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Abstract. We describe our work on a UTP semantics for the dynamic
systems modelling language Modelica. This is a language for modelling
a system’s continuous behaviour using a combination of differential-
algebraic equations and an event-handling system. We develop a novel
UTP theory of hybrid relations, inspired by Hybrid CSP and Duration
Calculus, that is purely relational and provides uniform handling of con-
tinuous and discrete variables. This theory is mechanised in our Isabelle
implementation of the UTP, Isabelle/UTP, with which we verify some
algebraic properties. Finally, we show how a subset of Modelica mod-
els can be given semantics using our theory. When combined with the
wealth of existing UTP theories for discrete system modelling, our work
enables a sound approach to heterogeneous semantics for Cyber-Physical
systems by leveraging the theory linking facilities of the UTP.

1 Introduction

Cyber-Physical Systems (CPS) are a class of computerised system that integrate
discrete computation with continuous physical processes. CPS are typically de-
veloped using a combination of discrete and continuous models, often in differing
heterogeneous languages. This makes verification of trustworthiness challenging.
There is a need for unifying semantic models to allow the integration of heteroge-
neous system components, whilst ensuring that a given set of safety properties is
supported. Hoare and He’s Unifying Theories of Programming (UTP) has been
designed as a framework in which the integration of languages, through the
common semantic domain of the alphabetised relation calculus, can be achieved.
Semantic models for discrete modelling languages in UTP are already numer-
ous [26,13,36,30], and, therefore, in this paper we focus on semantics of contin-
uous models in the Modelica language.

Modelica [22] is a widely used language for description and modelling of hy-
brid dynamical systems that compose a continuously evolving physical plant with
a discrete controller. Such systems are described using a mixture of differential-
algebraic equations (DAEs), and event guards that trigger discontinuous jumps
in system behaviour by execution of discrete equations and algorithms – so
called “hybrid DAEs”. Modelica has a number of commercial implementations



including Dymola3, Wolfram SystemModeler4, MapleSim5 and the open-source
implementation, OpenModelica6. However, the Modelica language has an incom-
plete formal semantics; though the semantics of DAEs is well known, the event
iteration system currently does not have a formal semantics. Here we give a de-
notational semantics to a fragment of Modelica using a UTP theory of hybrid
relations. Additionally to clarifying the semantics of Modelica, this allows us to
consider the combination of continuous and discrete models through common
theoretical factors and theory linking.

Our approach to giving a semantics to Modelica is three-fold. Firstly, we
create a UTP theory of hybrid relations, building on the work of He [14,15],
Zhou [33,32], Zhan [21], and others. This theory extends the alphabet of UTP
predicates with continuous variables c ∈ conα and is defined by novel healthiness
conditions that characterise these variables as piecewise continuous functions.

Secondly, we define the operators of our hybrid relational calculus, which is
similar to the imperative subset of HCSP [34], but extended with an interval
operator [33] that provides a continuous specification statement. In particular
we provide support for semi-explicit DAEs and continous variable preemption.
As with Hybrid CSP, we base the denotational semantics around the Duration
Calculus [33], though the semantics is purely relational. Moreover, we provide a
uniform account of both discrete and continuous variables by linking the latter
to discrete “copy” variables that give the valuation at the beginning and end
of a continuous evolution. Thus, both discrete and continuous variables can be
manipulated with the same operators; in the latter case this provides initial value
constraints. Our model of hybrid relations has also mechanised in our UTP proof
assistant, Isabelle/UTP [10], that provides theorem proving facilities.

Thirdly, we define a preliminary denotational semantics for Modelica through
a mapping into the hybrid relational calculus. This mapping primarily consid-
ers the event-handling mechanism of Modelica, whereby specific conditions on
continuous variables can lead to both discontinuous jumps in variables, and also
changes to the equations active in the DAE system.

The remainder of our paper is structured as follows. In section 2, we provide
background on hybrid systems by briefly surveying the literature, with particular
emphasis on works related to the UTP. In section 3 we briefly describe the UTP,
and in section 4 we introduce the Modelica language. In section 5, we describe
our UTP theory of hybrid relations. In section 6, we use our UTP theory to
build a hybrid relational calculus, including operators for specifying continuous
invariants, differential equations, and preemption. In section 7, we outline our
mechanisation of the hybrid relational calculus in Isabelle [23,10]. In section 8,
we use our hybrid relational calculus to give a high-level denotational seman-
tics to the Modelica language, focusing principally on the interaction between

3 http://www.3ds.com/products-services/catia/products/dymola
4 http://www.wolfram.com/system-modeler/
5 http://www.maplesoft.com/products/maplesim/
6 https://www.openmodelica.org/



evolution of DAEs and the event handling system. Finally in section 9, we draw
conclusions.

2 Related work: Hybrid Systems

The majority of the work on hybrid systems takes inspiration from Hybrid Au-
tomata [16], an extension of finite state automata that allows the specification
of continuous behaviour. A hybrid automaton consists of a finite set of states la-
belled by ODEs, a state invariant, and initial conditions. The states (or “modes”)
are connected by transitions that are labelled with jump conditions and (option-
ally) events. Whilst in a state the continuous variables evolve according to the
system of ODEs and the given invariant; this is known as a flow as the variable
values continuously flow from one value to another. When one of the jump con-
ditions of an outgoing edge is satisfied, the event, if present, can instantaneously
execute, potentially resulting in a discontinuity, and the targeted hybrid state is
activated. Thus a hybrid automata is characterised by behaviour that includes
both continuous flows also discrete jumps. Hybrid automata are given a deno-
tational semantics in terms of piecewise continuous functions [16] R → R

n, also
called trajectories, that are continuous except for in a finite number of places.

Verification of hybrid systems was made possible through the seminal work
of Platzer [27]. This work develops a logic called Differential Dynamic Logic (dL)
that allows us to specify invariants over both discrete and continuous variables.
Hybrid systems are modelled using a language of hybrid programs, that combines
the usual operators of an imperative language with continuous behaviour spec-
ified by differential equations. Hybrid programs are equipped with a relational
semantics, and a proof calculus for dL allows reasoning about hybrid programs.
An implementation of dL called KeYmaera [27] allows the automated verifica-
tion of systems modelled as hybrid programs. Our notion of hybrid relation is
inspired by Platzer’s hybrid programs, though we focus on a UTP denotational
semantics as opposed to an operational semantics. Our own setting of the Dura-
tion Calculus [33] provides us with the necessary machinery to similarly justify a
dynamic logic. Moreover, we observe that, with a UTP model, we are in a strong
position to extend the work to deal with concurrent hybrid programs, a notion
that dL does not consider.

Concurrency is considered in Hybrid CSP [14,34] (HCSP), an extension of
Hoare’s process calculus CSP [17] that adds support for continuous variables
as described by differential equations and modelled by standard trajectories, in
a similar manner to hybrid automata. HCSP [14] extends CSP with continu-
ous variables whose behaviour is described by differential equations of the form
F(ṡ, s) = 0. Interaction between discrete and continuous behaviour takes the
form of preemption conditions on continuous variables, timeouts, and interrup-
tion of a continuous evolution through CSP events. HCSP has a denotational
semantics that is presented in a predicative style similar to the UTP [18].

Further work on HCSP [34] enriches the language to allow explicit interaction
between discrete and continuous variables. This is achieved through a novel



denotational semantics in terms of the Extended Duration Calculus [35], which
treats variables as piecewise continuous functions. This allows a more precise
semantics for operators like preemption that are defined in terms of suitable
variable limits. A Hoare logic for this calculus is presented in [21], through the
adoption of Platzer’s differential invariants, along with an operational semantics.
Our work is heavily influenced by HCSP, though we focus on formalising the
sequential aspects of hybrid systems, and so formalise a subset of the operators
with refined definitions. Our operators formalise continuous after variables by
explicitly considering left-limits which is important for Modelica event iteration.

A theorem prover for HCSP called, HHL Prover [37], has also been devel-
oped and applied to verification of Simulink diagrams through a mapping into
HCSP [31]. More recently the fundamentals of hybrid system modelling have
been studied in a purely UTP relational setting [15]. This work has produced a
language called the Hybrid Relational Modelling Language [15] (HRML), which
draws on HCSP, but uses signals rather than CSP’s events as the main com-
munication abstraction. Our notation is agnostic in this respect, and could be
extended either to support the event or signal paradigm.

Duration Calculus [33] (DC) provides specification of invariants over the con-
tinuous time domain, in order to facilitate verification real-time systems. For
example, we can write

⌈

x2 > 7
⌉

, which specifies all possible intervals of over
which x2 > 7 is invariant. The chop operator P ◦Q specifies that an interval
may be broken into two subsequent intervals, over which P and then Q hold,
respectively. DC has been extended to provide a semantics for hybrid real-time
systems modelling [35], which is then used to give semantics to HCSP [34]. DC
can also be used to give an account to typical operators of modal and temporal
logics. Thus, grounding our semantics in DC enables us to form continuous spec-
ifications about hybrid systems. Different to DC we provide a purely relational
UTP semantics, and also explictly distinguish continuous and discrete variables,
instead of modelling the latter as step functions. This distinction allows us to
retain standard relational definitions of the majority of discrete UTP operators.

3 Unifying Theories of Programming

Unifying Theories of Programming [18,4] (UTP) is a framework for the specifi-
cation of formal semantics. It is based on the idea that any temporal model can
be expressed as an alphabetised predicate that describes how variables change
over time. This idea of “programs-as-predicates” means that the duality of pro-
grams and specifications all but disappears, as programs are just a subclass of
specifications. This powerful idea provides a strong basis for unification of hetero-
geneous languages and semantic models, since many different shapes of models
can be given a uniform view. The UTP further allows that different semantic
presentations, such as denotational, algebraic, axiomatic, and operational, can
be formally linked through mutual embeddings. This ensures that consistency is
maintained between semantic models and that tools that implement them can
be combined for multi-pronged analysis and verification of models [10].



Concretely, an alphabetised relation is a pair (αP,P) where αP is the alpha-
bet and P is a predicate all of whose free variables belong to αP. The alpha-
bet can in turn be subdivided α(P) = inα(P) ∪ outα(P), with input variables
x, y ∈ inα(P) and output variables x ′, y′ ∈ outα(P). The calculus provides the
operators typical of first order logic. UTP predicates are ordered by a refinement
partial order P ⊑ Q that also defines a complete lattice. Imperative programs can
be described using relational operators, such as sequential composition P ; Q,
if-then-else conditional P 2 b 3Q, assignment x :=A v (for expression v and
alphabet A), and skip IIA, all of which are given predicative interpretations.

More sophisticated language constructs can be expressed by enriching the
theory of alphabetised relations to create UTP theories. A UTP theory consists
of (i) a set of observational variables, (ii) a signature, and (iii) a set of healthiness
conditions. The observational variables record behavioural semantic information
about a particular program. For example, we may have an observational vari-
able for recording the current time called clock : R. The signature uses these
operational variables to encode the main operators of the target language.

The domain of a UTP theory can be constrained through healthiness con-
ditions, which act as invariants over the observational variables. For example,
it is intuitively the case that time only moves forward, and so a relational ob-
servation like C , clock = 3 ∧ clock ′ = 1 ought not to be possible. We can
eliminate this kind of behaviour description with an invariant clock ≤ clock ′.
In the UTP such conditions are expressed as idempotent functions, for example
HT (P) = P ∧ clock ≤ clock ′, so that healthiness of a predicate P can be ex-
pressed as a fixed point equation: P = HT (P). If we apply HT to C , the result
is miraculous predicate false and thus C is excluded from the theory signature.

UTP theories can be used to describe a domain useful for modelling partic-
ular problems – for instance, we can add further conditions to HT to provide
a theory of real-time programs. UTP theories can also be composed to produce
modelling domains that combine different language aspects. Put more simply,
UTP theories provide the building blocks for a heterogeneous language’s denota-
tional semantics [9]. Such a denotational semantics provides the “gold standard”
for the meaning of language constructs and can then be used to derive other
presentations, such as operational and, very often, algebraic.

4 Modelica

Modelica is an equation-based object-oriented language for describing the dy-
namic behaviour of CPS, standardised by the Modelica Language Specification
(MLS) [22]. The MLS is described using English; therefore, its semantics is to
some extent subject to interpretation. Quoting from [22, Section 1.2]: “The se-
mantics of the Modelica language is specified by means of a set of rules for trans-
lating any class described in the Modelica language to a flat Modelica structure.
A class must have additional properties in order that its flat Modelica struc-
ture can be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Such classes are called simulation models.”



Modelica Model

Flat Modelica

(Hybrid DAE)

Simulation Result

Modelica

Specification

Mathematical denotation

for hybrid DAE system

Fig. 1. From model
to simulation result.

model BouncingBall

Real h; Real v;

initial equation

h = 1.0;

equation

v = der(h);

der(v) = -9.81;

when h<0 then

reinit (v, -0.8* pre(v));

end when;

end BouncingBall ;

Fig. 2. Bouncing ball in Modelica.

Fig. 1 illustrates the basic idea. The squiggle arrow denotes a degree of fuzzi-
ness — a simulation result is an approximation to the, in general, inaccessible
exact solution of the equation system and the specification does not prescribe
a particular solution approach. A classical model for a hybrid systems is the
bouncing ball. A possible Modelica implementation for a ball with mass 1 kg
and an impact coefficient of 0.8 that falls from an initial height of h = 1m is
given in Fig. 2. When the ball hits the ground, it changes its velocity v discon-
tinuously and bounces back. der(h) and der(v) denote the time derivatives ḣ
and v̇ of variables h and v, respectively. The acceleration to the ground is de-
termined by earth’s gravitational acceleration g = 9.81m/s2. The discontinuous
change of variable v is modelled using a conditionally activated reinitialization
equation. The ball hits the ground when condition h < 0 becomes true. The
reinit() operator is used for reinitializing v with the negative value of v (times
the impact coefficient) just before condition h < 0 becomes true (pre(v) returns
the left limit of variable v at the event instant).

Several formal specification approaches have been used to give semantics to
subsets of the Modelica language. Most of the approaches describe the instantia-
tion and flattening of Modelica models (i.e., the static semantics, corresponding
to the first stage in Fig. 1) [20,1,28] while others are restricted to discrete-time
language subsets [29].

Flat Modelica can be conceptually mapped to a set of differential, algebraic
and discrete equations of the following form [22, Appendix C]:

1. Continuous-time behaviour. The system behaviour between events is de-
scribed by a system of differential and algebraic equations (DAEs):

f
(

x(t), ẋ(t), y(t), t,m(te),mpre(te), p, c(te)
)

= 0 (1a)

g
(

x(t), y(t), t,m(te),mpre(te), p, c(te)
)

= 0, (1b)

where t denotes time; p is a vector of parameters and constants; x(t) is
a vector of dynamic variables of type Real and ẋ(t) is the vector of its



derivatives; y(t) is a vector of algebraic variables of type Real; m(te) is a
vector of discrete-time variables of type discrete Real, Boolean, Integer,
or String which changes only at event instants te; mpre(te) are the values
of m immediately before the current event at event instant te; and c(te) is a
vector containing all Boolean condition expressions, e.g., if-expressions.

2. Discrete-time behaviour. The behaviour at an event at time te is described
by following discrete equations:

m(te) := fm
(

x(te), ẋ(te), y(te),mpre(te), p, c(te)
)

(2)

c(te) := fe
(

mB(te),m
B

pre(te), p
B, rel(v(te))

)

. (3)

An event fires if any of the conditions c(te) change from false to true.
The vector-valued function fm specifies new values for the discrete variables
m(te). The vector c(te) is defined by the vector-valued function fe, which con-
tains all Boolean condition expressions evaluated at the most recent event te;
rel(v(te)) = rel([x(t); ẋ(t); y(t); t; m(te); mpre(te); p]) is a Boolean-typed
vector-valued function containing variables vi , e.g., v1 > v2, v3 ≥ 0; mB(te)
is a vector of discrete-time variables of type Boolean, mB(te) ⊆ m(te), and
mB

pre(te) are the values of mB immediately before the current event at event

instant te; pB are parameters and constants of type Boolean, pB ⊆ p.

Simulation means that an initial value problem (IVP) is solved. The equations
define a DAE which may have discontinuities and a variable structure and may
be controlled by a discrete-event system.

5 Theory of Hybrid Relations

We now proceed to describe our theory of hybrid relations to enable the def-
inition of a relational calculus for modelling sequential hybrid processes. Our
model unifies the treatment of discrete and continuous variables so that the
same operators may be used for manipulating both. In Modelica, DAEs are used
to describe continuously evolving dynamic behaviour of a system. Thus, in the
UTP, we first introduce a theory of continuous time processes that embeds tra-
jectories into alphabetised predicates and shows how continuous variables evolve
over a given interval. These intervals are used to divide up the evolution of a
system into piecewise continuous segments.

Our theory is based on vanilla UTP alphabetised relations, and so is insen-
sitive to termination and stability of continuous processes. Following the UTP
philosophy, we consider hybrid behaviour in isolation, and then later augment
it with additional structure to allow the finer expression of such properties. Our
theory can, for instance, be embedded into timed reactive designs [13,30].

Alphabet. Our model of continuous time introduces observational variables
ti, ti′ : R≥0 that define the start and end time of the current computation inter-
val, as in DC [35]. We also introduce the expression ℓ to denote the duration of
the current interval, where ℓ , ti′ − ti.



As already said, the alphabetised relational calculus divides the alphabet into
input inα(P) and output variables outα(P). Inspired by [15], we add a further
subdivision x, y, z ∈ conα(P), the set of continuous variables, that is orthogonal
to the discrete program variables, that is conα(P) ∩ (inα(P) ∪ outα(P)) = ∅.
The elements of conα(P) are the variables to be used in differential equations
and other continuous constructs.

We assume that all variables consist of a name, type, and optional deco-
ration. For example, the name in the variables x, x ′, and x is the same – x
– but the decorations differ. We introduce the distinguished continuous vari-
able t that denotes the current instant in an algebraic or differential equa-
tion. An alphabetised predicate P whose alphabet can be so partitioned, i.e.
α(P) = inα(P) ∪ outα(P) ∪ conα(P), is called a hybrid relation.

Continuous variables come in two varieties that allows us to talk about a
particular instant or about the whole time continuum:

– instant variables – these are continuous variables of type R that refer to the
value at a particular instant;

– trajectory variables – these are time-dependent variables of type R≥0 → R

and give the values over a whole trajectory.

Trajectory variables are total rather than partial functions. This has the ad-
vantage that composition operators need not consider explicit combination of
trajectories through overriding. Instead, composition further constrains the tra-
jectory functions, potentially over disjoint time domains (as is the case for ;).
Valuations of the trajectory exist outside [ti, ti′), but they have no relevance.

We require that each trajectory variable x : R≥0 → R is accompanied by
discrete before and after “copy” variables with the same name – x, x ′ : R – that
record the values at the start and limit of the current interval. This, crucially,
allows us to use the standard operators of relational calculus for manipulating
continuous variables via discrete copies. This allows us to consider the set of
purely discrete variables that are not discrete copies of a continuous variable:

disα(P) = {x ∈ inα(P) | x /∈ conα(P)} ∪ {x ′ ∈ outα(P) | x /∈ conα(P)}

We introduce the following @ operator borrowed from [6] that lifts a predicate
in instant variables to one in trajectory variables.

Definition 1. Continuous variable lifting

P @ τ , {x 7→ x(τ) | x ∈ conα(P) \ {t}} † P

The dagger (†) operator is a nominal substitution operator. It applies the given
partial function, which maps variables to expressions, as a substitution to the
given predicate, so that P[v/x] = {x 7→ v} †P. We construct a substitution that
maps every flat continuous variable (other than the distinguished time variable
t ∈ [ti..ti′)) to a corresponding variable lifted over the time domain. The effect
of this is to state that the predicate holds for values of continuous variables at a
particular instant τ , a variable that is potentially free in P. Each flat continuous
variable x : T is thus transformed to have a time-dependent function x : R → T
type. This operator is used to lift time predicates over intervals.



P,Q ::= P ; Q | P 2 b 3Q | x := e | P
∗

| Pω | ⌈⌈P⌉⌉ | 〈Fn | b 〉 | P [ b ]Q

Table 1. Signature of hybrid relational calculus

Healthiness conditions. We introduce two healthiness conditions:

HCT1 (P) , P ∧ ti ≤ ti′

HCT2 (P) , P ∧









ti < ti′ ⇒
∧

v∈conα(P)









∃ I : Roseq • ran(I ) ⊆ {ti . . . ti′}
∧ {ti, ti′} ⊆ ran(I )∧
∧ (∀n < #I − 1 •

v cont-on [In, In+1))

















where
Roseq , {x : seqR | ∀n < #x − 1 • xn < xn+1}

f cont-on [m,n) , ∀ t ∈ [m,n) • lim
x→t

f (x) = f (t)

HCT1 states that time may only ever go forward, as should be the case, and thus
the time interval is well-defined. HCT2 states that every continuous variable v
should be piecewise continuous, that is, that for non-empty intervals there exists
a finite number of points (range of I ) between ti and ti′ where discontinuities
occur. We define the set of totally ordered sequences Roseq that captures this set
of discontinuities, and the continuity of f is defined in the usual way by requiring
that at each point in [ti, ti′), the limit correctly predicts where the function goes.

HCT1 and HCT2 are idempotent, monotone, and commutative as they are
both conjunctive. We then have that HCT = HCT2 ◦ HCT1 also satisfies all
these properties. Furthermore it defines a complete lattice.

Theorem 1. HCT predicates form a complete lattice under
d

and
⊔

, with
⊤H = HCT(true) and ⊥H = false.

Proof. By conjunctivity of HCT . Properties of conjunctive healthiness condi-
tions are proved in [12]. ⊓⊔

6 Hybrid relational calculus

The signature of our theory is given in Table 1. It consists of the standard oper-
ators of the alphabetised relational calculus together with operators to specify
intervals ⌈⌈P⌉⌉, differential algebraic equations 〈Fn | b 〉, and preemption P [ b ]Q.
Using this calculus, we can describe the bouncing ball example from Fig. 2:

Example 1. Bouncing ball in hybrid relational calculus

h, v := 1, 0 ;
(〈

ḣ = v; v̇ = −9.81
〉

[ h < 0 ] v := −v · 0.8)
)ω

This hybrid program has two continuous variables for height h and velocity v.
Initially we set these two variables to 1 and 0, and then initiate the system
of ODEs. The system evolves until h < 0, at which point a discrete command
is executed that assigns −v · 0.8 to v, that is, the velocity is reversed with a
dampening factor. The system infinitely iterates, allowing the system dynamics
to continue evolving, but with new initial values. Such a system only requires an
ODE with no algebraic equations; to illustrate DAEs we give another example.



Example 2. Cartesian pendulum in hybrid relational calculus
〈

ẋ = u; u̇ = λ · x; ẏ = v; v̇ = λ · y − 9.81
∣

∣

∣ x2 + y2 = l2
〉

This system consists of four differential and one algebraic equation in terms of
the position (x, y), horizontal and vertical velocities u and v, and the length l
of the pendulum cable. The differential equations describe the horizontal and
vertical components of the pendulum’s movement vector, governed by the laws
of conservation of energy and gravity using a constant λ previously defined.
The algebraic equation ties x and y together through the Pythagorean theorem,
ensuring that the length of the cable must be respected by the movement. ⊓⊔

We note that many of the standard operators of the alphabetised relational
calculus retain their standard denotational semantics [18] in this setting, but
over the expanded alphabet. Indeed, an alphabetised relation is simply a hybrid
relation with the degenerate alphabet conα(P) = ∅. For continuous variables,
sequential composition behaves like conjunction. In particular, if we have P ; Q,
with P and Q representing evolutions over disjoint intervals, then their sequential
composition combines the corresponding trajectories when they agree on variable
valuations. Put another way, the final condition of P also defines the initial
condition for Q as in the Z schema composition operator.

Similarly, other operators like the Kleene star and Omega iteration operators
P

∗

and Pω, being defined solely in terms of sequential composition, disjunction
(internal choice), II, and fixed point operators, also remain valid in this context.
Thus we already have the core operators of an imperative programming language
at our disposal. We prove that these core operators satisfy our two healthiness
conditions in Isabelle (cf. section 7), but for now we state the following theorem.

Theorem 2. The following operators of relational calculus P ; Q, P 2 b 3Q,
P

∗

, II, x := v, and false are HCT closed.

The maximally nondeterministic relation true is of course not HCT healthy, and
so we supplement our theory with trueH , HCT (true). We define the interval
operator from DC [33] and our own variant.

Definition 2. Interval operators

⌈P⌉ , HCT2(ℓ > 0 ∧ (∀ t ∈ [ti, ti′) • P @ t))

⌈⌈P⌉⌉ , ⌈P⌉ ∧
∧

v∈conα(P)

(v = v(ti) ∧ v′ = lim
t→ti′

(v(t))) ∧ IIdisα(P)

⌈P⌉ is a continuous specification statement that P holds at every instant over
all non-empty right-open intervals from ti to ti′; it corresponds to the standard
DC operator. We apply HCT2 to ensure that all variables are also piecewise
continuous. In this setting we can use sequential composition P ; Q to express
the DC chop operator (P ◦ Q) to decompose an interval. Our additional interval
operator ⌈⌈P⌉⌉ pairs continuous variables with discrete variables at the start and
limit of the interval, whilst holding other discrete variables constant. The initial



⌈true⌉ = ℓ > 0 ⌈false⌉ = false

⌈P ∧ Q⌉ = ⌈P⌉ ∧ ⌈Q⌉ ⌈P ∨ Q⌉ ⊑ ⌈P⌉ ∨ ⌈Q⌉

⌈⌈P⌉⌉ ⊑ ⌈⌈P⌉⌉ ; ⌈⌈P⌉⌉

Table 2. Algebraic laws of durations

condition of each continuous variable x in the interval is constrained by the
valuation of the corresponding discrete copy x. Likewise, the condition at the
limit of the interval is recorded in the corresponding discrete after variable x ′.

Crucially, this provides a uniform view of discrete and continuous variables
when handled over an interval, and allows the use of standard relational opera-
tors for their manipulation. Moreover, by taking the limit rather than the final
value of a continuous variable we do not constrain the trajectory valuation at ti′

meaning it can be defined by a suitable discontinuous discrete assignment at this
instant. Following [14] we ground our definition of differential equation systems
in this interval operator. This will, for example, allow us to formally refine a
DAE, under given initial conditions, to a suitable solution expressed using the
interval operator. Intervals satisfy a number of standard laws of DC illustrated
in Table 2, which we prove in section 7.

We next introduce an operator, adapted from HCSP [34,21], to describe the
evolution of a system of differential-algebraic equations.

Definition 3. DAE system in semi-explicit form

〈 v̇1 = f1; · · · ; v̇n = fn | 0 = b1; · · · ; 0 = bm 〉

, ⌈⌈(∀ i ∈ 1..n, ∀ j ∈ 1..m • v̇i(t) = fi(t, v1(t), · · · , vn(t),w1(t), · · · ,wm(t)))

∧ 0 = bj(t, v1(t), · · · , vn(t),w1(t), · · · ,wm(t))⌉⌉

A DAE 〈Fn |Bm 〉 consists of a set of n functions fi : R × R
n × R

m → R each
of which defines the derivative of variable vi in terms of the independent time
variable t and n + m dependent variables. It also contains algebraic constraints
bj : R × R

n × R
m → R that must be invariant for any solution and do not

refer to derivatives. For m = 0 the DAE corresponds to an ODE, which we
write as 〈Fn 〉. The DAE operator is defined using the interval operator to be
all non-empty intervals over which a solution satisfying both the ODEs and
algebraic constraint exists. Non-emptiness is important as it means that a DAE
must make progress: it cannot simply take zero time since ℓ > 0, and so a DAE
cannot directly cause “chattering Zeno” effects when placed in the context of a
loop, though normal Zeno effects remain a possibility.

As previously explained, at the initial time (ti) each continuous variable vi of
the system is equated to the value of the corresponding discrete input variable vi .
To obtain a well defined problem description, we require the following conditions
to hold [2]: (i) the system of equations is consistent and neither underdetermined
nor overdetermined; (ii) the discrete input variables vi provide consistent initial
conditions (ICs7); (iii) the equations are specific enough to define a unique solu-
tion during the interval ℓ. The system is then allowed to evolve from this point in

7 Notice that in the general case ICs for DAE systems may actually involve derivatives
v̇i of vi [25]. Modelica supports the general case and sophisticated algorithms for



the interval between ti and ti′ according to the DAEs. At the end of the interval,
the corresponding output discrete variables are assigned. During the evolution
all discrete variables and unconstrained continuous variables are held constant.

Finally, we define the preemption operator, adapted from HCSP.

Definition 4. Preemption operator

P [B ]Q , (Q 2B @ ti3(P ∧ ⌈¬B⌉)) ∨ ((⌈¬B⌉ ∧ B @ ti′ ∧ P) ; Q)

Intuitively, P is a continuous process that evolves until the predicate B is sat-
isfied, at which point Q is activated. This operator is used to capture events in
Modelica. The semantics is defined as a disjunction of two predicates. The first
predicate states that, if B holds in the initial state of ti, then Q is activated
immediately. Otherwise, P is activated and can evolve while B remains false
(potentially indefinitely). The second predicate states that ¬B holds on the in-
terval [ti, ti′) until instant ti′, when B switches to a true valuation; during that
inverval P is executing. Following this, P is terminated and Q is activated.

7 Mechanisation in Isabelle/UTP

Our Isabelle [23] mechanisation serves two purposes: firstly it validates the model
by enabling us to prove algebraic laws, and secondly it enables theorem proving
for hybrid programs. It is based in a shallow embedding of the UTP8, which
provides direct proof automation through a combination of Isabelle/Circus [5]
and our own deep model [10]. UTP relations are represented by predicates over
bindings, and bindings over a given alphabet are represented using record types,
where each field corresponds to a variable. The model is based on a UTP ex-
pression type ( ′a, ′α) uexpr ranging over alphabet type ′α and with return type
′a. Alphabetised predicates ′α upred are expressions with a boolean return type,
and relations are predicates over a product type ( ′α × ′β) upred.

We mimic the syntax of UTP predicates as given in most standard publica-
tions (e.g. [18,4]). Where this is not possible, we supplement the same syntax
with an added subscript u. For example, equality in Isabelle “=” denotes HOL
equality, so we use =u for UTP equality. Input variable and output variable
expressions are written $x and $x´ respectively. We also make use of Isabelle’s
implementation of Cauchy real numbers and analysis [7,11]. Our proofs make
heavy use of Isabelle’s automated proof facilities like auto and sledgehammer [3].
This has allowed us to use Isabelle to validate the healthiness conditions and
definitions given in the previous sections. We prove that they respect appro-
priate laws, which increases confidence in the correctness of our UTP theory.

finding consistent ICs from “guess” values exist [2,24]. However, numerical/symbolic
methods for solving IVPs is not within the scope of our current work. Hence, we
only consider less general ICs and presume that consistent ICs are provided.

8 See https://github.com/isabelle-utp/utp-main/tree/shallow



This section has been compiled using Isabelle’s document preparation system:
all definitions and theorems have been mechanically verified9.

record ( ′d, ′c) hyst =
stateu :: ′d × ′c
timeu :: real
traju :: real ⇒ ′c

type-synonym ( ′d, ′c) hyrel = ( ′d, ′c) hyst hrelation

A hybrid state ( ′d, ′c) hyst represents the alphabet, or equivalently the state
of the hybrid relation, at a particular instant. We represent this using a record
with three fields: stateu denoting the state variables, timeu denoting the time,
and traju denoting the trajectory of continuous variables. The record type is
parametrised by the discrete portion of the alphabet, denoted by type ′d and the
continuous portion denoted by type ′c. The state field’s type is a product of the
discrete and continuous state, whilst the trajectory refers only to the continuous
state. Intuitively, this encodes the distinction between discrete and continuous
variables. A hybrid relation is then a homogeneous relation (hrelation) over the
hybrid state. We next give the healthiness conditions of our theory.

definition HCT1 (P) = (P ∧ $time ≥u 0 ∧ $time ≤u $time´)

HCT1 is broadly the same as in section 6, though we additionally require that
the initial time be no less than zero; this is due to our use of the standard type
real that also encompasses negative numbers.

definition HCT2 (P) =
(P ∧ ($time´ >u $time ⇒

(∃ I · {$time, $time´}u ⊆u ranu(I ) ∧ ranu(I ) ⊆u {$time .. $time´}u

∧ (∀ n · n <u #u(I ) − 1 ⇒ $traj cont−onu {I (|n|)u ..< I (|n+1 |)u}u)
∧ sortedu(I ) ∧ distinctu(I ))))

HCT2 also explicitly requires that the trajectory sequence I is both sorted and
distinct, which equates to it being linearly sorted as required.

definition HTRAJ(P) = (P ∧ $traj =u $traj´)

We also have to add an auxiliary healthiness condition HTRAJ. This allows us
to use standard HOL binary relations, where there is only inputs and outputs,
to represent hybrid relations. Specifically, we have two copies of the trajectory,
a before version and an after version and so this healthiness condition ensures
the trajectory remains constant throughout. Monotonicity and idempotence of
the healthiness conditions is proved by our automated relational calculus tactic.

With our healthiness conditions defined, we can proceed to define the opera-
tors. The basic operators, such as II and @ are elided here, and we instead focus
on the continuous operators. We first define the two interval operators.

definition

9 Our Isabelle/UTP theory development, including all omitted proofs, is available at
http://www.cs.york.ac.uk/~simonf/utp2016.



hInt P = HCT($time´ >u $time ∧ (∀ t ∈ {$time ..< $time´}u · P •u t))

Definition hInt corresponds to the interval operator ⌈P⌉, and has an almost
identical definition. In our mechanisation, an interval can be written as ⌈P⌉H

where P is a predicate with the time variable τ free.

definition

hDisInt P = (hInt P ∧ π1($state´) =u π1($state) ∧ π2($state) =u $traj(|$time|)u

∧ π2($state´) =u limu(x → $time´−)($traj(|x|)u))

Our modified interval operator ⌈⌈P⌉⌉, represented here by hDisInt conjoins the
standard interval operator with predicates that ensure that discrete variables
remain const and and that continuous variable copies match the initial value
in the trajectory, and the left limit of the trajectory at the end. Here πn is a
function that returns the nth element of a product, f LxMu represents function
application, and limu(x → t−) denotes the left-limit. This interval operator is
written ⌈| P |⌉H , again with τ free.

Next we define the operators for ODEs and DAEs. The first step is to for-
mally mechanise the notion of time derivatives (ẋ). Thus we define a predicate
hasDerivAt that relates ODEs to solution functions using the lifting package [19].

type-synonym ′c ODE = real × ′c ⇒ ′c

lift-definition hasDerivAt ::
(real ⇒ ′c :: real-normed-vector) ⇒ ′c ODE ⇒ real ⇒ ( ′a, ′b) relation
(- has−deriv - at - [90 , 0 , 91 ] 90 )

is λ F F ′ τ A. (F has-vector-derivative (F ′ (τ , F τ))) (at τ within {0 ..}) .

An explicit system of ODEs ( ′c ODE) is encoded as a function real × ′c ⇒ ′c,
where the real is the time parameter, and ′c is a vector of real variables. We
require that ′c be within the type class real-normed-vector of real vector spaces.
Isabelle’s Multivariate Analysis library contains a function has-vector-derivative
that relates a solution function F : R → R

n with its deriatives Ḟ : Rn at instant
τ within a particular range. It represents the Fréchet derivative of differential
equations in a vector space. We use this to define a construct F has−deriv F ′

at τ where F is a solution function, F ′ is the system of ODEs. This predicate is
accompanied by a large number of rules that can be used to certify derivatives of
polynomial functions. We now use these to encode operators for ODEs, DAEs,
and ODEs under an initial condition.

definition 〈F ′〉H = (∃ F · ⌈| F has−deriv F ′ at τ ∧ &conα =u F(|τ |)u |⌉H )
definition 〈F ′|B〉H = (〈F ′〉H ∧ ⌈|B|⌉H )
definition I |= 〈F ′〉H = (〈F ′〉H ∧ $traj(|$time|)u =u I)

We choose to implement ODEs and DAEs as separate constructs, as the defini-
tions are simpler, though equivalent to those in the previous section. An ODE
〈F ′〉H specifies that a solution function F to the given ODE must exist and that
at each point of the interval the values of all continuous variables (conα) track
this solution function. A DAE 〈F ′|B〉H is then simply an ODE constrained with
the algebraic predicate throughout the interval. We also provide a representation



of ODEs as explicit initial value problems by I |= 〈F ′〉H where I gives initial
values to all continuous variables.

Finally, we prove some key laws about our hybrid relational calculus. Firstly
we show that sequential composition is HCT closed, which partly validates our
healthiness conditions with respect to the standard relational calculus. This is
proved by an apply-style Isabelle proof which is omitted.

theorem seq-r-HCT-closed:
assumes P is HCT and Q is HCT
shows (P ; ; Q) is HCT
by (metis HCT-seq-r Healthy-def ′ assms(1 ) assms(2 ))

In order to demonstrate the use of ODEs in this framework, we take the ODE
from the bouncing ball example, and show how its solution can be expressed as
a refinement statement.

theorem gravity-ode-refine:
((v0, h0)u |= 〈λ (t, v, h). (− g, v)〉H ∧ $time =u 0 ) ⊑
(⌈| &conα =u (v0 − g·τ , v0·τ − g·(τ ·τ) / 2 + h0)u |⌉H ∧ $time =u 0 )

by (rel-tac ; rule exI ; auto ; vderiv-tac)

As in Example 1, we specify the ODE with two variables, v and h that
will give the velocity and height about the ground of the ball. We refine this
in the window time = 0 as it makes the solution simpler via an appropriate
conjunction. Given initial conditions of v0 and h0 for the respective variables,
solutions to the ODE equations are v0−g ·τ and (v0 ·τ−g ·τ2)/2+h0, respectively.
The solutions are proved correct in Isabelle automatically by application of our
relational calculus tactic rel-tac, followed by existential introduction (exI ) to
introduce the ODE solution, application of the auto tactic, and then finally
application of our own tactic vderiv-tac. This tactic recursively applies the set
of introduction for differentiation in an effort to show that a given ODE is the
derivative of a given solution. This example serves to demonstrate how a theorem
prover can reason about differential equations in terms of their solution intervals
making use of refinement and the Duration Calculus.

8 Modelica Semantics

In this section we give a semantics for flat Modelica whose models are given by
a set of conditional differential, algebraic, and discrete equations. More specifi-
cally, we assume that a Modelica model consists of a set of dynamic variables x,
algebraic variables y, and discrete variables q, and

– a set of k ∈ N>0 conditional DAEs, consisting of:
• differential equations ẋ = Fi(x, y, q) for i ∈ 1..k;
• algebraic equations y = Bi(x, y, q) for i ∈ 1..k;
• boolean DAE guards Gi(x, y, q) for i ∈ 1..k − 1, that give the conditions

under which the corresponding set of differential and algebraic equations
is active in terms of the values of discrete and continuous variables at



initialisation or the previous event. We assume that at least one set of
equations is active at any time;

– a set of l ∈ N boolean event conditions Ci(x, y, q) for i ∈ 1..l, that trigger
an event when changing value. These must be specified in terms of the core
Modelica relational operators, namely ≤, <, =, and 6=;

– a set of m ∈ N conditional discrete equation blocks, consisting of:

• n boolean discrete-event guards Hi,j(x, y, q, qpre) for i ∈ 1..m, j ∈ 1..n;

• n discrete equations / algorithms Pi,j(x, y, q, qpre) for i ∈ 1..m, j ∈ 1..n.
We assume the discrete equations are sorted into a suitable sequence.

Each conditional DAE describes a possible continuous behaviour using a col-
lection of differential and algebraic equations. The particular behaviour to be
executed is chosen based on the evaluation of the guards, which take as input
the valuations of the discrete and continuous variables at the (re)start of the
continuous evolution. The possible events that can occur are described by a
collection of boolean event conditions, which act as guards that can stop the
continuous evolution. Once one or more of these guards changes value an event
is fired, and possible discrete behaviour is executed. Usually such guards are
implemented in terms of a zero crossing function, though our semantics specifies
them abstractly. The appropriate discrete behaviours are then chosen through a
collection of discrete event guards, and the resulting behaviour by an appropriate
discrete equation that may be specified by a suitable algorithm.

M = Init ; (DAE [Events ]Discr)ω

Init = x, y, q := u, v,w

DAE =
〈

x = F1(ẋ, y, q)
∣

∣B1(x, y, q)
〉 2G1 3 · · ·

2Gn−1 3 〈

ẋ = Fn(x, y, q)
∣

∣Bn(x, y, q)
〉

Events =
∨

i∈{1..k}

Ci(x, y, q) 6= Ci(x, y, q)

Discr = var qpre •

until qpre = q do

qpre := q ;

P1,1(x, y, q, qpre)2H1,1(x, y, q, qpre)3P1,2(x, y, q, qpre)2 · · · ; · · · ;

Pm,1(x, y, q, qpre)2Hm,1(x, y, q, qpre)3Pm,2(x, y, q, qpre)2 · · · ;

od

Fig. 3. Overall semantics of a Modelica model M

We give the semantics for such a Modelica model M, which is shown in
Fig. 3, in terms of four main definitions.

Init denotes the initialisation phase of a Modelica model, where initial values
are assigned to the discrete and continuous variables. For now, we assume that
initial values u, v, and w can be unambiguously assigned to each. Following
initialisation, an infinite loop is entered representing the main body of behaviour.



DAE denotes the conditional system of differential and algebraic equations
active during the continuous evolution of the model. It is represented by a con-
ditional predicate that selects an appropriate set of differential and algebraic
equations based on initial values of discrete and continuous variables.

Events denotes the event preemption condition, and is a disjunction of all
possible event conditions (“relations” in Modelica terminology) in the Modelica
model. In this way, the DAE remains active until one of the event conditions
changes from its initial value, at which point it is preempted.

Finally, Discr describes possible discrete behaviour to be executed during
event iteration; a finite event loop adapted from the pseudo code given on page
263 of [22]. The initial value of all discrete variables is first copied by creation of
a local variable qpre that holds the initial value of q. Each conditional discrete
equation is then evaluated, which may lead to updates to q, and then the pro-
cedure iterates. The event iteration terminates when no more updates to q are
made: a fixed point is reached. In Modelica the existence of a fixed point is not
guaranteed and event iteration can potentially lead to an infinite loop.

To illustrate, we use the bouncing ball Modelica example from Fig. 2. It has
continuous variables representing the height of the ball above the ground h and
the velocity of the ball v. For giving a semantics to this we convert the when

expression to an if expression, so we need only consider semantics of the latter,
using the conceptual mapping in section 8.3.5.1 of [22], which will yield:

c = h <0;

if (c and not(pre(c))) then

reinit (v, -0.8* pre(v));

end if;

An additional variable c of type Boolean is added, and assigned the condition
of the when statement. The when equation itself is replaced by an if equation
whose condition is that c is true now, and was not true previously – i.e. it has
become true at the current instant. We can now give the semantics of this model.

Example 3. Bouncing ball semantics in hybrid relational calculus

h, v, c := 1, 0, false ;

(
〈

v̇ = −9.81; ḣ = v
〉

[(h < 0) 6= (h < 0)]
var cpre •

until (cpre = c)do

cpre := c ; c := h < 0 ;
v := −0.8 · v 2 c ∧ ¬cpre 3 II

od)ω

We assign initial values for the three variables, and assume that the condition c is
false initially. The DAE is then activated and evolves until the valuation of the if

guard h < 0 at time t is different from the initial value, that is (h < 0) 6= (h < 0).
We note that h and h are two different variables: h denotes h at time t, whilst h



denotes its value at the beginning of the present DAE evolution, so the inequality
corresponds to the value of this boolean guard changing. At this point, the
event iteration begins. We create a variable to denote the previous value of c,
and then enter into the event loop. We then assign c to cpre, and evaluate the
discrete equations. First of all, we evaluate the new value of c, which is the
event condition. Secondly, if c is true and different from its previous value, we
also update v, otherwise we skip. The loop terminates once the value of c has
stablised (which it has in the second iteration). Following this, we iterate the
whole loop and restart the DAE with the new initial values.

This example serves to illustrate the behaviour of a Modelica model in the
hybrid relational calculus. Our preliminary semantics considers a fragment of
the event handling mechanism, excluding practical problems of initialization
and numerical integration of DAEs. Present limitations include the separation
of continuous and discrete equations during the event handling mechanism. More
complete Modelica semantics require to solve a mixed system of the discrete and
continuous equations during events. We will consider these in future iterations
of this semantics, define a more complete translation, and apply it to more
substantive examples.

9 Conclusions

We have presented a denotational semantics for the dynamical systems mod-
elling language Modelica, in terms of a hybrid relational calculus that has been
mechanised in Isabelle. The semantics elaborates the event iteration system,
showing how continuous evolution transitions to discrete behaviour and vice-
versa. Nevertheless, our translation is currently relatively informal and thus in
future work we will define a comprehensive mapping from Modelica to hybrid
relations, including its expression language and collection of imperative language
constructs. We will also combine our theory of hybrid relations with timed reac-
tive designs [13] to provide a rich semantic model providing termination, stability,
and concurrency in the form of CSP.

This work supports the goals of a large EU project called INTO-CPS10,
which aims at building an integrated tool-chain for model based development of
Cyber-Physical Systems. This tool-chain will support the integration of hetero-
geneous discrete and continuous system models through the Functional Mockup
Interface [8] (FMI), a language that allows the composition of continuous time
and discrete event models, and their concurrent simulation to support empiri-
cal evaluation. We will use our UTP theory of hybrid relations combined with
timed reactive designs to develop a common semantic domain into which all
these language can be mapped and verified.

We also plan to further experiment with theorem proving in Isabelle, for
example through a mechanisation of Hybrid Hoare Logic [37]. As stated in sec-

10 An Integrated Tool-chain for Model-based Design of Cyber-Physical Systems. EU
H2020 grant agreement 644047. http://into-cps.au.dk/



tion 8, Modelica does not guarantee that even iteration terminates and so we
could use such a prover, in the context of reactive designs, to verify termination.
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