

This is a repository copy of *Repeated enrichment of trace metals and organic carbon on an Eocene high energy shelf caused by anoxia and reworking.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/105183/

Version: Accepted Version

Article:

März, C, Wagner, T, Aqleh, S et al. (7 more authors) (2016) Repeated enrichment of trace metals and organic carbon on an Eocene high energy shelf caused by anoxia and reworking. Geology, 44 (12). pp. 1011-1014. ISSN 0091-7613

https://doi.org/10.1130/G38412.1

© 2016 Geological Society of America. This is an author produced version of a paper published in Geology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

- 1 Repeated enrichment of trace metals and organic carbon on
- 2 an Eocene high energy shelf caused by anoxia and
- 3 reworking
- 4 Christian März^{1,2*}, T. Wagner^{1,3} S. Aqleh¹, M. Al-Alaween¹, S. van den Boorn⁴, O.G.
- 5 Podlaha⁴, S. Kolonic⁵, S.W. Poulton², B. Schnetger⁶, and H.-J. Brumsack⁶
- ⁶ ¹School of Civil Engineering and Geosciences, Newcastle University, UK
- 7 ²School of Earth and Environment, University of Leeds, UK
- 8 ³Lyell Centre, Heriot-Watt University, Edinburgh, UK
- 9 ⁴Shell Global Solutions International B.V., Projects and Technology, Rijswijk, The
- 10 Netherlands
- 11 ⁵Shell Petroleum Development Company of Nigeria Ltd, Nigeria
- 12 ⁶ICBM, University of Oldenburg, Germany
- 13 *E-mail: c.maerz@leeds.ac.uk

14 ABSTRACT

- 15 Petroleum source rocks are strongly enriched in organic carbon (OC), and their
- 16 trace metal (TM) contents often reach low grade ore levels. The mechanisms leading to
- 17 these co-enrichments are important for understanding how extreme environmental
- 18 conditions support the formation of natural resources. We therefore studied organic-rich
- 19 Eocene marls and limestones (oil shale) from the central Jordan Amzaq-Hazra sub-basin,
- 20 part of a Cretaceous-Paleogene shelf system along the southern Neo-Tethys margin.
- 21 Geochemical analyses on two cores show highly dynamic depositional conditions,
- 22 consistent with sedimentological and micropaleontological observations. Maximum and

23	average contents in OC (~26 and ~10 wt%), S (~7 and ~2.4 wt%), P (~10 and ~2 wt%),
24	Mo (>400 and ~130 ppm), Cr (>500 and ~350 ppm), V (>1,600 and ~550 ppm) and Zn
25	(>3,800 and ~900 ppm) are exceptional, in particular without any indication of
26	hydrothermal or epigenetic processes. We propose a combination of two processes:
27	Physical reworking of OC- and metal-rich material from locally exposed Cretaceous-
28	Paleogene sediments (as supported by re-worked nannofossils); and high marine
29	productivity fueled by chemical remobilization of nutrients and metals on land that
30	sustained anoxic-sulfidic conditions. Burial of high-quality organic matter (Hydrogen
31	Index 600–700 mgHC/gOC) was related to strongly reducing conditions, punctuated by
32	only short-lived oxygenation events, and to excess H_2S promoting organic matter
33	sulphurisation. These processes likely caused the OC/TM co-enrichments in a high-
34	energy shallow marine setting that contradicts common models for black shale formation,
35	but may explain similar geochemical patterns in other black shales.
36	INTRODUCTION
37	Marine shales rich in organic carbon (OC) and trace metals (TMs) represent
38	extreme environmental conditions under perturbed biogeochemical cycles in the

39 geological pas. High primary productivity and anoxic/sulfidic redox conditions are

40 particularly conducive to their formation (Brumsack, 1980; Demaison and Moore, 1980).

41 Metal enrichments reaching low ore grade in black shales (Anjum et al., 2012) are

42 typically explained by secondary enrichment via metal-rich hydrothermal fluids or brines

- 43 (Eugster, 1985; Coveney and Glascock, 1989; Lehmann et al., 2007). Understanding
- 44 these processes is important to gain insight into extreme states of Earth's climate system,
- 45 and the formation and potential location of hydrocarbon and metal resources. To address

.

46	the topic of paired OC/TM enrichments, we applied geochemical analyses coupled with
47	sedimentological observations to Eocene, thermally immature OC-rich sediments ('oil
48	shale') from two wells in central Jordan. This region was part of an extended paleo-shelf
49	system throughout the Cretaceous-Paleogene, with numerous tectonically induced sub-
50	basins (Alqudah et al., 2015) covering large parts of the Arabian-African margins of the
51	Neo-Tethys (Fig. 1).
52	METHODS
53	The oil shale interval in cores OS22 and OS23 from central Jordan is \sim 225 m
54	thick (Fig. 1). Lithological units A and C are heterogeneous marls, phosphates, cherts and
55	limestones; unit B is more homogenous with interbedded laminated marls (Ali Hussein et
56	al., 2014a). The oil shale succession is part of the Umm Rijam Chalk Limestone
57	Formation, deposited across the Early-Middle Eocene (Ypresian-Lutetian) Amzaq-Hazra
58	sub-basin (Alqudah et al., 2014a, 2015). 186 samples were selected for geochemical
59	analysis. Total sulfur (S), total organic carbon (OC) and carbonate (calculated as CaCO ₃)
60	were determined by Leco combustion analysis. The Hydrogen Index (HI) was analyzed
61	with a Rock Eval 6 analyzer. X-Ray Fluorescence (XRF) analysis was used to quantify
62	major (Al, Fe, P) and trace (Cr, Mo, V, Zn, Zr) element contents. TM excess contents
63	(element _{xs}) (Brumsack, 2006) were calculated relative to element/Al ratios of average
64	shale (Wedepohl, 1991). Sequential Fe (Poulton and Canfield, 2005) and chromium-
65	reducible S (CRS) extractions (Canfield et al., 1986) were used to calculate the ratios of

- 66 highly reactive to total Fe (FeHR/FeT), and of sulfide-bound to highly reactive Fe
- (FeS/FeHR). Data are displayed against "adjusted depth" with zero depth (0 m) defined 67

68	as top of the oil shale interval. As both cores exhibit the same geochemical patterns, only
69	OS23 data are displayed in Figure 2 (for OS22, see Electronic Supplement).

70 **RESULTS**

71	The cores are subdivided into geochemical Units I to V (Fig. 2). Units I+II, III
72	and IV+V correlate with lithological units A, B and C (Ali Hussein et al., 2014a). Units II
73	and IV are geochemically more variable than the rather uniform Units I, III and V. The
74	sediment is dominantly composed of $CaCO_3$ (av. ~60 wt%) and TOC (av. ~10 wt%) with
75	high amplitude and high frequency variability (Fig. 2). Both S and P are enriched in parts
76	of the records (up to \sim 7 and \sim 10 wt%, respectively), with S showing a very strong
77	relationship with OC ($R^2 > 0.95$), while Al contents of ~0.1 to ~3.6 wt% (av. ~1.0 wt%)
78	indicate very little fine-grained siliciclastic material (Fig. 2A). Throughout the record,
79	OC is of excellent quality (kerogen type I/IIS), with Hydrogen Indices (HI) of 600-700
80	mgHC/gOC that do not match the OC fluctuations (Fig. 2A). Extreme enrichments of
81	Mo, Cr, V and Zn occur in Units II and IV (Fig. 2B), and to a lesser extent in Units I, III
82	and V, as evident from average excess contents (Table 1, Fig. DR1). Iron and S
83	speciation data indicate that > 80% of the S is bound to OC (Fig. 2B). High FeHR/FeT
84	ratios > 0.38 suggest anoxic bottom waters throughout the section, while fluctuations in
85	FeS/FeHR ratios around 0.7 indicate oscillations between sulfidic and non-sulfidic water
86	column conditions (Poulton and Canfield, 2011).
87	DISCUSSION

Our data provide intriguing insights into the depositional environment of the
Jordan oil shales. Units I, III and V tend to have FeS/FeHR ratios below 0.7 (Fig. 2B).
However, the observed ratios of ~0.6 are nevertheless quite high (Poulton and Canfield,

91	2011) and, when considered alongside significant TM enrichments (Figs. 2A, DR1, Table
92	1), indicate an anoxic water column during deposition of Units III and V, likely
93	fluctuating between sulfidic and non-sulfidic conditions. With no evidence for oxic
94	conditions, these laminated and rather homogenous Units likely document quiet
95	sedimentation under stable anoxia. This is supported by negative correlations between
96	OC and biogenic CaCO ₃ in Unit III in both cores ($R^2 = 0.48$ and 0.76), implying dilution
97	of organic material by biogenic carbonate under steady hemi-pelagic sedimentation
98	(Alqudah et al., 2014a, b).
99	In contrast, Units II and especially IV show very different characteristics (Fig. 2).
100	High TM enrichments, in particular Mo, combined with Fe and S speciation data strongly
101	argue for at least episodically sulfidic bottom waters (Brumsack, 1980, 2006; Poulton and
102	Canfield, 2011). In support of this, high amounts of non-sulphide S and the occurrence of
103	Mo/Al peaks at maximum OC (Fig. 2) suggest that kerogen type I/IIS preservation was
104	favored by OM sulfurization due to excess H ₂ S availability relative to highly reactive Fe
105	(Tribovillard et al., 2004, 2015). However, the TM records (Fig. 2B) also suggest
106	significant redox variability during deposition of Units II and IV. Peaks in Zr and P (Fig.
107	2B) indicate a dynamic setting with episodically high depositional energies, probably
108	induced by currents and/or wave action enriching heavy minerals like zircon and apatite
109	(März et al., 2011). In agreement with convoluted and tilted bedding, tempestites, and
110	intensely bioturbated horizons in Units II and IV, this suggests deposition above the
111	storm or even fair weather wave base (Ali Hussein et al., 2014a, b). These observations
112	suggest extreme redox variability, from sulfidic water column conditions through to high-
113	energy oxic periods with mixing and ventilation. Such conditions are commonly regarded

114	as unfavorable for the preservation of high-quality kerogen, as ventilation should lead to
115	partial OC degradation (Demaison and Moore, 1980; Hedges and Keil, 1995).
116	Within this context it is notable that excess Mo, U, V, Zn, Ni and Cr for Units II,
117	III and IV exceed those of modern organic-rich deposits (the permanently sulfidic Black
118	Sea, and the episodically sulfidic Peru upwelling area. They are, however, comparable to
119	Cretaceous Oceanic Anoxic Event 2 sediments documenting widespread, long-lasting
120	anoxia/euxinia (Brumsack, 2006), and to the Cretaceous-Paleogene Belqa Group deposits
121	(Table 1, Fig. DR1) exposed near the coring sites in Jordan (Fleurance et al., 2013).
122	Finally, the Eocene TM patterns show similarities to metalliferous Cambrian (Lehmann
123	et al., 2007) and Carboniferous shales (Coveney and Glascock, 1989; Slack et al., 2015)
124	(Fig. DR1). For the latter, syn- or epigenetic hydrothermal input has been suggested as
125	the dominant TM source (Coveney and Glascock, 1989). Lithological and geochemical
126	properties of the Jordan shale (e.g., well-preserved sedimentary features, low thermal
127	maturity), however, support neither a sedimentary exhalative (SEDEX-type) mechanism
128	nor any post-depositional, epigenetic intrusion of metal-rich solutions (see Electronic
129	Supplement).
130	We instead propose that there were two key factors for TM enrichments and for
131	high quality OC production and preservation in the Eocene Jordan shales (Fig. 3): (1) The
132	water column was anoxic to euxinic during deposition of Units II, III and IV due to high
133	primary productivity and semi-restriction of the depositional basins (Demaison and
134	Moore, 1980; Alqudah et al., 2014a, b). (2) Different from interpretations of most black
135	shale deposits, the Eocene Jordan shale received material physically eroded and/or

136 chemically weathered from OC- and TM-rich Cretaceous-Paleocene limestones, marls

137	and shales exposed in proximal/transitional settings close to the study sites (Fleurance et
138	al., 2013). During the Cretaceous to Eocene, active tectonic processes (Alqudah et al.,
139	2014 a, b) favored re-distribution of erosional products from older strata across the shelf,
140	especially during periods of low relative sea level and high depositional energy, where
141	this material was mixed with autochthonous deposits. Alternative to, or in combination
142	with, physical re-distribution, chemical weathering of local OM- and TM-rich rocks
143	could have provided excess nutrients to the Eocene basin, enhancing primary productivity
144	particularly under the warm and humid Eocene climate (Pearson et al., 2007).
145	Evidence for physical erosion comes from the high abundance (sometimes
146	dominance) of re-worked Cretaceous to Eocene nannofossils in the cores studied
147	(Alqudah et al., 2014a, b) (Fig. 1). Localized tectonic processes causing syn-sedimentary
148	uplift and exposure of older sediments along the horst structures bordering the Amzaq-
149	Hazra sub-basin supported intense current- or wave-driven erosion events (Alqudah et al.,
150	2014a, b). This process would have resulted in re-deposition of older OC- and TM-rich
151	material, accompanied by drawdown of water column TMs and preservation of OC under
152	high primary productivity and sulfidic water column conditions (Fig. 3). Chemical
153	weathering and/or physical erosion of OC-, TM- and nutrient-rich lithologies exposed on
154	land might have contributed to increased nutrient supply, higher productivity, and
155	ultimately the OC/TM co-enrichment in the Eocene shale basins. However, weathering
156	and transport under oxic conditions would have partly degraded the organic matter before
157	it entered the anoxic/sulfidic shelf waters, which is inconsistent with the high kerogen
158	quality throughout the studied sediments. We therefore assume that input from land was

secondary to wave- and current-induced re-distribution processes on an anoxic/sulfidic

160 shelf (Baird and Brett, 1991).

161 Irrespective of the transport pathways of eroded material, reworking of 162 Cretaceous-Paleocene strata was variable but generally persistent throughout large parts 163 of the Jordan oil shale deposition (Algudah et al., 2014a) (Fig. 1). The low-energy 164 conditions prevailing during deposition of Unit III should have favored lateral advection 165 of fine and fragile calcareous coccoliths, clay minerals, and associated OM. The lower 166 percentage of reworked nannofossils in parts of Units II and IV does not exclude that 167 erosion and reworking took place, but suggests that the fine material was winnowed 168 away, leaving only coarser/denser particles (rich in Zr, P and Cr) to settle and accumulate 169 (Fig. 3). It appears reasonable that a significant fraction of OC and TM in the sediment 170 may derive from this hydrodynamically sorted material. Similar processes have been 171 described for Paleozoic black shales (Baird and Brett, 1991; Formolo and Lyons, 2007), 172 highlighting the potential role of submarine erosion and re-working on anoxic high-173 energy shelves in generating TM/OC enrichments. The variability in current and wave 174 intensity and continental export was probably linked to Eocene subtropical trade wind 175 dynamics, with alternations between periods of aridity (stronger winds, shelf reworking) 176 and humidity (weaker winds, continental export) (Huber and Goldner, 2012). 177 While this study describes environmental conditions and reworking processes for 178 one Eocene sub-basin of the Neo-Tethys shelf, it also confirms that OC- and TM-179 enriched intervals are tens of meters thick in two cores drilled ~10 km apart, with 180 synchronous oil shale deposits spreading over ~100 km across the Amzaq-Hazra sub-181 basin (Alqudah et al., 2015). We suggest that similar processes were active across large

182	parts of the Eocene Neo-Tethys shelf, and may also have operated during other periods of
183	widespread black shale deposition that occurred under similar environmental and tectonic
184	conditions. A notable example of OC/TM co-enrichment comparable to the Jordan shale
185	is a ~7 m thick Eocene black shale succession from the Central Arctic Lomonosov Ridge.
186	This interval is characterized by variable but partly high enrichments in OC, S and metals
187	(including Fe, Cr, Mo, Zn), indicative of at least episodically anoxic/sulfidic bottom
188	waters (Sangiorgi et al., 2008; März et al., 2011). But geochemical and mineralogical
189	proxies also support a dynamic setting with high depositional energies and very low
190	sedimentation rates in shallow waters (März et al., 2011). By analogy to the Jordan
191	setting, we suggest that chemical re-mobilization and/or physical erosion and reworking
192	of Cretaceous-Paleocene black shales on the Lomonosov Ridge contributed to the
193	observed element records. Black shale deposits from Mesozoic shallow water systems
194	also show features consistent with those reported from the Eocene Jordan shelf.
195	Petrographic and geochemical analyses of lower Toarcian black shales of the Posidonia
196	Shale Formation in the Dutch Central Graben (Trabucho-Alexandre et al., 2012), for
197	example, support dynamic energetic conditions driven by intense and variable bottom
198	currents as key controls on shale deposition, rather than vertical settling alone.
199	CONCLUSIONS

Based on geochemical data from two Eocene oil shale intervals in Jordan, we present a model explaining high OC and TM enrichments in a shelf basin along the southern margin of the Western Tethys. Critical factors are (1) overall high marine productivity promoting anoxic/sulfidic water column conditions and OM sulphurisation, and (2) the re-distribution of OM- and TM-rich deposits of Cretaceous-Paleogene age

205	from the inner shelf and hinterland. These factors, with a dominance of current- and
206	wave-induced reworking on the shelf, were strongly favored by the prevailing tectonic
207	regime, including small-scale extensional tectonics that generated semi-restricted shelf
208	basins in graben structures. Similar processes were likely active across large parts of the
209	Cretaceous-Paleogene Levantine shelf basins, and they should also be considered for
210	widespread shale deposits that formed under comparable paleo-environmental conditions
211	in tectonically active settings. This study challenges the common perception of stagnant
212	('non-dynamic') depositional conditions during marine black shale formation. Instead, it
213	shifts the focus to dynamic, high-energy and tectonically active paleo-settings where
214	multiple climatic, depositional and tectonic processes overlap to produce extreme
215	geochemical shale properties. With this scope, our study also provides links to low-grade
216	ore resources generated without any syn- or post-depositional hydrothermal activity.
217	ACKNOWLEDGMENTS
218	Substantial financial and analytical support for this project from Shell Global
219	Solutions and JOSCo is gratefully acknowledged. We are indebted to C. Lehners, E.
220	Gruendken and for P. Green for assistance with sample preparation and analysis, and to
221	M. Ali Hussein and M. Alqudah for fruitful discussions. N. Tribovillard, P. Meyers and
222	an anonymous reviewer provided insightful comments on an earlier version of the

223 manuscript.

224 **REFERENCES CITED**

225 Ali Hussein, M., Alqudah, M., Van den Boorn, S., Kolonic, S., Podlaha, O.G., and

226 Mutterlose, J., 2014a, Eocene oil shales from Jordan – their petrography, carbon and

227 oxygen stable isotopes: GeoArabia, v. 19, p. 139–162.

- Ali Hussein, M., Alqudah, M., Podlaha, O.G., Van den Boorn, S., Kolonic, S., and
- 229 Mutterlose, J., 2014b, Ichnofabrics of Eocene oil shales from central Jordan and their
- use for paleoenvironmental reconstructions: GeoArabia, v. 19, p. 145–160.
- 231 Alqudah, M., Ali Hussein, M., Podlaha, O.G., Van den Boorn, S., Kolonic, S., and
- 232 Mutterlose, J., 2014a, Calcareous nannofossil biostratigraphy of Eocene oil shales
- from central Jordan: GeoArabia, v. 19, p. 117–140.
- Alqudah, M., Ali Hussein, M., Van den Boorn, S., Giraldo, V.M., Kolonic, S., Podlaha,
- O.G., and Mutterlose, J., 2014b, Eocene oil shales from Jordan paleoenvironmental
- implications from reworked microfossils: Marine and Petroleum Geology, v. 52,
- 237 p. 93–106, doi:10.1016/j.marpetgeo.2014.02.001.
- 238 Alqudah, M., Ali Hussein, M., Van den Boorn, S., Podlaha, O.G., and Mutterlose, J.,
- 239 2015, Biostratigraphy and depositional setting of Maastrichtian e Eocene oil shales
- from Jordan: Marine and Petroleum Geology, v. 60, p. 87–104.
- Anjum, F., Shahid, M., and Akcil, A., 2012, Biohydrometallurgy techniques of low grade
- 242 ores: a review on black shales: Hydrometallurgy, v. 117–118, p. 1–12,
- 243 doi:10.1016/j.hydromet.2012.01.007.
- 244 Baird, G.C., and Brett, C.E., 1991, Submarine erosion on the anoxic sea floor:
- 245 Stratinomic, paleoenvironmental, and temporal significance of reworked pyrite-bone
- 246 deposits, in Tyson, R.V., and Pearson, T.H., eds., Modern and Ancient Continental
- 247 Shelf Anoxia: Geological Society Special Publication 58, p. 233–257,
- 248 doi:10.1144/GSL.SP.1991.058.01.16.

- 249 Brumsack, H.-J., 1980, Geochemistry of Cretaceous black shales from the Atlantic Ocean
- 250 (DSDP Legs 11, 14, 36 and 41): Chemical Geology, v. 31, p. 1–25,
- doi:10.1016/0009-2541(80)90064-9.
- 252 Brumsack, H.-J., 2006, The trace metal content of recent organic carbon-rich sediments:
- 253 implication for Cretaceous black shale formation: Palaeogeography,
- Palaeoclimatology, Palaeoecology, v. 232, p. 344–361,
- doi:10.1016/j.palaeo.2005.05.011.
- 256 Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., and Berner, R.A., 1986, The
- use of chromium reduction in the analysis of reduced inorganic sulphur in sediments
- and shales: Chemical Geology, v. 54, p. 149–155, doi:10.1016/0009-2541(86)90078-
- 259 1.
- 260 Coveney, R.M., and Glascock, M.D., 1989, A review of the origins of metal-rich
- 261 Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines:
- 262 Applied Geochemistry, v. 4, p. 347–367, doi:10.1016/0883-2927(89)90012-7.
- 263 Demaison, G.J., and Moore, G.T., 1980, Anoxic environments and oil source bed
- 264 genesis: Organic Geochemistry, v. 2, p. 9–31, doi:10.1016/0146-6380(80)90017-0.
- 265 Eugster, H.P., 1985, Oil shales, evaporates and ore deposits: Geochimica et

266 Cosmochimica Acta, v. 49, p. 619–635, doi:10.1016/0016-7037(85)90158-9.

- 267 Fleurance, S., Cuney, M., Malartre, F., and Reyx, J., 2013, Origin of the extreme
- 268 polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous-Early
- 269 Tertiary Belqa Group, central Jordan: Palaeogeography, Palaeoclimatology,
- 270 Palaeoecology, v. 369, p. 201–219, doi:10.1016/j.palaeo.2012.10.020.

- 271 Formolo, M.J., and Lyons, T.W., 2007, Accumulation and preservation of reworked 272 marine pyrite beneath an oxygen-rich Devonian atmosphere: constraints from sulfur 273 isotopes and framboid textures: Journal of Sedimentary Research, v. 77, p. 623-633, 274 doi:10.2110/jsr.2007.062. 275 Hedges, J.I., and Keil, R.G., 1995, Sedimentary organic matter preservation: An 276 assessment and speculative synthesis: Marine Chemistry, v. 49, p. 81–115, 277 doi:10.1016/0304-4203(95)00008-F. 278 Huber, M., and Goldner, A., 2012, Eocene monsoons: Journal of Asian Earth Sciences, 279 v. 44, p. 3–23, doi:10.1016/j.jseaes.2011.09.014. 280 Lehmann, B., Nägler, T.F., Holland, H.D., Wille, M., Mao, J.W., Pan, J.Y., Ma, D.S., and 281 Dulski, P., 2007, Highly metalliferous carbonaceous shale and Early Cambrian 282 seawater: Geology, v. 35, p. 403–406, doi:10.1130/G23543A.1. 283 März, C., Vogt, C., Schnetger, B., and Brumsack, H.-J., 2011, Variable Eocene-Miocene 284 sedimentation processes and bottom water redox conditions in the Central Arctic 285 Ocean (IODP Expedition 302): Earth and Planetary Science Letters, v. 310, p. 526– 286 537, doi:10.1016/j.epsl.2011.08.025. 287 Pearson, P.N., Van Dongen, B.E., Nicholas, C.J., Pancost, R.D., Schouten, S., Singano, 288 J.M., and Wade, B.S., 2007, Stable warm tropical climate through the Eocene epoch: 289 Geology, v. 35, p. 211–214, doi:10.1130/G23175A.1. 290 Poulton, S.W., and Canfield, D.E., 2005, Development of a sequential extraction 291 procedure for iron: implications for iron partitioning in continentally derived 292 particulates: Chemical Geology, v. 214, p. 209–221,
- doi:10.1016/j.chemgeo.2004.09.003.

- 294 Poulton, S.W., and Canfield, D.E., 2011, Ferruginous conditions; a dominant feature of
- the ocean through Earth's history: Elements, v. 7, p. 107–112,
- doi:10.2113/gselements.7.2.107.
- 297 Sangiorgi, F., Brumsack, H.-J., Willard, D.A., Schouten, S., Stickley, C.E., O'Regan, M.,
- 298 Reichart, G.-J., Sinninghe Damsté, J.S., and Brinkhuis, H., 2008, A 26 million year
- 299 gap in the Central Arctic record at the greenhouse-icehouse transition: looking for
- 300 clues: Paleoceanography, v. 23, PA1S04, doi:10.1029/2007PA001477.
- 301 Slack, J.F., Selby, D., and Dumoulin, J.A., 2015, Hydrothermal. Biogenic, and seawater
- 302 components in metalliferous black shales of the Brooks Range, Alaska:
- 303 Synsedimentary metal enrichment in a carbonate ramp setting: Economic Geology
- and the Bulletin of the Society of Economic Geologists, v. 110, p. 653–675,
- 305 doi:10.2113/econgeo.110.3.653.
- 306 Trabucho-Alexandre, J., Dirkx, R., Veld, H., Klaver, G., Poppe, L., and de Boer, P.L.,
- 307 2012, Toarcian black shales in the Dutch central graben: record of energetic, variable
- 308 depositional conditions during an oceanic anoxic event: Journal of Sedimentary
- 309 Research, v. 82, p. 104–120, doi:10.2110/jsr.2012.5.
- 310 Tribovillard, N., Riboulleau, A., Lyons, T., and Baudin, F., 2004, Enhanced trapping of
- 311 molybdenum by sulfurized marine organic matter of marine origin in Mesozoic
- 312 limestones and shales: Chemical Geology, v. 213, p. 385–401,
- doi:10.1016/j.chemgeo.2004.08.011.
- 314 Tribovillard, N., Haten, E., Averbuch, O., Barbecot, F., Bout-Roumazeilles, V., and
- 315 Trentesaux, A., 2015, Iron availability as a dominant control on the primary

316	DOI:10.1130/G38412.1 composition and diagenetic overprint of organic-matter-rich rocks: Chemical
317	Geology, v. 401, p. 67-82, doi:10.1016/j.chemgeo.2015.02.026.
318	Wedepohl, K.H., 1991, The composition of the upper earth's crust and the natural cycles
319	of selected metals. Metals in natural raw materials, in Merian, E., ed., Natural
320	Resources, Metals and Their Compounds in the Environment: Weinheim, VCH, p.
321	3–17.
322	
323	FIGURE CAPTIONS
324	
325	Figure 1. A: Paleogeographic map of Paleogene Neo-Tethys, with core location on the
326	shallow continental shelf. B: Close-up of southern Neo-Tethys margin, with location of
327	core locations and border of present-day Jordan (after Alqudah et al., 2014b) C:
328	Lithostratigraphic columns of cores OS23 and OS22 with sediment age, coring depth,
329	percentages of reworked Eocene-Cretaceous calcareous nannofossils, and bioturbated
330	intervals (after Ali Hussein et al., 2014b).
331	
332	Figure 2. Core OS23 records of (A) CaCO ₃ (wt%), Al (wt%), TOC (wt%), S (wt%), P/Al
333	(wt%/wt%), and Zr/Al (wt%/ppm); and (B) Mo/Al (ppm/wt%), Zn/Al (ppm/wt%), V/Al
334	(ppm/wt%), Cr/Al (ppm/wt%), FeHR/FeT, FeS/FeHR and non-sulphide S (% of total S),
335	against adjusted drilling depth (meters, 0 m = top of black shale succession). Columns on
336	right are geochemical Units (I-V) and lithological units (A-C).
337	

338	Figure 3. Schematic illustration of depositional conditions during deposition of Unit III,
339	and Units II + IV (anoxic/euxinic and oxic states). Black arrows = input of OC- and TM-
340	rich Cretaceous-Paleogene detritus. Grey arrows = input of OC- and TM-rich matter from
341	overlying water column.
342	
343	¹ GSA Data Repository item 2016xxx, xxxxxxx, is available online at
344	http://www.geosociety.org/pubs/ft2016.htm or on request from editing@geosociety.org.
345	
346	
347	
348	
349	
350	
351	
352	
353	
TABLE 1. A	AVERAGE Mo, Cr, V, AND ZN EXCESS CONTENTS (ppm) RELATIVE TO AVERAGE SHALE COMPOSITION (WEDEPOHL, 1991) IN UNITS I TO V OF S OS22 AND OS23, CRETACEOUS-PALEOGENE BELQA GROUP SHALES AND LIMESTONES (FLEURANCE ET AL., 2013), BLACK SEA UNIT 2, MEDITERDANEAN SAPROFILS, AND OCEAN ANOVIC EVENT 2 DEPOSITS (PRUMSACK, 2020)

MEDITERRANEAN SAPROPELS, AND OCEAN ANOXIC EVENT 2 DEPOSITS (BRUMSACK, 2006)										
	Unit I	Unit II	Unit III	Unit IV	Unit V	Belqa Group ¹	Belqa Group ¹	Black Sea ²	Med.	C/T Boundary
	(OS23 / OS22)	(shale)	(limestone)	(Unit 2)	Sapropels ²	(OAE 2) ²				
Moxs (ppm, mean)	31 / 31	97 / 104	110 / 76	401 / 272	38 / 7	496	5	116	104	315
Cr _{xs} (ppm, mean)	248 / 210	265 / 296	360 / 373	514 / 490	186 / 222	392	125	12	69	124
V _{xs} (ppm, mean)	202 / 186	608 / 501	356 / 274	1638 / 1044	139 / 129	688	113	126	457	935
Zn _{xs} (ppm, mean)	521 / 566	703 / 958	825 / 671	1906 / 469	165 / 254	4666	220	31	51	1997

354

Figure 1

Figure 2

> *Deposition below wave base *Shallow redoxcline *Anoxic/euxinic seafloor *High primary productivity *Intense OC + TM reworking *Reworked nannofossils

*Wave and/or current activity *Deep redoxcline *Oxic seafloor + bioturbation *High primary productivity *Intense OC + TM reworking *Winnowing of nannofossils *Heavy mineral enrichments

Figure 3

	Unit I	Unit II	Unit III
	(OS23 / OS22)	(OS23 / OS22)	(OS23 / OS22)
Mo _{xs} (ppm, mean)	31 / 31	97 / 104	110 / 76
Cr _{xs} (ppm, mean)	248 / 210	265 / 296	360 / 373
V _{xs} (ppm, mean)	202 / 186	608 / 501	356 / 274
Zn _{xs} (ppm, mean)	521 / 566	703 / 958	825 / 671

Unit IV	Unit V	Belqa Group ¹	Belqa Group ¹	Black Sea ²
(OS23 / OS22)	(OS23 / OS22)	(shale)	(limestone)	(Unit 2)
401 / 272	38 / 7	496	5	116
514 / 490	186 / 222	392	125	12
1638 / 1044	139 / 129	688	113	126
1906 / 469	165 / 254	4666	220	31

Med.	C/T Boundary	
Sapropels ²	(OAE 2) ²	
104	315	
69	124	
457	935	
51	1997	

1 ARGUMENTS AGAINST HYDROTHERMAL OR EPIGENETIC METAL

2 ENRICHMENTS IN THE JORDAN OIL SHALES

3	In sedi	mentary rocks, hyper-enrichments of a wide range of trace metals are often explained
4	by the	syn-genetic input of metal-rich hydrothermal solutions or brines into the
5	conten	nporaneous sea water, or by the post-depositional (epigenetic) stratiform intrusion of
6	metal-	rich fluids into sedimentary formations. Here we will argue against a contribution of
7	either	of these processes to the trace metal hyper-enrichments in the studied Jordan oil shales.
8		
9	Ruling	out epigenetic enrichments:
10	-	In the cores, no stratiform or strata-cutting metal-rich veins or layers are found, but
11		the metal enrichments appear to be finely dispersed within the sediment.
12	-	The organic matter is of low thermal maturity, implying that the sediments were not
13		affected by post-depositional high-temperature overprint.
14	-	Highest metal enrichments do not stand in any relationship to lowest carbonate
15		contents, which implies that metal enrichments did not form in carbonate dissolution
16		features.
17	-	The classical epigenetic stratiform ore deposits are most strongly enriched in Zn, but
18		also in Pb, and not substantially enriched in Cr and V. However, the Jordan oil shales
19		lack significant Pb enrichments and are instead strongly enriched in Cr and V.
20	-	Fossils (e.g., planktonic and benthic foraminifera, shell fragments) are generally well
21		to moderately preserved with sharp boundaries, and show no signs of dissolution by
22		acidic hydrothermal fluids.
23	-	The sedimentary texture (e.g., bioturbation features, laminations) are pristine
24		throughout the cores and do not show any signs of post-depositional overprint.

25 Ruling out syn-genetic hydrothermal enrichments:

26	-	There are no signs of volcanic activity on the Eocene paleo-shelf of Jordan, and no
27		signs of hydrothermal mounds, veins or pathways in older (Cretaceous-Paleocene)
28		strata in the area that could have delivered metal-rich hydrothermal solutions.
29	-	Highest trace metal enrichments occur in Units II and IV, where enrichments of Zr
30		and P as well as sedimentary structures and bioturbation features indicate episodic
31		water column mixing. These conditions are not conducive to the spreading of a
32		hydrothermal plume or metal-rich brine, which would require stable salinity
33		stratification.
34	-	Spreading of metal-rich brines is not supported by the continuous presence, and good
35		preservation, of planktonic and benthic fossils as well as bioturbation features that
36		exclude the presence of hyper-saline brines loaded with dissolved or particulate
37		metals at toxic levels.

38

39 FIGURE CAPTIONS SUPPLEMENTARY FIGURES

40 Figure DR1: Element excess contents relative to average shale composition (Wedepohl,

41 1971, 1991) for Jordan oil shales (average for Units I-V in cores OS22 and OS23) and

42 various modern and ancient organic-rich lithologies deposited under anoxic/sulfidic

43 conditions (data from Brumsack, 2006; Fleurance et al., 2013; Coveney and Glascock, 1989;

44 Slack et al., 2015; Lehmann et al., 2007).

45 Figure DR2: Core OS22 records of (A) CaCO₃ (wt%), Al (wt%), TOC (wt%), S (wt%), P/Al

46 (wt%/wt%), and Zr/Al (wt%/ppm); and (B) Mo/Al (ppm/wt%), Zn/Al (ppm/wt%), V/Al

47 (ppm/wt%), Cr/Al (ppm/wt%), FeHR/FeT, FeS/FeHR and non-sulphide S (% of total S),

- 48 against adjusted drilling depth (meters, 0 m = top of black shale succession). Columns on
- 49 right are geochemical Units (I-V) and lithological units (A-C).

50

Supplemental Figure 1

Unit I average Unit II average Unit III average Unit IV average Unit V average Peru upwelling Black Sea Unit 2 Med. Sapropels Oceanic Anoxic Event 2 Cret.-Pal. Jordan (shale) Cret.-Pal. Jordan (limestone) Mid-Penn. Midcontinent (shale) Miss. Brooks Range (calc. shale) Miss. Brooks Range (phos. shale) Cambrian China (sulfide .horizon) Cambrian China (black shale)

Figure DR1

<u>±</u>

Figure DR2