヵ 

uptake and concomitant phosphorylation (11). PTS-type sugar transporters generally Αヶ 

mediate the uptake and phosphorylation of sugars; a prototypical PTS system consists ΑΑ 

of an enzyme I EI, a histidine protein HPr, the sugar-specific components EIIA and EIIB, ΑΒ 

and a transmembrane sugar-specific transporter protein EIIC (1β). The lack of PTS ΑΓ 

systems in T. forsythia suggests that this bacterium utilizes an alternative transport Βヰ 

system to utilize exogenous MurNAc from the environment. Βヱ 

Our in silico investigation of the T. forsythia genome revealed genes coding for Βヲ 

putative peptidoglycan degradation and recycling functions (10), among these was a Βン 

homolog (Tanf_08γ85; accession no. WP_0468β55γβ) of the E. coli MurQ (1γ) Βヴ 

etherase and two adjacent genes encoding a putative integral membrane protein Βヵ 

(Tanf_08γ75; WP_0468β55γ0.1) and a putative sugar kinase (Tanf_08γ80; Βヶ 

WP_0468β55γ1.1). Here we report the preliminary characterization of a novel PTS-ΒΑ 

independent transport system for MurNAc uptake comprising Tanf_08γ75 and ΒΒ 

 on S
eptem

ber 26, 2016 by U
N

IV
E

R
S

IT
Y

 O
F

 S
H

E
F

F
IE

LD
 LIB

R
A

R
Y

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


 ヵ

Tanf_08γ80 proteins in T. forsythia, which we propose be named TfMurT and TfMurK ΒΓ 

respectively, and T. forsythia MurQ etherase (TfMurQ) involved in the metabolic Γヰ 

conversion of MurNAc-6P to GlcNAc-6-P. Γヱ 

 Γヲ 

MATERIALS AND METHODS Γン 

Bacterial strains and growth conditions Γヴ 

The T. forsythia ATCC 4γ0γ7 wild-type and mutant strains used in this study Γヵ 

were grown anaerobically in BF broth, or on agar plates as described previously (14). Γヶ 

Escherichia coli strains were grown in Luria-Bertani broth (LB) aerobically at γ7°C. E. ΓΑ 

coli strains were also grown in minimal M9 media (15) supplemented with either 0.β% ΓΒ 

glucose, 0.β% glycerol, or 0.0β5% MurNAc, where needed. E. coli 〉murQ and 〉murP ΓΓ 

mutants were from the Keio collection at the Yale Coli Genetic Stock Center ヱヰヰ 

(http://cgsc.biology.yale.edu). All strains and plasmids used in this study are ヱヰヱ 

summarized in Table S1 (supplementary material). ヱヰヲ 

 ヱヰン 

Molecular biology techniques ヱヰヴ 

Standard molecular cloning techniques were performed according to (16). All ヱヰヵ 

cloning experiments were performed using the electrocompetent recA mutant cloning ヱヰヶ 

strain E. coli Stellar (Clontech laboratories, CA, USA). ヱヰΑ 

 ヱヰΒ 

Reverse transcription-polymerase chain reaction ヱヰΓ 
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 ヶ

 Total RNA was isolated from bacteria using the RNeasy kit (Qiagen). Single-ヱヱヰ 

stranded cDNA was synthesized using reverse transcriptase (Invitrogen Superscript III) ヱヱヱ 

and random hexamer primers as per the manufacturer’s protocol. The synthesized ヱヱヲ 

cDNA was amplified by PCR with primer sets spanning target genes murQ, murT, and ヱヱン 

murK (Fig. 5b): region ‘a’ with TF1067F/TF1068R; region ‘b’ with TF1068F/TF1069R; ヱヱヴ 

region ’c’ with TF1067F/TF1069R. Primer sequences are listed in Table Sβ ヱヱヵ 

(supplementary material). ヱヱヶ 

 ヱヱΑ 

Production of recombinant TfMurQ protein ヱヱΒ 

Recombinant plasmid pET-TfMurQ was constructed by cloning a TfMurQ ORF ヱヱΓ 

fragment in-frame with a C-terminal 6xHis-tag of the pETγ0a expression vector ヱヲヰ 

(Novagen). Briefly, a PCR fragment amplified with primers TF1069-F and TF1069-R ヱヲヱ 

(Table Sβ) from T. forsythia ATCC 4γ0γ7 genomic DNA was digested with NdeI and ヱヲヲ 

XhoI and cloned via NdeI/XhoI sites into pETγ0a to generate pET-TfMurQ. ヱヲン 

Subsequently, E. coli BLβ1/DEγ strain carrying the pET-TfMurQ plasmid was grown in ヱヲヴ 

LB medium with kanamycin (50 µg/ml) at γ0°C to an OD600 of 0.γ. Protein expression ヱヲヵ 

was induced with isopropyl く-D-1-thiogalactopyranoside (IPTG; final concentration of ヱヲヶ 

1 mM) for additional γ h at γ0°C. Bacteria were collected by centrifugation at 7,000 X g ヱヲΑ 

for 10 min, washed with PBS twice, and lysed by sonication for γ0 s. Lysates were ヱヲΒ 

centrifuged at 10,000 X g for β0 min and supernatants were collected. Supernatants ヱヲΓ 

were loaded onto a column containing 500 たl of HIS-Bind resin (Qiagen) and the column ヱンヰ 

was equilibrated with 10 ml of washing buffer (50 mM NaHβPO4, γ00 mM NaCl, β0 mM ヱンヱ 

imidazole, pH 8.0). Bound recombinant protein was eluted with 1 ml of elution buffer ヱンヲ 
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 Α

(50 mM NaHβPO4, γ00 mM NaCl, β50 mM imidazole, pH 8.0) and dialyzed extensively ヱンン 

against phosphate–buffered saline, pH 7.β at 40C. The dialyzed protein fraction was ヱンヴ 

analyzed by SDS-PAGE on 1β% gels stained with Coomassie Brilliant Blue Rβ50. ヱンヵ 

 ヱンヶ 

Detection of etherase catalyzed reaction intermediate ヱンΑ 

  Etherase activity was assessed by utilizing MurNAc-6P as substrate in a Morgan ヱンΒ 

Elson reaction (17).  This etherase catalyzed reaction generates a chromogenic ヱンΓ 

intermediate that can be detected by reacting with Ehrlich’s reagent ヱヴヰ 

dimethylaminobenzaldehyde, to yield a purple product.  To detect the formation of this ヱヴヱ 

chromogen compound in an enzyme catalyzed reaction, an Ehrlich-Morgan-Elson assay ヱヴヲ 

was performed (18). Briefly, β µl of purified rTfMurQ enzyme (1, β or 4 µg protein) was ヱヴン 

added to β0 µl of MurNAc-6P (10 mM in water and the reaction mixture was incubated ヱヴヴ 

for 60 min at 45°C. After addition of 100 µl of Ehrlich’s reagent, incubation was ヱヴヵ 

continued for β0 min at γ7°C. ヱヴヶ 

 ヱヴΑ 

Radioactive etherase assay ヱヴΒ 

 The γβP-radiolabled substrates MurNAc-6P and GlcNAc-6P, respectively, were ヱヴΓ 

prepared according to a published protocol (19) with minor modifications. Aqueous ヱヵヰ 

solutions of 50 mM MurNAc or GlcNAc, respectively, were added to a reaction mixture ヱヵヱ 

containing 100 mM Tris-HCl, pH 7.6, 10 mM MgClβ 100 mM ATP, 140 kBq of [け-γβP] ヱヵヲ 

ATP and β0 µg recombinant Clostridium acetobutyticum MurK protein in a total volume ヱヵン 

of 100 µl and the reaction was incubated overnight at γ7°.  To start the etherase assay, ヱヵヴ 
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 Β

a reaction mixture containing 15 µl of MurNAc-6-P, 0,4 µg of rTfMurQ and 100 mM Tris-ヱヵヵ 

HCl, pH 7.6 in a total volume of 50 たl was incubated at γ7°. β µl of this mixture were ヱヵヶ 

spotted immediately and after 15 and γ0 min of incubation on a TLC plate (Silica 60 ヱヵΑ 

Fβ54, Merck, Darmstadt, Germany). Reaction products were separated in a basic ヱヵΒ 

solvent with n-butyl alcohol/ methanol/ β5% (w/v) ammonium hydroxide/ water (5:4:β:1). ヱヵΓ 

The radioactive products were detected using a Typhoon Trio Biomolecular imager (GE ヱヶヰ 

Healthcare). ヱヶヱ 

 ヱヶヲ 

Construction of expression vectors and complementation of E. coli 〉murP ヱヶン 

mutants and 〉murQ  ヱヶヴ 

DNA fragments coding for T. forsythia MurT-MurK, MurT, MurK, and MurQ ORFs ヱヶヵ 

were amplified with primer sets listed in Table Sβ from T. forsythia ATCC 4γ0γ7 ヱヶヶ 

genomic DNA, digested with Nde1 and HindIII, and cloned into pTrc99 at NdeI/HindIII ヱヶΑ 

restriction sites to generate the plasmids pTr-MurTK, pTr-MurT, pTr-MurK, and TfMurQ, ヱヶΒ 

respectively. Plasmids were confirmed by sequencing. For complementation, E. coli ヱヶΓ 

mutants were transformed with the plasmids above via electroporation (16). ヱΑヰ 

 ヱΑヱ 

MurNAc depletion assay ヱΑヲ 

 BヱΑン 

acterial cells from overnight cultures of E. coli murP mutant strain harboring either ヱΑヴ 

pTrc99, pCS19YfeV, or pTr-MurTK were washed and diluted in M9 minimal medium to ヱΑヵ 

an OD600 of 0.05.  Before the start of an assay, 10 ml of cell suspension from each ヱΑヶ 
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 Γ

strain in triplicate was supplemented with glucose and MurNAc to final concentrations of ヱΑΑ 

5.5 mM and γ.5 µM, respectively, as carbon sources.  The cell suspensions were ヱΑΒ 

incubated with shaking at γ70C. At regular time intervals 0.6 ml aliquots were withdrawn, ヱΑΓ 

OD600 determined and cell free supernatants were recovered by centrifugation and ヱΒヰ 

saved.  MurNAc concentration in the cell free supernatants was then assayed according ヱΒヱ 

to a previously described colorimetric assay specific for N-acetyl amino sugars (17).  ヱΒヲ 

Briefly, 0.1 ml of potassium tetraborate solution was added to 0.5 ml of sample (culture ヱΒン 

supernatant) followed by boiling for γ min and cooling to room temperature. ヱΒヴ 

Subsequently, γ ml of p-dimethylaminobenzaldehyde (DMAB) reagent (Sigma) was ヱΒヵ 

added and the tubes were placed in a water bath at γ7°C for β0 min. Color developed ヱΒヶ 

was read at 585 nm and the amount of MurNAc was calculated from a standard curve of ヱΒΑ 

MurNAc in the range of 0.6β5 - 5 µM. ヱΒΒ 

 ヱΒΓ 

RESULTS ヱΓヰ 

T. forsythia contains a putative MurNAc utilization locus ヱΓヱ 

 In silico analysis of the T. forsythia ATCC 4γ0γ7 draft genome ヱΓヲ 

(JUET00000000.1; http://www.ncbi.nlm.nih.gov/nuccore/JUET00000000.1/) identified a ヱΓン 

three-gene locus (Tanf_08γ75-Tanf_08γ85) in the contig_8β DNA sequence ヱΓヴ 

(NZ_JUET0100008β) that included genes coding for an inner membrane protein ヱΓヵ 

(Tanf_08γ75; WP_0468β55γ0.1), a putative sugar kinase (Tanf_08γ80; ヱΓヶ 

WP_0468β55γ1.1) and a putative MurQ-type etherase (Tanf_08γ85; WP_0468β55γβ),. ヱΓΑ 

This region is 97% identical to a DNA region of T. forsythia strain 9βAβ spanning ヱΓΒ 

BFO_0041 to BFO_0044 (NC_016610; ヱΓΓ 
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 ヱヰ

http://www.ncbi.nlm.nih.gov/nuccore/NC_016610.1). Interestingly, the Tanf_08γ75-ヲヰヰ 

Tanf_08γ85 gene cluster is located immediately downstream of a putative ヲヰヱ 

peptidoglycan recycling operon including a muropeptide permease AmpG homolog ヲヰヲ 

(Tanf_08γ65) (β0) (Fig. 1a). The product of the putative etherase gene (TfMurQ) shows ヲヰン 

46% and 84%, identity with the N-acetylmuramic acid-phosphate (MurNAc-P) etherase ヲヰヴ 

MurQ of E. coli (gi:161γ0γ5γ) and predicted MurQ from Bacteroides fragilis ヲヰヵ 

(gi:76γ4706β0), respectively. The putative T. forsythia MurQ contains a SIS domain ヲヰヶ 

(sugar isomerase domain, accession no. cd04795) characteristic of phosphosugar ヲヰΑ 

isomerases and phosphosugar binding proteins. ヲヰΒ 

 ヲヰΓ 

MurT-MurK function as a PTS-independent MurNAc transporter  ヲヱヰ 

In E. coli and many other bacteria, free MurNAc is transported across the inner ヲヱヱ 

membrane and is simultaneously phosphorylated by the PTS dependent MurP ヲヱヲ 

permease, which is the MurNAc-specific IIBC domain of the PTS system (11).  Further ヲヱン 

processing of phosphorylated MurNAc through the action of MurQ leads metabolic ヲヱヴ 

products to either enter a glycolytic pathway for generating energy, or biosynthetic ヲヱヵ 

pathway for generating peptidoglycan amino sugar GlcNAc (18, β1) (Fig. 1b).  As ヲヱヶ 

mentioned above, T. forsythia lacks a canonical PTS-type transporter complex and, ヲヱΑ 

thus utilizes alternative mechanism to transport and phosphorylate MurNAc.  In silico ヲヱΒ 

analysis indicated that TfMurT is a membrane protein with ten putative membrane ヲヱΓ 

spanning helices (Fig. S1, supplementary material) while TfMurK is a putative sugar ヲヲヰ 

kinase with a predicted nucleotide binding domain commonly found in sugar kinases ヲヲヱ 

and heat shock proteins (NBD_sugar-kinase_HSP superfamily; accession no. cl170γ7).  ヲヲヲ 
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 ヱヱ

Taken together, we predicted that in T. forsythia MurT functions as a MurNAc ヲヲン 

transporter and MurK functions as a MurNAc kinase (Fig. 1b).  ヲヲヴ 

To determine the functional role of TfMurT and TfMurK in MurNAc transport, we ヲヲヵ 

tested if providing the T. forsythia murT and murK genes in trans to an E. coli 〉murP ヲヲヶ 

mutant, would rescue the inability of the 〉murP mutant to utilize MurNAc as a sole ヲヲΑ 

carbon and energy source. The results showed that while the E. coli 〉murP mutant ヲヲΒ 

(CM10γ) complemented with a plasmid (pTr-MurTK) co-expressing TfMurT and TfMurK ヲヲΓ 

proteins grew on minimal agar supplemented with 0.0β5% w/v MurNAc (Fig. βa, middle ヲンヰ 

row) or broth (Fig. βb), neither the mutant alone nor the mutant complemented with the ヲンヱ 

empty plasmid pTcr99a grew on MurNAc.  All strains grew on minimal agar with glucose ヲンヲ 

used as a control.  Additionally, as a positive control, complementation with native E. ヲンン 

coli murP in trans via pCS19YfeV restored the growth defect of the E. coli 〉murP strain ヲンヴ 

on MurNAc (Fig. βa, middle row).  Importantly, the growth of E. coli 〉murP in the ヲンヵ 

presence of MurNAc was rescued with the combined expression of T. forsythia ヲンヶ 

MurT/MurK, and was similar to the growth in the presence of native E. coli MurP.  To ヲンΑ 

investigate whether MurNAc transport requires TfMurT/TfMurK co-expression, ヲンΒ 

complementation with either TfMurT or TfMurK in E. coli 〉murP was performed.  The ヲンΓ 

results showed that neither TfMurT nor TfMurK alone could confer to the mutant the ヲヴヰ 

ability to grow on MurNAc (Fig. βa). ヲヴヱ 

Next, since TfMurT and TfMurK proteins do not possess PTS-type signatures, we ヲヴヲ 

wanted to confirm that the TfMurT membrane protein and the TfMurK kinase function ヲヴン 

independently of a canonical PTS system.  For this purpose, we provided the T. ヲヴヴ 

forsythia murT-murK genes in trans to an E. coli double mutant (CM1γγ) with deletion of ヲヴヵ 

 on S
eptem

ber 26, 2016 by U
N

IV
E

R
S

IT
Y

 O
F

 S
H

E
F

F
IE

LD
 LIB

R
A

R
Y

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


 ヱヲ

the murP (yfeV) gene and the entire pts operon (ptsHIcrr) coding for the components of ヲヴヶ 

the PTS system.  CM1γγ was generated by P1 transduction to transfer 〉ptsHIcrr::kan ヲヴΑ 

mutation from JM-G77 to CM10γ.  The results showed that complementation of CM1γγ ヲヴΒ 

with murT-murK restored the growth the mutant on MurNAc.  As shown, CM1γγ grew ヲヴΓ 

on MurNAc containing agar (Fig. βa) or broth (Fig. βb) when complemented with the ヲヵヰ 

plasmid pTr-MurTK co-expressing TfMurT and TfMurK but did not grow on MurNAc ヲヵヱ 

when complemented with the plasmid pTr-MurT or pTr-MurK expressing either protein ヲヵヲ 

alone.  As controls, complementation with native murP (pCS19yfeV) or empty vector did ヲヵン 

not rescue the growth of CM1γγ on MurNAc; growth was rescued only when glycerol ヲヵヴ 

(0.β%) was provided as the sole carbon source (N.B. this strain is unable to grow on ヲヵヵ 

glucose given its general PTS defect). The parent strain MC4100, from which CM10γ ヲヵヶ 

and CM1γγ were derived, carrying either plasmid grew on glycerol as well as MurNAc ヲヵΑ 

(Fig. βb). Together these data demonstrated that the products of TfMurT and TfMurK ヲヵΒ 

function independently of a PTS system for transport and utilization of MurNAcく ヲヵΓ 

To confirm that this putative transport complex was indeed involved in MurNAc ヲヶヰ 

utilization, an experiment was designed where depletion of MurNAc by E. coli strains ヲヶヱ 

was assessed in a minimal medium with glucose or MurNAc as a carbon source.  Under ヲヶヲ 

these conditions E. coli ǻmurP mutant carrying either an empty plasmid or plasmid ヲヶン 

expressing the E. coli MurP (pCS19YfeV) or the T. forsythia MurTK (pTr-MurTK) grew ヲヶヴ 

as expected and MurNAc depletion in the medium was not observed for E. coli cells ヲヶヵ 

bearing empty plasmid.  However, significant depletion of MurNAc was observed in the ヲヶヶ 

case of E. coli 〉murP mutant complemented with pTr-MurTK expressing ヲヶΑ 

TfMurT/TfMurK or pCS19YfeV expressing native E. coli MurP transporter (Fig. γ).  ヲヶΒ 
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 ヱン

Taken together, these data demonstrate that TfMurK and TfMurT act in concert and ヲヶΓ 

TfMurT is a unique transporter for the utilization of exogenous MurNAc in T. forsythia. ヲΑヰ 

 ヲΑヱ 

Tanf_08385 encodes T. forsythia MurQ etherase and is co-transcribed with murTK ヲΑヲ 

Since the MurQ etherase is important in the utilization of MurNAc in bacteria (Fig. ヲΑン 

1b), we confirmed the activity of Tanf_08γ85 as a functional MurNAc-6-P etherase ヲΑヴ 

(TfMurQ). For this purpose, TfMurQ expressed as a His6-tagged recombinant protein ヲΑヵ 

(rTfMurQ) in E. coli was purified to homogeneity by nickel affinity chromatography (Fig. ヲΑヶ 

Sβ, supplementary material), and confirmed the etherase activity using the Elson-ヲΑΑ 

Morgan enzymatic assay and conversion of MurNAc-6-P to GlcNAc-6-P by a radioactive ヲΑΒ 

assay using γβP-labled MurNAc-6-P (18). The Elson-Morgan assay showed that the ヲΑΓ 

purified rTfMurQ had etherase activity since a color change was seen with Ehrlich’s ヲΒヰ 

reagent when rTfMurQ was incubated with MurNAc-6-P (Fig. Sγ, supplementary ヲΒヱ 

material).  Furthermore, rTfMurQ protein catalyzed the formation of a radioactive ヲΒヲ 

GlcNAc-6-P product when incubated with MurNAc-6-P in a TLC-based assay employing ヲΒン 

γβP-labelled MurNAc (Fig. 4a).  In addition, the functionality of TfMurQ was tested by  ヲΒヴ 

trans complementation in an E. coli 〉murQ mutant.  For this purpose, the E. coli 〉murQ ヲΒヵ 

mutant JWβ4β1-1 was transformed with either an IPTG-inducible plasmid harboring the ヲΒヶ 

Tf murQ gene (pTr-MurQ), or an empty plasmid vector (pTrc99) and plated on minimal ヲΒΑ 

agar plates with glucose or MurNAc as the sole carbon source. Growth of the E. coli ヲΒΒ 

〉murQ mutant JWβ4β1-1 complemented with pTr-MurQ was rescued on minimal agar ヲΒΓ 

plates containing MurNAc (Fig. 4b). The E. coli 〉murQ mutant complemented with ヲΓヰ 

empty pTrc99 did not grow on MurNAc containing plates, but grew on media ヲΓヱ 
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 ヱヴ

supplemented with glucose. In contrast, the E. coli parent strain BWβ511γ harboring ヲΓヲ 

pTrc99 grew on minimal media containing glucose and MurNAc as sole carbon source ヲΓン 

(Fig. 4b). These data suggested that Tanf_08γ85 is the T. forsythia MurQ etherase ヲΓヴ 

(TfMurQ) involved in the metabolic conversion of MurANc-6-P to GlcNAc-6-P.  Next, we ヲΓヵ 

wanted to determine whether mur genes are co-transcribed.  For this purpose, RNA ヲΓヶ 

from T. forsythia ATCC 4γ0γ7 cells was extracted and co-transcription of the mur genes ヲΓΑ 

was analyzed using RT-PCR as outlined in Fig 5. The data demonstrated that the T. ヲΓΒ 

forsythia murT, murK, and murQ genes were transcribed as a single transcript (Fig. 5b), ヲΓΓ 

since PCR products of the expected size were obtained with primer pairs (Table Sβ, ンヰヰ 

supplementary material) designed to bridge the ends between the open-reading frames ンヰヱ 

(ORFs) of adjacent genes, and, thus, yielding amplification products only when co-ンヰヲ 

transcription was occurring.  Taken together, our data showed that the murT, murK, and ンヰン 

murQ genes form an operon (murTKQ) involved in MurNAc utilization. ンヰヴ 

 ンヰヵ 

DISCUSSION ンヰヶ 

 T. forsythia, a common pathogen present in dental biofilms, is implicated in ンヰΑ 

periodontitis.  Its role in the disease process has been confirmed in animal models (ββ) ンヰΒ 

and it has been demonstrated that the bacterium’s ability to induce disease is enhanced ンヰΓ 

when co-infected with other bacteria such as Fusobacterium nucleatum (βγ). Strikingly, ンヱヰ 

T. forsythia depends on exogenous MurNAc, an essential peptidoglycan amino sugar, ンヱヱ 

for growth. Its inability to de novo synthesize the peptidoglycan amino sugars MurNAc ンヱヲ 

and GlcNAc was first described by Wyss (5), who noted that growth of T. forsythia could ンヱン 

be rescued when spent media from cultures of F. nucleatum or free MurNAc was ンヱヴ 
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 ヱヵ

supplied exogenously.  Since, MurNAc is not known to be synthesized by the human ンヱヵ 

host, scavenging on peptidoglycan byproducts (muropeptides, anhydro-MurNAc) ンヱヶ 

released by cohabiting oral bacteria during their cell wall recycling is a plausible ンヱΑ 

mechanism by which T. forsythia obtains MurNAc in vivo.  Therefore, growth and, thus, ンヱΒ 

the virulence potential of T. forsythia depend on its ability to obtain and utilize MurNAc, ンヱΓ 

or MurNAc-containing peptidoglycan fragments from the environment. To our ンヲヰ 

knowledge, no other bacterium has such a strict requirement for MurNAc. Moreover, ンヲヱ 

despite its clear ability to utilize exogenously supplied MurNAc, the T. forsythia genome ンヲヲ 

lacks homologs of PTS-type MurNAc transporters present in bacteria (1β).  In E. coli ンヲン 

and the majority of bacteria, the MurP PTS system is responsible for phosphorylation ンヲヴ 

and import of MurNAc (11, β1), and further utilization of MurNAc transported as ンヲヵ 

MurNAc-6P proceeds through the action of MurQ etherase (18). MurP contains both the ンヲヶ 

PTS domains EIIB and EIIC and requires Enzyme I, histidine protein HPr and the ンヲΑ 

phosphoryl transfer protein EIIA (EIIAGlc) for function.  We searched the T. forsythia ンヲΒ 

ATCC 4γ0γ7 genome for a similar PTS-type MurNAc transport system, but our search ンヲΓ 

identified no MurP or any of the PTS homologs in the genome of T. forsythia.  However, ンンヰ 

we identified a genetic cluster (Tanf_08γ75-Tanf_08γ85) in the genome that contained ンンヱ 

ORFs for a membrane protein (TfMurT), a sugar kinase (TfMurK), and an etherase ンンヲ 

(TfMurQ).  This genetic cluster is located immediately downstream from a locus likely to ンンン 

be involved in peptidoglycan recycling as suggested by the presence of an ORF for a ンンヴ 

putative peptidoglycan permease AmpG in the locus (Fig. 1a).  Since TfMurT and ンンヵ 

TfMurK ORFs were present in close association with an ORF for a MurQ-like etherase ンンヶ 

(TfMurQ), we hypothesized that MurT and TfMurK might be involved in MurNAc ンンΑ 
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 ヱヶ

transport and utilization functions.  During peptidoglycan recycling in bacteria, MurNAc ンンΒ 

is released as anhMurNAc (1,6-anhydro-MurNAc) and is phosphorylated to MurNAc-6P ンンΓ 

by the kinase AnmK (1γ).  MurNAc-6-P is converted by the MurQ etherase into GlcNAc-ンヴヰ 

6-P and both these sugars are reused for synthesis of new peptidoglycan or enter the ンヴヱ 

general carbohydrate metabolism (1γ). ンヴヲ 

In this study, we showed that expression of TfMurT and TfMurK bipartite pair in ンヴン 

an E. coli 〉murP mutant restored bacterial growth in minimal media supplemented with ンヴヴ 

MurNAc. In addition, TfMurQ trans complementation in an E. coli ǻmurQ mutant ンヴヵ 

restored the ability to utilize MurNAc and the purified recombinant TfMurQ protein ンヴヶ 

converted MurNAc-6-P to GlcNAc-6-P in vitro.  These data show that TfMurT and ンヴΑ 

TfMurK, coding for an integral membrane transporter and a putative MurNAc sugar ンヴΒ 

kinase, respectively, constitute a unique PTS-independent system for MurNAc transport ンヴΓ 

and phosphorylation.  Furthermore, TfMurQ is involved in the metabolic conversion of ンヵヰ 

MurNAc-6-P to GlcNAc-6-P.  The functionality of TfMurT and TfMurK was confirmed via ンヵヱ 

trans complementation in E. coli host.  Deletion of these ORFs in T. forsythia was ンヵヲ 

potentially lethal as no mutants were recovered.  While we predict that TfMurT and ンヵン 

TfMurK proteins are likely present in close association or direct physical interactions as ンヵヴ 

a bipartite pair (Fig. 1b) to carry out the function of transport and phosphorylation of ンヵヵ 

MurNAc, we have no experimental evidence to support this notion and the presence of ンヵヶ 

TfMurK as a cytoplasmic protein cannot be ruled out.  Future studies will be needed to ンヵΑ 

biochemically characterize the structure-function relationship of MurT/MurK proteins.  ンヵΒ 

Our preliminary attempts to obtain a soluble active form of 6xHis-tagged recombinant ンヵΓ 

TfMurK protein have been unsuccessful as the recombinant protein expresses in an ンヶヰ 
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 ヱΑ

insoluble, inactive form, even after attempted refolding from insoluble material.  ンヶヱ 

Alternative expression approaches are underway to obtain the protein in the soluble ンヶヲ 

form.  TfMurT/TfMurK proteins do not possess PTS-type signatures and together ンヶン 

represent a novel transport system for MurNAc in T. forsythia. PTS-independent sugar ンヶヴ 

transporters, not as common as PTS-dependent systems, have been previously ンヶヵ 

reporter in bacteria. However, such systems have not been characterized at the ンヶヶ 

molecular level.  For instance, in streptococci (β4, β5) and corynebacteria (β6), there is ンヶΑ 

evidence of PTS-independent glucose uptake. We predict that this mode of sugar ンヶΒ 

uptake and utilization might be prevalent at least in the Bacteroidetes phylum of ンヶΓ 

bacteria, since homologs of the murT and murK genes of T. forsythia are present in the ンΑヰ 

genomes of a range of several gut Bacteroides spp. and oral Prevotella spp. (Fig. S4, ンΑヱ 

supplementary material). Strikingly, T. forsythia and Prevotella spp. seem to have a ンΑヲ 

minimal gene set as the others have extra genes in the cluster including kinases, ンΑン 

ferredoxin, and a β-lactamase, which may reflect their unique niches. Thus, the ンΑヴ 

TfMurTK system is the first evidence of a PTS-independent MurNAc transporter system ンΑヵ 

to date and although so far unique to T. forsythia, may be present in a range of Gram-ンΑヶ 

negative bacteria both of the oral cavity and gut. ンΑΑ 
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FIGURE LEGENDS ヴヵン 

Fig. 1. T. forsythia MurNAc utilization locus and MurNAc utilization pathway. (A) Genetic ヴヵヴ 

organization of the MurNAc utilization locus Tanf_08γ70-Tanf_08γ85 (black) of T. ヴヵヵ 

forsythia. The genes associated with the locus encode a membrane protein TfMurT, a ヴヵヶ 

sugar kinase TfMurK, and an etherase TfMurQ.  The locus Tanf_08γ45-Tanf_08γ65 ヴヵΑ 

(light gray) present immediately upstream is potentially involved in peptidoglycan ヴヵΒ 

recycling; Gtf - predicted glycosyltransferase; LytB - predicted amidase enhancer; ヴヵΓ 

AmpG - predicted muropeptide transporter; YbbC- hypothetical protein, (B) Schematic ヴヶヰ 

model of a MurNAc transport and utilization pathway in E. coli and T. forsythia. PEP, ヴヶヱ 

phosphoenolpyruvate; E1, enzyme E1; HPR, Histidine protein; EIIA; enzyme IIA. ヴヶヲ 

 ヴヶン 

Figure 2. Growth of E. coli strains MC4100 (parental strain), CM10γ (∆murP), and ヴヶヴ 

CM1γγ (∆murP, ∆pts) complemented with respective plasmids in M9 minimal agar and ヴヶヵ 

liquid medium with 0.β% glycerol, or 0.0β5% MurNAc. (A) Plate legend and growth of E. ヴヶヶ 

coli strains on agar. (B) Growth of E. coli strains in medium with MurNAc (Mu) or ヴヶΑ 

glycerol (Gl) measured at OD600. Results of one out of three independent cultivations ヴヶΒ 

with similar outcome are given.  ヴヶΓ 

 ヴΑヰ 

Figure 3. MurNAc depletion in minimal media incubated with E. coli 〉murP mutant ヴΑヱ 

complemented with respective plasmids. E. coli strains were incubated in minimal ヴΑヲ 

media supplemented with glucose and MurNAc and every β h post incubation spent ヴΑン 

medium for each strain was assayed for MurNAc using a chromogenic assay specific ヴΑヴ 

for N-Acetyl-aminosugars. ヴΑヵ 
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 ヴΑヶ 

Figure 4.  T. forsythia MurQ (TfMurQ) is a MurNAc-6-P etherase. (A) TLC analysis of ヴΑΑ 

MurNAc-6γβP-phosphate conversion by TfMurQ. MurNAc was radioactively ヴΑΒ 

phosphorylated at position C-6 by using recombinant Clostridium acetobutyticum MurK ヴΑΓ 

and け-γβP-ATP. MurNAc-6γβP-phosphate was then incubated with purified rTfMurQ ヴΒヰ 

etherase and MurNAc-6γβP-phosphate to GlcNAc-6γβP-phosphate conversion was ヴΒヱ 

monitored.  Samples from different time points (lanes 1, β and γ) were spotted on a TLC ヴΒヲ 

plate together with the standards MurNAc-6P (lane 4) and GlcNAc-6P (lane 5).  The ヴΒン 

radioactive products were detected using a phosphoimager. (B) Complementation of an ヴΒヴ 

E. coli 〉murQ mutant (JWβ4β1-1) with TfMurQ. The E. coli 〉murQ mutant, empty ヴΒヵ 

vector control (pTrc99), and complemented strain were plated on minimal agar with ヴΒヶ 

MurNAc (0.0β% w/v) or glucose (0.β% w/v) as a control. ヴΒΑ 

 ヴΒΒ 

Figure 5.  RT-PCR analysis with (A) primer sets spanning adjacent genes (fragments a, ヴΒΓ 

b, or c). (B) PCR products were separated on a 1% agarose gel. No reverse ヴΓヰ 

transcription (RNA only) controls were run in lanes 1, genomic DNA as template in ヴΓヱ 

lanes β, and cDNA as template for each primer set in lanes γ. MW; DNA ladder. ヴΓヲ 
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