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A modelling framework to simulate river flow and pesticide loss via preferential flow 1 

at the catchment scale 2 

M.L. Villamizar
1
, C.D. Brown 3 

Environment Department, The University of York, Heslington, York, YO10 5NG, UK 4 

Abstract 5 

A modelling framework with field-scale models including the preferential flow model MACRO was 6 

developed to simulate transport of six contrasting herbicides in a 650 km
2
 catchment in eastern 7 

England. The catchment scale model SPIDER was also used for comparison. The catchment system 8 

was successfully simulated as the sum of multiple field-scale processes with little impact of in-9 

stream processes on simulations. Preferential flow was predicted to be the main driver of pesticide 10 

transport in the catchment. A satisfactory simulation of the flow was achieved (Nash-Sutcliffe model 11 

efficiencies of 0.56 and 0.34 for MACRO and SPIDER, respectively) but differences between 12 

pesticide simulations were observed due to uncertainties in pesticide properties and application 13 

details. Uncertainty analyses were carried out to assess input parameters reported as sensitive 14 

including pesticide sorption, degradation and application dates; their impact on simulations was 15 

chemical-specific. The simulation of pesticide concentrations in the river during low flow periods 16 

was very sensitive to uncertainty from rain gauge measurements and the estimation of 17 

evapotranspiration. 18 

Highlights 19 

 The catchment system can be simulated as the sum of multiple field-scale processes 20 

 Pesticide concentrations in stream flow were driven by field-scale processes 21 

 In-stream processes had little effect on simulations 22 

 Uncertainties in rain gauge recording affected the simulation of low-flow periods 23 

 SPIDER simulates important lateral flow losses that can occur when drains are not flowing 24 

Keywords: Pesticide; preferential flow; MACRO; SPIDER; in-stream; catchment 25 

1 Introduction 26 

Modelling the fate of pesticides at the catchment-scale is an important tool for pesticide management 27 

to gain insight into behaviour at this scale and to evaluate the impact of different management 28 
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practices. Pesticide loss through subsurface drainage (when tile drains are present) is a dominant 29 

route for pesticide transport to surface waters with surface runoff also locally important (Harris and 30 

Catt, 1999; Johnson et al., 1996). Heavy clay soils with artificial drainage frequently exhibit 31 

pesticide transport via preferential flow, causing surface water contamination (Brown et al., 1995; 32 

Johnson et al., 1996). 33 

The model of water flow and solute transport in macroporous soil, MACRO (Jarvis et al., 1991), is 34 

the most widely used preferential flow model at the field scale in Europe. A few studies have applied 35 

field-scale models in catchment modelling by considering that the fate of pesticides in the catchment 36 

would be the result of the sum of multiple field-scale processes (Lindahl et al., 2005; Tediosi et al., 37 

2013). Monitoring studies of diffuse water pollution by pesticides at different hydrological scales 38 

have shown that pesticide losses normally occur as pulses of fluctuating concentrations with 39 

similarities in their pattern; thus, patterns (but not magnitude) of concentrations measured in a small 40 

receiving water body adjacent to an arable field are broadly conserved in terms of the timing and 41 

duration of peaks when the same pesticide is monitored further downstream (Brock et al., 2010). 42 

These patterns of peak concentrations are largely dependent on rainfall behaviour, suggesting that 43 

processes occurring within the river network may not be a major influence on the timing and 44 

magnitude of peak pesticide concentrations in surface waters at larger scales. 45 

Coupling fate models involves combining more than one model in order to establish a modelling 46 

framework that can simulate a broader system than can any of the component models in isolation 47 

(Zhu et al., 2013). In this paper a modelling framework was developed by combining hydrological 48 

and fate models in an attempt to simulate various pathways of water flow and their associated 49 

pesticide losses in the Wensum catchment in the eastern region of the UK. The Wensum is one of the 50 

six priority catchments in England and Wales targeted under the Catchment Sensitive Farming 51 

programme (CSF), to reduce diffuse water pollution by pesticides. Regular pesticide monitoring has 52 

been undertaken since 2006 to evaluate the effectiveness of the management actions. The modelling 53 

framework using MACRO aimed to test whether the catchment system can be simulated as the sum 54 

of multiple field-scale processes. 55 

The catchment scale model SPIDER is a preferential flow model that simulates hydrological flow 56 

and pesticide fate in small catchments (Renaud et al., 2008). In contrast to field-scale models like 57 

MACRO, SPIDER considers spatial variability of soils, crops and pesticide usage in the catchment to 58 

simulate the effect of the transport and sorption of pesticides in the river network. SPIDER was also 59 

applied to the Wensum to compare results from a catchment model to the modelling framework 60 

using a field-scale model. 61 
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Despite the importance of uncertainty analyses, very few pesticide modelling studies include them in 62 

their results. Physically-based hydrological and pesticide transport models require a large amount of 63 

input data from the study area that are not always known with certainty (Sohrabi et al., 2002). 64 

Depending on the level of accuracy needed and the sensitivity of the model, parameters can be left at 65 

their default values, taken from databases, derived from empirical equations or estimated using 66 

expert judgment; any of these procedures will introduce uncertainty into the model, in addition to the 67 

simplification of the physics and processes by a model conceptualisation (Dubus et al., 2003). These 68 

uncertainties are responsible for reducing the predictive capacity of the simulation, providing results 69 

that differ from reality. In addition, different sources of uncertainty can magnify the overall 70 

uncertainty of the outputs (Zhang et al., 1993). An uncertainty analysis of key sources of uncertainty 71 

in the input parameters was also included to assess their impact on model simulations. 72 

2 Methods 73 

2.1  Site description and data acquisition 74 

The Wensum catchment is located in the eastern region of the UK, to the north west of Norwich and 75 

covers an area of approximately 650 km
2
. The River Wensum flows approximately 78 km through 76 

the county of Norfolk from Colkirk Heath to its confluence with the River Yare in Norwich (Figure 77 

1). The monitoring point located at Sweet Briar Road Bridge (National Grid Reference: TG 206 095) 78 

defined the simulated catchment. Slowly permeable soils with tile drainage systems located on the 79 

river valley (Beccles and Burlingham associations) constitute the main soils in the catchment (Hodge 80 

et al., 1984), accounting for 57% of the catchment area. At the top of the catchment, the soils are a 81 

combination of well-drained loamy soils (Barrow) with patches of sandy soils (Newport), whilst the 82 

Newport association predominates at the base of the catchment. The floodplains are dominated by 83 

peaty soils (Adventurers) and loamy and sandy soils with naturally high groundwater and peaty 84 

surface layers (Isleham). Meteorological data from the closest stations to the catchment were used 85 

including Norwich Airport (hourly rainfall), Wattisham (hourly solar radiation and daily maximum 86 

and minimum temperature) and Marham (hourly wind speed and vapour pressure) (Figure A–1). 87 

Physicochemical properties of the pesticides used in the models were taken from typical values 88 

reported in the literature (Table A–1). Reported mean values of the soil-water partition coefficient 89 

normalised to soil organic carbon content (Koc) were used in the model; the exception was for 90 

propyzamide where the reported Koc was very large (840 ml g
-1

). Pedersen et al. (1995) reported soil-91 

water partition coefficient (Kd) values for various soils with different organic carbon contents. Based 92 

on the organic carbon content of Beccles (1.7%) and Burlingham (1.4%), Kd values of 4.96 and 4.09 93 

ml g
-1

, respectively, were estimated by extrapolation of the reported data. These Kd values 94 
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correspond to an average Koc value of 292 ml g
-1

 that was then used in the model to improve the 95 

simulation of propyzamide. 96 

The simulated crops were winter wheat (WW) and oilseed rape (OSR) as they are the main crops 97 

present in the catchment and all of the pesticides simulated are applied to one or both crops. Generic 98 

crop parameters were taken from FOCUS (2000) Châteaudun scenario, except for dates of growth 99 

stages for WW which were modified to agree with typical growing information for the UK. Crop 100 

areas (Table A–2) and pesticide usage (Table A–3) reported biannually by crop and pesticide type as 101 

the total area treated with pesticide (in ha) and total pesticide weight applied (in kg) for the Eastern 102 

region were used to determine the proportion of crop area treated with pesticides and the application 103 

rates by assuming that the usage in the catchment would match that in the region. Dilution from 104 

untreated areas was implicitly included by calculating average application rates for the whole 105 

catchment for each of the pesticides simulated. 106 

Measured data on water flow and pesticide concentrations in the River Wensum used for the model 107 

evaluation were supplied by the Environment Agency of England and Wales. Water flow was 108 

measured at the gauging station at Sweet Briar Bridge with 15-minute resolution and reported as 109 

daily mean flow. The frequency of water samples collected for pesticide analysis varied during the 110 

year but was usually twice a week (CSF, 2012). Grab water samples were also collected at Sweet 111 

Briar Road Bridge and sent for analysis by the UK National Laboratory Service using accredited 112 

methods developed to analyse suites of pesticides in natural waters. Table A–4 shows the limit of 113 

quantification for each pesticide as these changed during the studied period. 114 

2.2 MACRO model parameterization 115 

MACRO is a one-dimensional physically-based model of water flow and solute transport that divides 116 

the soil porosity into two flow domains, micropores and macropores. A full description of the 117 

governing equations and the model parameters has been given elsewhere (Jarvis et al., 1991). 118 

MACRO 5.2 was used to simulate water flow and pesticide loss through deep percolation and tile 119 

drainage. A modelling framework using MACRO was developed to simulate river flow in the 120 

Wensum which included a groundwater mixing model to simulate the baseflow behaviour of the 121 

river and to allow leaching water and pesticide in the saturated zone to mix before being routed to the 122 

river.  123 

Urban areas are reported to account for approximately 2% of the Wensum catchment (Sear et al., 124 

2006); however, this information refers to major urban areas, not taking into account roads, farms 125 

and small villages. For modelling purposes it was estimated that the total developed (constructed) 126 

areas would be about 4% of the catchment. In the model, it is considered that 50% of the rainfall 127 
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from hard surfaces will enter the river network as rapid runoff. Surface runoff was the only source of 128 

flow considered from the developed areas. 129 

Comparison of river flow with modelling using RZWQM (Ma et al., 2004) and PRZM (Carsel et al., 130 

1985) suggested that surface runoff from arable land was not a significant process in the catchment, 131 

so neither model was included in the framework (Villamizar, 2014). Other inflow and outflow 132 

sources (such as water abstraction, irrigation and sewage discharge) were assumed to have little 133 

impact on the hydrograph. Modelling results for the different pathways of water flow were scaled-up 134 

to the entire catchment using an area-weighted average approach based on soil type. The conceptual 135 

scheme in Figure 2a) summarises this strategy. Travel time was ignored, assuming that there is no 136 

delay (larger than a day) between flow leaving the field and arriving at the catchment outlet. 137 

An important aspect of flow estimation is the calculation and incorporation of the baseflow 138 

component of the hydrograph. Baseflow is primarily generated from groundwater discharge into the 139 

river network which depends on regional hydrological conditions. A simple groundwater mixing 140 

model was developed to simulate the baseflow in the Wensum catchment and the transfer of 141 

pesticide that could reach the groundwater by leaching. The groundwater mixing model, 142 

implemented via a spreadsheet calculation, performs a simple mass balance of water flow and 143 

pesticide mass at a daily time step (Figure 2b and Equation 1). Input data are the simulated inflow 144 

volume of deep water recharge (Vi,t in m
3
) and pesticide leaching mass that reaches the groundwater 145 

(mi,t in mg), predicted by MACRO at a daily time-step (𝑡 ≥ 1 𝑑𝑎𝑦). The aquifer is represented as a 146 

mixing tank (T) with the same base area as the catchment. The daily volume of water (VT,t), pesticide 147 

mass (mT,t) and concentration (CT,t) in the aquifer are also calculated on a daily basis (in m
3
, mg and 148 

mg m
-3

, respectively). The outputs (o) from the model are the volume of water (Vo,t), pesticide mass 149 

(mo,t) and concentration (Co,t) outflow (in m
3
, mg and mg m

-3
, respectively) moving from the 150 

groundwater (or tank) to the river at the rate of the outflow factor, OF, which was set at a constant 151 

value. The outflow factor and the initial tank volume (VT,1) were set by manual trial-and-error 152 

calibration against Nash-Sutcliffe model efficiency coefficients plus visual comparison to match 153 

measured flow during periods dominated by baseflow and the flow at the beginning of the 154 

simulation, respectively. Pesticide degradation and sorption in the saturated groundwater zone are 155 

assumed to be negligible within the model. 156 
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Soil profiles for each simulation were divided into 60 layers. The only soils requiring tile drainage 160 

systems were Beccles and Burlingham. Initial moisture content in the different horizons at the start 161 

of the simulations was set to field capacity. A constant hydraulic gradient was used as the bottom 162 

boundary condition in the model. Input values were established from a combination of guidance on 163 

how to parameterise MACRO (Beulke et al., 2002; FOCUS, 2000) as follows: the boundary water 164 

tension between micropores and macropores (CTEN) for each horizon was selected from suggested 165 

values based on clay content. Then, their respective water content values (XMPOR) were derived 166 

from water release curves measured on intact cores in the laboratory (water content at zero suction) 167 

(Hallett et al., 1995) by interpolation between the two points of the water release curve closest to 168 

CTEN; the boundary conductivity (KSM) was calculated from CTEN and XMPOR using the 169 

equation proposed by Laliberte et al. (1968) and Jarvis et al. (1997) and the pore size distribution 170 

factor for macropores (ZN) was initially established by expert judgement and then adjusted by model 171 

calibration. 172 

Only very limited calibration of crop and soil parameters was carried out to improve the simulation 173 

of the flow recovery at the end of low-flow periods. Maximum root length was decreased to reduce 174 

soil water extraction from deeper layers. Soil parameters for Beccles and Burlingham were calibrated 175 

to increase water infiltration capacity by facilitating the movement of water in the soil profile. The 176 

modified parameters were the tortuosity/pore size distribution factor for macropores (ZN) and the 177 

effective diffusion path length (ASCALE). ZN was reduced by 1.0 for all horizons in Beccles and by 178 

0.5 for the first two horizons in Burlingham. For Burlingham, ASCALE was increased to 10 for the 179 

first horizon since the original value of 5 was relatively small (common values range between 10 and 180 

40). ZN is a sensitive parameter that influences preferential flow and cannot be measured directly; 181 

hence, systematic calibration is normally required (Beulke et al., 2002). 182 

2.3 SPIDER model parameterization 183 

The preferential flow model SPIDER simulates pesticide loss into surface water from the most 184 

important routes of pesticide entry which are spray drift, drainflow, surface runoff and lateral flow 185 

(lateral transport within the soil profile); a detailed description of the model is presented by Renaud 186 

et al. (2008). The catchment is described in the model as a series of land blocks (with similar soil and 187 

land use) and stream reaches interconnected according to the possible pesticide entry pathways 188 

which may be specified by the user. The model enables representation of the spatial variability of the 189 

catchment. In order to simulate pesticide transport in the soil profile in SPIDER, the soil porosity is 190 
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divided into two pore domains (macropores and micropores). This is a similar approach to MACRO, 191 

but simplified to enable a reasonable simulation time at an hourly resolution at the catchment scale, 192 

and also to simplify the parameterisation process. Then, vertical and lateral movement of water is 193 

triggered by soil moisture exceeding field capacity. The water balance (mm for and mm h
-1

 for all 194 

other terms) at an hourly time step t is calculated from Equation 2: 195 

1 ,t t soil t t t t t t tR Ir ETa P LM D Ru            (2) 196 

where is the soil water content, Rsoil and Ir are the amount of rainfall and irrigation, respectively, 197 

ETa is actual evapotranspiration, P is percolation through the soil profile, LM is lateral flow, D is 198 

drainage via tile systems, and Ru is surface runoff (Renaud et al., 2008). Daily reference 199 

evapotranspiration (ETr) is first calculated with the FAO Penman-Monteith equation; then hourly 200 

ETr values are assumed to be the same for each hourly interval during daylight hours and hourly ETa 201 

is calculated from the crop and water stress coefficients following Allen (1998). Percolation above 202 

any drained soil layer is calculated to include preferential flow where soil wetness exceeds a 203 

threshold water tension at which macropore flow is initiated. Loss of water from the base of the 204 

profile is controlled by a groundwater recharge value in the deepest layer of the soil profile specified 205 

by the model user. If soil water content after percolation is greater than soil water at field capacity, 206 

excess water can be removed as lateral flow for layers above the bottom elevation of a reach. Lateral 207 

flow is described by the kinematic storage model of Sloan and Moore (1984) using the lateral 208 

hydraulic conductivity, flow velocity, soil depth, slope angle and field length. Drainage is generated 209 

in the model when the layer below the drained horizon is saturated and the soil water content is 210 

greater than the field capacity in the drained horizon, or when the water table reaches the drained 211 

horizon. Surface runoff is simulated when rainfall intensity exceeds the saturated hydraulic 212 

conductivity of the soil or when rain falls on an already saturated soil. 213 

The general equation of the soil pesticide balance to calculate the pesticide load (mg for PestL and 214 

mg h
-1

 for all other terms) at an hourly time step t for each layer is given by Equation 3. 215 

1t t t t t t t tPestL PestL IL PL SDL RL DrL LFL         (3) 216 

where PestL is the pesticide load in the layer, IL is the load from either application or a layer above, 217 

PL is load from percolation, SDL is the pesticide degraded in the soil, RL is the load from runoff, 218 

DrL is load from drainage, and LFL is load from lateral flow. Any pesticide transferred from a field 219 

into a stream reach is then transported with water flow into consecutive segments up to the 220 

catchment outlet. Water flow is routed using the Muskingum method. Pesticide mass balance in 221 

stream reaches accounts for pesticide inputs from land blocks, pesticide sorption to stream 222 
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sediments, degradation, losses by percolation and transport to the next stream reach (Renaud et al., 223 

2008). 224 

The Wensum catchment was described in SPIDER by dividing the river network into 24 stream 225 

reaches and the catchment area into 44 land blocks according to their soil association and their 226 

location relative to the river sections (Figure A–2). The assumption of relatively homogeneous 227 

conditions within these landscape elements is a prerequisite for the approach. Water lost as recharge 228 

was used as input to the groundwater mixing model to include the baseflow component of the 229 

hydrograph. The saturated vertical and lateral hydraulic conductivities of the soil as well as the 230 

hydraulic conductivity at field capacity were set to be calculated by the pedotransfer functions in 231 

SPIDER (Evans et al., 1999). The saturated hydraulic conductivity of the sediment layer was 0.5 232 

mm/h and the sediment bulk density, 0.8 g/cm
3
. Effective sediment thickness for interaction with 233 

pesticide was initially set to 3 mm but then was calibrated to a value of 1 mm to reduce total 234 

pesticide sorption to the sediment. Apart from pesticide degradation in the soil, SPIDER also 235 

simulates degradation in the river network so degradation values in water and sediment must be 236 

supplied to the model (Table A–5). 237 

Model calibration was applied to SPIDER in order to improve the simulation of the water flow by 238 

adjusting the water balance to increase the predicted flow in the river network (i.e. increasing 239 

percolation and drainflow volumes and reducing evapotranspiration). Evapotranspiration coefficients 240 

for all crops were reduced taking into account winter conditions in the Wensum which is prone to 241 

freezing during this period. The new values were selected according to ranges reported by Allen 242 

(1998).  243 

2.4 Model evaluation 244 

Modelling results were evaluated using visual comparison against the observed flow and pesticide 245 

concentrations and from calculation of the Nash-Sutcliffe model efficiency coefficients (NSE; (Nash 246 

and Sutcliffe, 1970). NSE values for the simulated flow were calculated on a daily and average daily 247 

time-step (t) for MACRO and SPIDER, respectively for each hydrological year (September 1
st
 to 248 

August 31
st
) using Equation 4. 249 

𝑵𝑺𝑬 = 𝟏 − ∑ (𝑸𝒐𝒕 −𝑸𝒎𝒕 )𝟐𝑻𝒕=𝟏∑ (𝑸𝒐𝒕 −�̅�𝒐)𝟐𝑻𝒕=𝟏   (4) 250 

where 𝑄𝑜𝑡  and 𝑄𝑚𝑡  are the observed and modelled flow at time t, respectively; and �̅�𝑜is the observed 251 

mean value. NSE values can range from -∞ to 1. An efficiency of NSE = 1 corresponds to a perfect 252 

match between the model and the observed data. A model efficiency of NSE = 0 indicates that the 253 
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simulation is as accurate as the mean of the observed data, whereas simulations with NSE <0 occur 254 

when the observed mean is a better predictor than the model. Therefore, the best simulation results 255 

would have positive efficiency values near to one. 256 

Comparisons between pesticide results were carried out on the simulated loads and maximum 257 

concentrations for each hydrological year (matching a crop year running September 1 – August 31) 258 

during the simulation period (2007-2011). The observed pesticide load was calculated from the daily 259 

measured pesticide concentration and water flow using Equation 5 when the concentration was 260 

above the LOQ.  261 𝑃𝑒𝑠𝑡𝐿 =  𝑄 ∙ 𝑃𝑒𝑠𝑡𝐶 ∙ 10−6  (5) 262 

where PestL is the daily pesticide load in kg, Q is the daily water flow in m
3 

and PestC is the 263 

measured daily pesticide concentration in g l
-1

 multiplied by a conversion factor of 10
-6

. Daily 264 

simulated loads were first calculated and then added together to estimate the annual simulated load 265 

from SPIDER and MACRO for each crop year for the period 2007-2011. 266 

Additional assumptions were made to calculate pesticide loads on days when the pesticide 267 

concentration was reported to be below the limit of quantification (LOQ). A limit value of 0.001 g 268 

l
-1

 was used to define the minimum pesticide concentration that was taken into account for the 269 

calculations. This value is set as the smallest of the LOQ reported for the studied pesticides (Table 270 

A–4). Then, the assumptions made for calculating the loads for these days were: 271 

1) For days when the models (SPIDER or MACRO) simulated a pesticide concentration below a 272 

value of 0.001 g l
-1

, the measured and the simulated concentrations were assumed to be zero. It 273 

was considered that if pesticide was neither detected in the sample nor simulated by the models, 274 

it is very unlikely that pesticide was actually present in the water. 275 

2) For days when either of the models simulated a concentration above 0.001 g l
-1

, the measured 276 

concentration was (arbitrarily) assumed to be 25% of the LOQ. This means that if one of the 277 

models predicts a pesticide concentration above the set limit of 0.001 g l
-1

 but it is not 278 

analytically quantified in the samples, there is reasonable probability that the pesticide was 279 

present in the water at a concentration smaller than the LOQ. 280 

2.5 Uncertainty analysis 281 

Model performance in the simulation of pesticide concentrations can be affected by several sources 282 

of uncertainty in the input parameters in addition to the simplification of the physical description and 283 

processes inherent to the model (structural error), the spatial scale and the temporal discretisation 284 



10 

 

applied in the simulations. The influence of uncertainties on model results varies depending on the 285 

sensitivity of the parameters; higher uncertainties on the most sensitive parameters would generate a 286 

greater impact on the accuracy of the simulation. Sensitivity analysis of pesticide fate models 287 

including SPIDER and MACRO have shown that simulations are greatly influenced by the quality 288 

and adequacy of precipitation data (Dubus and Brown, 2002; Renaud and Brown, 2008), pesticide 289 

sorption and degradation parameters (Dubus and Brown, 2002) and pesticide usage details, 290 

particularly application dates (Boithias et al., 2014; Holvoet et al., 2005).  291 

For many years, the UK Meteorological Office (2010) has used the tipping-bucket rain gauge for the 292 

automatic recording of rainfall. Uncertainties from tipping-bucket gauges depend mainly on 293 

precipitation intensity and timescale (Ciach, 2003; Wang et al., 2008). Ciach (2003) estimated errors 294 

in rainfall data using tipping-bucket rain gauges for different timescales applying non-parametric 295 

regression tools; a standard error of 10% was obtained for hourly recordings and rainfall intensities 296 

similar to those observed at Norwich Airport. The effect of this uncertainty in model input was 297 

investigated by running simulations with consistently ±10% of the measured hourly rainfall data.  298 

Although, there are typical application dates reported for pesticides, actual application can vary 299 

depending on several factors such as the weather, recommendations on pesticide application and 300 

different crop types that the product can be applied to (Gericke et al., 2010). Actual information on 301 

pesticide usage in large catchments is seldom available and is difficult to obtain (Boithias et al., 302 

2014; Dubus et al., 2003). An uncertainty analysis into the effect of the use of typical application 303 

dates in the model was undertaken for five of the six pesticides; the exception was MCPA since the 304 

observed emissions mainly occurred during summer periods when very little or no drain flow was 305 

simulated by both models. Carbetamide and propyzamide are post-emergence herbicides with 306 

residual action usually applied to OSR between the middle of October and the end of February. The 307 

recommendation is not to apply if heavy rain is expected within 48 hours and if drains are flowing or 308 

are about to flow. Assuming that farmers had followed these recommendations, SPIDER and 309 

MACRO were run varying the application date in intervals of 5 days by analysing the rainfall 310 

patterns during the crop season. Simulations for chlorotoluron and mecoprop, herbicides mostly 311 

applied on cereals during the autumn-winter period, were run between late October and November 312 

with 5-day intervals. Clopyralid is a herbicide with a variety of uses in crops and grassland usually 313 

applied during the spring. Simulations for this pesticide were run with a combination of two 314 

application dates from late February to early March together with an application in May. 315 

The effect on pesticide simulations due to uncertainties in the use of average reported pesticide 316 

sorption and degradation values was evaluated by running different simulations for four of the six 317 
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pesticides and comparing with the original simulation. The selection criteria for inclusion was 318 

availability of average and range in sorption and degradation values from regulatory studies within 319 

the pesticide properties database (PPDB) (Lewis et al., 2015). An evaluation of extreme parameter 320 

combinations was carried out for each compound by running four simulations combining maximum 321 

and minimum Koc and degradation half-life (DT50) values (Table A–1).  322 

3 Results 323 

3.1 Simulation of water flow  324 

The uncalibrated simulations from both models showed under-estimation of the flow for all 325 

hydrological years (Table 1 and Figure A–3). After calibration the flow increased significantly for all 326 

hydrological years and a good match of the flow was obtained for the year 2009/10 using MACRO. 327 

In general, MACRO was closer in the simulation of the observed water flow than SPIDER. For both 328 

models, 2008/09 was the hydrological year with greatest under-estimation of the flow; this year was 329 

the driest of the four simulated (Table 1). The calibrated hydrographs are compared to the observed 330 

flow in Figure 3. Both models showed good simulation of the pattern of water flow. However, both 331 

models over-estimated flow during periods of greatest flow and under-estimated flow during periods 332 

of low flow. The level of under-estimation throughout the simulation was a more significant issue 333 

than over-estimation, particularly during low-flow periods. A better simulation of the recession 334 

periods was achieved for MACRO while the simulated flow from SPIDER was significantly smaller 335 

than the observed flow. In contrast, during periods of flow recovery (i.e. at the end of low-flow 336 

periods) SPIDER matched the timing of increase in flow much better than MACRO.  337 

No surface runoff was predicted by the models for the Wensum primarily due to the efficiency of the 338 

tile drainage system. From this result, it was expected that surface runoff generated from arable land 339 

would be small. Both models achieved positive model efficiency values for all hydrological years; 340 

however, best NSE values were generally achieved for MACRO. A comparison of the actual 341 

evapotranspiration calculated by the two models (Figure A–4) showed that for MACRO was 10.1% 342 

larger than that for SPIDER over the simulation period. This difference in evapotranspiration is very 343 

evident particularly during the summer periods for MACRO which reduces soil moisture content and 344 

prevents the soil from wetting up as rapidly as for SPIDER. 345 

3.2 Pesticide concentrations 346 

Comparisons between simulated and measured pesticide concentrations are presented for 347 

chlorotoluron, carbetamide and clopyralid in Figure 4 and for mecoprop, propyzamide and MCPA in 348 

Figure A–5. Most of the pesticide simulations showed that the models were able to simulate the 349 

overall pattern, though not the exact magnitude and timing, of pesticide concentrations at the 350 
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catchment outlet. The exception was for pesticides applied during spring and summer periods such as 351 

clopyralid (Figure 4Figure 4c) and MCPA (Figure A–5c) where large disagreement was observed 352 

between simulations and the measured concentrations. Table A–5 compares measured and simulated 353 

values for load and maximum concentration in each hydrological year for all pesticides. 354 

Both models achieved a relatively good simulations of the overall pattern of pesticide concentrations 355 

for chlorotoluron (Figure 4a). Some differences were observed between simulations. SPIDER 356 

predicted peaks earlier than MACRO with first presence in water generally simulated from 357 

November and December for SPIDER and MACRO, respectively. MACRO tended to over-estimate 358 

concentrations for most of the years by up to one order of magnitude whereas SPIDER had a better 359 

match in timing and magnitude of the peaks for most of the hydrological years; the exception was for 360 

2008/09 where SPIDER under-estimated pesticide concentrations by up to a factor of six.  361 

For carbetamide (Figure 4b), both models under-estimated concentrations by similar amounts. 362 

SPIDER again simulated water contamination earlier in the winter than MACRO. Better simulations 363 

for carbetamide were observed using SPIDER than MACRO, especially in 2010/11 where a good 364 

match in the pattern and timing of the peaks was obtained. For clopyralid (Figure 4c.), SPIDER 365 

achieved a better simulation and was able to simulate most of the observed peaks, while MACRO 366 

only simulated one peak (in March 2010) at a concentration larger than the LOQ. 367 

Brown et al. (2002) proposed a semi-quantitative approach to evaluating a catchment model intended 368 

for pesticide management purposes, whereby simulated loads and maximum annual concentrations 369 

were evaluated as being within a factor of 2, 5 or 10 of measured values. Applying this approach to 370 

the data in Table A–6, both models gave good simulations of maximum concentrations of 371 

chlorotoluron and mecoprop (many simulations within a factor of 2 of observed values, all 372 

simulations within a factor of 5). Simulations of loads for these two compounds were also good with 373 

the exception of 2009/10 where MACRO in particular over-estimated the loads significantly. All 374 

simulated maximum concentrations and loads of carbetamide were within a factor of 10 of measured 375 

values, whilst propyzamide was often well simulated (factors of 2-5) except in 2008/09 when 376 

transport was greatly under-estimated by both models. SPIDER gave much better simulations than 377 

MACRO for clopyralid, whereas both models failed to match the observed behaviour for MCPA as 378 

noted above. 379 

 380 
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3.3 Uncertainty analysis for SPIDER and MACRO simulations 381 

3.3.1 Uncertainty in the rainfall data 382 

The observed flow for each hydrological year and for the simulation period 2007-2011 was bounded 383 

for some periods by the simulations from the two rainfall datasets (measured +/-10%) for both 384 

models (Figure A–6). However, the effect of uncertainty in the rainfall was more evident for 385 

MACRO. The exceptions were for hydrological years 2008/09 and 2010/11 when both models and 386 

only SPIDER, respectively, under-estimated the flow even after increasing the rainfall by 10%. 387 

Uncertainty in the rainfall data had a big impact on the simulation of stream flow for the two models 388 

in both high- and low-flow periods but the greatest relative change during storm flow events was 389 

observed when increasing the rainfall by 10%. A large effect on the simulated flow was observed for 390 

the end of low-flow periods using MACRO; a great improvement was observed by increasing the 391 

rainfall data by 10% since the model predicted some of the peaks that were not simulated previously. 392 

A similar behaviour was observed from SPIDER but the impact was smaller than for MACRO 393 

during low-flow periods. In addition, the difference between the simulated and observed flow in the 394 

timing of flow recovery after summer for both rainfall datasets was approximately 15 days for 395 

SPIDER, but almost one month for MACRO. 396 

3.3.2 Uncertainty in the application date 397 

Table 2 and Table A–7 show the variation in simulated pesticide loads over a 4-year period (kg/4 398 

years) on dates when pesticide application is likely to occur for carbetamide and the other pesticides, 399 

respectively. The simulated loads from both models over a 4-year period for carbetamide were 400 

within a factor of two for most of the application dates in November compared to the observed load 401 

and were very similar between models. Application dates in mid- or late November showed better 402 

agreement with the measured load. 403 

Uncertainty in the application date had a smaller impact on pesticide loads for some pesticides. For 404 

instance, the resulting loads for propyzamide using SPIDER and for clopyralid using MACRO varied 405 

by less than 0.3 kg across all application dates simulated. Mecroprop was the pesticide that showed 406 

the greatest variation in loads (more than 100 kg using both models); this compound is impersistent 407 

in soil so timing of application relative to timing of storm event is an important influence on 408 

simulations. Across the full dataset, there was a tendency for SPIDER to be more sensitive than 409 

MACRO to changes in application date. 410 
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3.3.3 Uncertainty in pesticide sorption and degradation 411 

The effect of uncertainty from using average sorption and degradation data was analysed by 412 

comparing pesticide loads for simulations using combinations of extreme input data (maximum and 413 

minimum sorption and degradation values derived from the literature). The results of this bounds 414 

analysis are shown in Table 3 and Table A–8 for carbetamide and the other pesticides, respectively. 415 

This source of uncertainty had a greater impact on the simulated pesticide load than the uncertainty 416 

due to the application date, but the impact was again compound-specific. 417 

Simulated loads were greatest for the combination of minimum Koc and maximum half-life while the 418 

smallest loads were obtained by using maximum Koc and minimum half-life. Extreme differences in 419 

simulated loads were obtained for MCPA; losses were negligible when using the minimum half-life 420 

value because the pesticide largely degraded in soil before the first flow event after application. 421 

Uncertainty in pesticide sorption had a bigger impact on the simulation of loads than uncertainty in 422 

degradation. The simulated ranges for both models covered the observed loads for most pesticide-423 

model combinations. For example, the range of simulated loads from both models covered the 424 

observed load of 23.3 kg over 4 years at the catchment outlet for carbetamide (Table 3); this 425 

measured load corresponds to 0.36 g ha
-1

 yr
-1

 or 0.023% of applied carbetamide. 426 

 427 

4 Discussion 428 

4.1 Simulation of water flow 429 

The hydrograph simulations from MACRO and SPIDER showed a reasonably good match in the 430 

timing and size of peak flow compared to the measured data. However, there was a trend for the 431 

models to over-estimate flow during periods of greatest flow; this may be attributable to structural 432 

errors within the models due to their simplified representation of the environment, but might also 433 

relate to flood control measures within the catchment that were not included in the model. Flood 434 

management in the Wensum includes changes in the course and dimensions of the river channel, 435 

changes in the connectivity between the river and the floodplain, removal of the bed substrate and 436 

deposited fine sediment, control of aquatic and riparian vegetation and alterations to the water levels 437 

within the channel and downstream movement of sediment (mill weirs, sluices) (Sear et al., 2006). 438 

Model efficiency values after calibration showed that the simulation of the water flow from MACRO 439 

(NSE = 0.56) was better than that achieved by SPIDER (NSE = 0.34). Renaud and Brown (2008) 440 

obtained very similar model performance for SPIDER in two field studies in the UK (at Cockle Park, 441 

Northumberland and Maidwell, Northamptonshire) but in both cases SPIDER simulations were not 442 

calibrated. The authors found similar model performance for MACRO (NSE = 0.35) and SPIDER 443 



15 

 

(NSE = 0.32) for the site located at Cockle Park, whilst for the site located at Maidwell, model 444 

performance without calibration was considerably better for SPIDER (NSE = 0.23) than for MACRO 445 

(NSE = -0.61). The water flow simulation from SPIDER was significantly improved for Maidwell 446 

after minimal calibration (NSE = 0.55). Calibration to improve simulation of drainage early in the 447 

period was achieved through small changes to the water content at field capacity and the initial water 448 

content of the soil, a reduction in the rate of recharge and an increase in the fraction of soil in contact 449 

with macropores. Both studies reported by Renaud and Brown (2008) were carried out at field scale 450 

where input parameters are likely to have smaller variability than that observed at catchment level so 451 

that less uncertainty was expected in model results.  452 

The GW model significantly improved model efficiency for both models before model calibration 453 

(from NSE = -0.12 to NSE = 0.45 for MACRO and from NSE = -0.19 to NSE = 0.23 for SPIDER). 454 

Tediosi et al. (2013) also reported a coupled model using MACRO and a simple groundwater model 455 

to simulate the water flow in a small (15.5 ha) headwater sub-catchment located in the Upper 456 

Cherwell in central England. This groundwater model was developed based on a variation of the 457 

saturated thickness (Rushton and Youngs, 2010) using typical values of hydraulic conductivity and 458 

specific yield for the study area. According to the authors, this approach showed a good 459 

representation of the recession periods in the hydrographs and the simulation of the water flow which 460 

increased model efficiency from 0.02 to 0.56 and the hydrograph was only affected by under-461 

estimation of flow during periods of either standing snow or low precipitation. 462 

Model calibration was applied to the simulations using MACRO and SPIDER to increase water flow 463 

and to improve the simulation of the low-flow periods. The simulation of recovery flow was slightly 464 

improved in both models; however, no improvements were observed for the recession periods of 465 

flow in the summer (Figure A–3). SPIDER generally simulated peaks in drainflow earlier than 466 

MACRO at the end of the lowest flow periods. One possible reason is an over-estimation of 467 

evapotranspiration by MACRO. Besien et al. (1997) suggested that such an over-estimation caused 468 

the model to miss drainflow events generated by low rainfall in early spring affecting both drainflow 469 

and pesticide simulations for that period. In this study, it was found that over-estimation of 470 

evapotranspiration was also critical for the early autumn period (i.e. at the beginning of the winter 471 

flow period), which caused the model to misrepresent the flow recovery rate. Over-estimation of 472 

evapotranspiration by MACRO during the summer periods delays flow recovery, consequently 473 

causing the water flow simulation to miss drainflow and pesticide losses at those times. When pre-474 

calculated evapotranspiration from SPIDER was used in MACRO, both drainflow and river flow 475 

showed an improvement in simulation of earlier drainflow events and in the flow rate at the end of 476 
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the lowest flow periods (Figure A–7). This suggests that the FAO Penman–Monteith equation 477 

(Allen, 1998) used by SPIDER may be a better approach than the original Penman–Monteith 478 

equation (Monteith, 1965) used by MACRO for the calculation of the evapotranspiration under the 479 

study conditions. The FAO Penman–Monteith equation is recommended by Allen (1998) as it 480 

provides more consistent evapotranspiration values in all regions and climates. 481 

A common challenge in hydrological modelling is to obtain accurate rainfall data since it is the main 482 

driver controlling the accuracy of hydrological and solute simulations (Bardossy and Das, 2008). 483 

Rainfall gauge measurements are subject to uncertainty, and under-estimation of rainfall from rain 484 

gauge measurements is common during low intensity precipitation and/or high winds (Ciach, 2003; 485 

Wang et al., 2008). As errors in rainfall measurements are variable over time, the impact on water 486 

flow simulation varies during the hydrological year. Owing to the complex nature of rainfall, model 487 

calibration from this source of uncertainty can only be achieved by the use of more accurate 488 

measurements. Other hydrological models such as rainfall-runoff models used for flood forecasting 489 

have also been affected by rainfall uncertainty (Bardossy and Das, 2008; Moulin et al., 2009). 490 

Moulin et al. (2009) suggested that meteorological services should deliver rainfall data along with 491 

information about the confidence intervals generated in real time. This information would be useful 492 

in applying probabilistic approaches that could express uncertainty in hydrological simulations. In 493 

addition, climate data and particularly the precipitation falling over a location vary both spatially and 494 

temporally (Obled et al., 1994; Wood et al., 1988). A limited number of rain gauges may not be able 495 

to capture the spatial variability of rainfall, particularly on large catchments, adding errors to model 496 

results. 497 

4.2 Pesticide simulation 498 

This is the first time that SPIDER has been tested using long-term monitoring data collected for a 499 

relatively large catchment. Both models were able to simulate a large number of the observed peaks 500 

for pesticides at the catchment outlet as well as the overall pattern of behaviour of most of the 501 

pesticides despite the simple nature of the models and not including surface runoff in the simulations. 502 

Apart from the peaks that MACRO missed in early autumn due to under-estimation in the flow, most 503 

of the simulations showed reasonable agreement with measured behaviour; however, some 504 

disagreements were observed in the timing and magnitude of peaks. The exception was for 505 

clopyralid and MCPA where significant differences in the simulations were observed both relative to 506 

measured data and between models.  507 

Holvoet et al. (2007) considered that in-stream processes and state variables (e.g. microbial activity, 508 

dissolved oxygen concentration, pH, sedimentation, re-suspension) have a significant impact on 509 
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modelling pesticides at the catchment-scale. However, in the present study, the modelling framework 510 

was able to satisfactorily simulate water flow from a relatively large catchment like the Wensum and 511 

predict reasonably well the pattern of pesticide concentrations even though the framework ignored 512 

in-stream processes suggesting that the river system had a relatively minor influence on patterns of 513 

pesticide concentrations at the catchment outlet. Modelling results suggested that pesticide 514 

concentrations in water were driven primarily by field-scale processes. There was no major 515 

difference between simulations from a modelling framework composed of field-scale models and 516 

from a catchment-scale model when applied to a medium-sized catchment in Eastern England. An 517 

implication is that provided field-scale processes are well captured by a model, then it should be 518 

possible to approximate pesticide export at the catchment scale. This is in agreement with other 519 

studies that have suggested the possibility to predict the order of magnitude of pesticide losses from 520 

catchments based on information on pesticide and soil properties plus pesticide usage (Pistocchi, 521 

2013). 522 

The best simulations were observed for pesticides that are normally applied in late autumn such as 523 

chlorotoluron, mecoprop, carbetamide and propyzamide. These pesticides are mainly applied to a 524 

single crop type, so uncertainty in their usage patterns (i.e. application date and amount) is relatively 525 

small. For instance, chlorotoluron is exclusively applied as a pre- or early post-emergence herbicide 526 

to winter cereals to control annual grasses and broad leaved weeds. In addition, the relatively large 527 

degradation half-life (59 days) means that differences in the application date will have relatively little 528 

impact on the timing and magnitude of pesticide peaks simulated by the models. 529 

Propyzamide and carbetamide showed a good agreement between the pattern of the simulated 530 

concentrations and the measured data but with some disagreements in the magnitude of the peaks. 531 

These pesticides are mainly used to control broadleaved weeds and blackgrass that is resistant to 532 

other herbicides. Pesticide application takes place between October and the end of February 533 

depending on soil moisture and temperature. The relatively wide window of time for application and 534 

the specific environmental conditions required mean that the use of a uniform and fixed application 535 

date would generate uncertainty that will mainly affect the magnitude of the peaks. This uncertainty 536 

in the application date had a greater impact on the simulation of carbetamide than propyzamide 537 

losses. The moderately large Koc (292 ml g
-1

) and half-life (47 days) selected to simulate 538 

propyzamide mean that the pesticide binds strongly to soils and persists for a long time. In contrast, 539 

carbetamide has both weaker soil sorption (Koc = 89 ml g
-1

) and shorter half-life (10.9 days) so if 540 

there is a delay between application date and a storm event, pesticide transfers to tile drains would be 541 

reduced due to pesticide degradation.  542 
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Clopyralid and MCPA concentrations proved difficult to simulate due to the complex and uncertain 543 

usage pattern of these pesticides. Clopyralid is applied to a wide range of crops including cereals, 544 

grassland, amenity grass/lawns, OSR, brassicas and maize and MCPA is used on cereals, grassland 545 

and amenity grass/lawns. These post-emergence herbicides are mainly applied during spring and 546 

throughout the summer when weeds are actively growing. Since these herbicides can be applied 547 

during a very wide window of time, the uncertainty generated by the use of fixed application dates 548 

can greatly affect the simulation. Different authors have suggested supplying application date as a 549 

probability distribution in fate models (Holvoet et al., 2005; Lindahl et al., 2005). However, this 550 

approach also requires knowledge of the distribution of application dates throughout the catchment. 551 

Gericke et al. (2010) used phenological data for different crops along with climate data to estimate 552 

application dates in Germany and the Czech Republic; satisfactory results were obtained when 553 

comparing estimated to actual application dates. This approach can provide a broader amount of 554 

information to estimate application dates but the methodology requires further development and 555 

validation under different environmental conditions. 556 

For clopyralid, MACRO only predicted three small peaks that were due to pesticide drainflow, whilst 557 

the model missed other events that SPIDER simulated. It was observed that important losses of 558 

clopyralid could be due to sub-lateral flow (through-flow); SPIDER simulates this whereas MACRO 559 

does not account for pesticide loss by this route. Clopyralid was different from other compounds 560 

where drainflow dominated because losses occurred in late spring when drains may not be flowing 561 

and sub-lateral flow may be a relatively important contributor to catchment hydrology. 562 

The uncertainty analyses for the simulation pesticide losses in the present study showed that 563 

uncertainty from individual input parameters could explain some of the observed disagreements in 564 

the simulation from the two models. Simulated loads from both uncertainty analyses (application 565 

date and sorption and degradation data) using both models generally covered the observed load for 566 

the simulation period. However, a combination of different sources of uncertainties might be the best 567 

explanation of discrepancies in simulated concentrations. The exception was for MCPA due to the 568 

lack of simulated drainflow on days when emissions were observed and for clopyralid using 569 

MACRO for the reasons explained above. 570 

The impact on the simulated loads of uncertainty in both application timing and pesticide properties 571 

was model- and compound-specific. Boithias et al. (2014) carried out a sensitivity study using 572 

plausible ranges of application dates for two contrasting pre-emergence herbicides in SWAT. The 573 

authors also found that the effect of the application date was a pesticide-specific factor influenced by 574 

their bioavailability and hence by sorption and degradation. For runoff models like SWAT pesticide 575 
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sorption was shown to be more important than degradation in determining the availability of 576 

pesticides in the runoff interaction zone. For preferential flow models, the availability for pesticide 577 

loss would depend on the leaching potential of pesticides to reach tile drains where both parameters 578 

(degradation and sorption) are known to be important (Arias-Estevez et al., 2008; Carter, 2000). 579 

Pesticides with high leaching potential likely to reach tile drains via preferential flow are 580 

characterised by having slower degradation rates and weaker soil sorption (Gardner, 2014). 581 

Model evaluation was in some cases affected by the resolution of the measured pesticide 582 

concentrations. Some important emissions predicted by the models could not be evaluated due to the 583 

absence of monitoring data for those days. Monitoring frequency varies within crop years and a large 584 

proportion of none detections was observed for most herbicides. For instance, only 73 of the 395 585 

samples taken between September 2007 and November 2011 for the analysis of chlorotoluron 586 

contained residues above the LoQ; however, during this period SPIDER predicted 139 days with 587 

emissions on days when samples were not taken. The CSF monitoring programme has a moderate 588 

sampling frequency (an average of one sample every four days) and this resolution is useful to 589 

analyse pesticide trends and to undertake model evaluation; however, modelling results show that the 590 

monitoring programme could be made more efficient by applying a more variable sampling 591 

frequency during the year. A report from the CSF (2012) explains that the monitoring design was 592 

based on the major crop types present in the catchment and highlights that a large proportion of the 593 

pesticides analysed are not detected in the samples. This report notes that predicting the likelihood of 594 

occurrence of a pesticide is a complex task that is influenced by many factors such as pesticide 595 

properties, soil types, and pesticide usage and drainage systems (CSF, 2012). Pesticide fate 596 

modelling takes into account all these factors and helps avoid bias and speculative methodologies. 597 

Fate models have been shown to be a useful tool to improve the design of monitoring programmes 598 

(e.g. by focusing sampling collection on days when pesticides are most likely to be present) and can 599 

be easily incorporated into programmes without a big financial investment. 600 

 601 

5 Conclusions 602 

The modelling framework simulated fairly well the main sources of water flow contributing to the 603 

river network in the Wensum catchment and their associated pesticide losses though there was 604 

variable performance between individual pesticides. As the framework excluded the simulation of in-605 

stream processes, results suggest that field-scale processes may be important in determining patterns 606 

of pesticide contamination at the catchment outlet. The models showed a better performance for 607 

pesticide losses coming from pre- or early post-emergence herbicides normally applied during 608 
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autumn probably because of their less complex usage patterns; an alternative explanation is that 609 

important hydrological pathways resulting in pesticide losses during spring and summer periods were 610 

poorly simulation by the models. Uncertainty analyses of sensitive input parameters showed that the 611 

impact of parameter variation on pesticide simulations was compound-specific. The simulation of 612 

low-flow periods was greatly affected by uncertainty from rain gauge measurements and the 613 

simulation of evapotranspiration. More studies into the combined effect of uncertainties in fate 614 

modelling as well as in pesticide-specific uncertainty would strengthen the understanding of their 615 

impact on simulations. 616 
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 766 

Figure 1 Wensum catchment showing the river network and the catchment outlet at Sweet Briar Road Bridge. 767 

Inset: location of the Wensum catchment within England and Wales. 768 

       769 

Figure 2 Conceptual model of a) the framework using MACRO and b) the groundwater mixing model. 770 

 771 
Figure 3 Comparison of the measured and simulated water flow (calibrated simulations) by MACRO and 772 
SPIDER. Measured flow supplied by the Environment Agency. 773 
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 774 

 775 

 776 
Figure 4 Comparison of measured pesticide concentrations with those simulated by SPIDER and MACRO for 777 

a) chlorotoluron, b) carbetamide and c) clopyralid. The dotted line indicates the LoQ. Pesticide concentrations 778 

<LOQ represented with a value of zero. Measured pesticide data supplied by the Environment Agency. 779 
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Table 1 Comparison between observed and simulated flow for each hydrological year from the model 780 

framework using MACRO and SPIDER before and after calibration including their NSE values and the 781 

measured rainfall. 782 

 
 Uncalibrated Calibrated 

Hydrological 

year 
Rainfall 

(mm) 

Simulated flow  

(% of the  

observed flow) 

NS 

Simulated flow 

(% of the  

observed flow) 

NS 

  MACRO SPIDER MACRO SPIDER MACRO SPIDER MACRO SPIDER 

2007/08 671.2 96.3 74.8 0.61 0.35 98.6 89.6 0.63 0.59 

2008/09 543.3 73.5 50.2 0.10 -0.22 81.0 69.0 0.33 0.22 

2009/10 593.0 91.2 77.3 0.64 0.33 100.7 91.9 0.72 0.15 

2010/11 586.3 80.5 65.7 0.19 0.15 91.1 80.8 0.39 0.22 

Total 4 years 2,393.8 85.9 67.2 0.45 0.23 93.0 83.0 0.56 0.34 

 783 

Table 2 Loads of carbetamide simulated by SPIDER and MACRO for different application dates in 784 

November and comparison with the observed value. 785 

 1 Nov 5 Nov 10 Nov 15 Nov 20 Nov 25 Nov 30 Nov 
Observed 

data 

Loads (kg/4 years) 

SPIDER 6.05 9.99 14.1 19.3 17.3 21.7 22.7 
23.3 

MACRO 11.5 14.5 21.5 22.5 15.3 14.2 20.1 

 786 

Table 3 Loads of carbetamide simulated by SPIDER and MACRO using combinations of maximum and 787 

minimum sorption and degradation values, together with the simulated load using average inputs and the 788 

observed value. 789 

 
Avg. Koc  

Avg. DT50 

Max. Koc  

Max DT50 

Max. Koc  

Min. DT50 

Min. Koc 

Max DT50 

Min. Koc  

Min. DT50 

Measured 

data 

Loads (kg/4 years) 

SPIDER 6.05 11.3 0.14 43.1 0.48 
23.3 

MACRO 11.5 28.6 1.56 74.1 1.83 
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Supplementary information 790 

Methodology 791 

Table A–1 Pesticide properties used in the models and sorption and degradation ranges used for the 792 

uncertainty analysis. 793 

Pesticide 
Koc 

(mL g
-1

)
a
 

DT50 soil
a
 

(days) 

Koc 

range
a
  

(mL g
-1

) 

DT50 soil 

range
a
 

(days) 

TREF 

(°C) 

TRESP 

(K
-1

) 
EXPB 

Freundlich 

coefficient
b
 

Carbetamide 89 10.9 59 - 118 4 - 29 20 0.08 0.7 0.93 

Chlorotoluron 184 59 108 - 384 52  66 20 0.08 0.7 0.90 

Clopyralid 4.9 11
d
 3.43 - 7.34 2 – 24

d
 10 0.001 0.01 0.76 

MCPA 74 24 38 - 157 7 - 41 20 0.08 0.7 0.68 

Mecoprop 20 8.2 - - 20 0.08 0.7 0.90 

Propyzamide 292
c
  47 - - 20 0.08 0.7 0.90

c
 

TREF: Reference temperature. TRESP: Exponent in the temperature response function. EXPB: Exponent in 794 

the degradation water response function. 
a
Lewis et al. (2015), 

b
Netherton and Brown (2010), 

c
Pedersen et al. 795 

(1995). 
d
Field-based degradation rate. 796 

 797 

Table A–2 Crop areas in the Eastern region for target crops and arable land between 2005 and 2013. 798 

  Crop area (ha)  

 2006
a 

2008
b 

2010
c 

2012
d 

Cereals 471,706 534,735 502,081 513,356 

OSR 103,488 130,181 140,960 168,241 

Beet 72,656 80,732 75,918 82,346 

Total arable land 1,017,084* 987,447 967,621 990,137 

 2005
e 

2009
f 

2013
g  

Grassland 29,137 36,103 37,065  

OSR: Oilseed rape. * Including set-aside  799 
a
Garthwaite et al. (2007); 

b
Garthwaite et al. (2009); 

c
Garthwaite et al. (2011); 

d
Garthwaite et al. (2013); 800 

e
Garthwaite et al. (2006); 

f
Garthwaite et al. (2010); 

g
Garthwaite et al. (2014) 801 

 802 

Table A–3 Pesticide usage information for the Eastern region of the UK. 803 

Pesticide / 

Crop / Year 

Total area 

treated with 

pesticide  

(ha) 

Total 

pesticide 

weight 

applied 

(kg) 

Pesticide / 

Crop / Year 

Total area 

treated with 

pesticide  

(ha) 

Total pesticide 

weight applied  

(kg) 

Chlorotoluron  Cereals  Carbetamide  OSR  

2006
a
 19,548 32,607 2006

a
 12,121 25,086 

2008
b
 44,697 96,841 2008

b
 30,383 61,725 

2010
c
 101,014 178,711 2010

c
 26,066 49,453 

2012
d
 58,293 84,938 2012

d
 27,229 45,596 

      

Clopyralid  Cereals  Clopyralid Beet  

2006
a
 811 151 2006

a
 65,273 4,810 
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2008
b
 1,964 175 2008

b
 64,532 4,856 

2010
c
 7,797 255 2010

c
 107,283 7,835 

2012
d
 12,152 830 2012

d
 58,830 4,673 

      

Clopyralid  Grassland  MCPA Grassland  

2005
e
 9,233 1,311 2005

e
 103,504 131,101 

2009
f
 23,988 4,597 2009

f
 20,997 20,469 

      

Clopyralid  ORS  MCPA Cereals  

2006
a
 34,848 2,767 2006

a
 19,977 14,910 

2008
b
 94,076 7,729 2008

b
 9,826 5,867 

2010
c
 98,711 7,794 2010

c
 21,980 13,016 

2012
d
 137,486 11,781 2012

d
 17,575 16,128 

      

Mecoprop  Cereals  Propyzamide OSR  

2006
a
 167,289 98,793 2006

a
 81,144 60,493 

2008
b
 187,286 102,590 2008

b
 110,357 83,970 

2010
c
 180,532 95,611 2010

c
 161,367 125,987 

2012
d
 135,446 77,745 2012

d
 215,375 171,889 

a
Garthwaite et al. (2007); 

b
Garthwaite et al. (2009); 

c
Garthwaite et al. (2011); 

d
Garthwaite et al. (2013); 804 

e
Garthwaite et al. (2006); 

f
Garthwaite et al. (2010) 805 

 806 

Table A–4 Limits of quantification for the pesticides data supplied by the Environment Agency 807 

Pesticide 

LOQ (g/l) 

September 2006 to 

April 2009/*April 2010 

LOQ (g/l) 

May 2009/*May2010 to 

December 2011 

Carbetamide 0.04 0.01 

Chlorotoluron 0.04 0.01 

Clopyralid 0.04* 0.01* 

MCPA 0.04* 0.005* 

Mecoprop 0.04* 0.005* 

Propyzamide 0.005 0.005 

 808 

Table A–5 Pesticide degradation values in water and sediment obtained from laboratory studies and 809 

Freundlich coefficients used in SPIDER 810 

Pesticide 
DT50 water 

(days)
a
 

DT50 sediment 

(days)
a
 

Freundlich 

coefficient
a
  

Carbetamide 9.1 55.5 0.93 

Chlorotoluron 42 352 0.90 

Clopyralid 148 1000
b
 0.85* 

MCPA 13.5 17 0.85* 

Mecoprop 37 50 0.90 

Propyzamide 21 94 0.90 
a
Lewis et al. (2015), 

b
Netherton and Brown (2010). *Values adjusted to avoid sorption conflicts in the model 811 

because the reported values were to small (0.76 and 0.68 for clopyralid and MCPA, respectively). 812 

 813 



31 

 

 814 

Figure A–1 Location of meteorological stations. 815 

 816 

 817 

 818 

a) 
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 819 

Figure A–2 a) Division of the Wensum catchment into 44 land blocks and 24 streams reaches. b) Conceptual 820 

scheme using SPIDER for the Wensum catchment. 821 

 822 

Results 823 
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 825 

Figure A–3 Comparison of the uncalibrated and calibrated simulation of the water flow using a) MACRO and 826 

b) SPIDER with the measured flow in the Wensum catchment. Measured flow supplied by the Environment 827 

Agency. 828 

 829 

 830 

Figure A–4 Comparison of the accumulated actual evapotranspiration simulated by MACRO and SPIDER. 831 
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Figure A–5 Comparison of measured pesticide concentrations with those simulated by SPIDER and MACRO 836 
for a) mecoprop, b) propyzamide and c) MCPA. Measured pesticide concentration supplied by the 837 
Environment Agency. 838 

 839 

 840 

Figure A–6 Effect on the simulated water flow when decreasing and increasing the rainfall data by 10% using 841 

a) MACRO and b) SPIDER compared to the measured flow. Measured flow supplied by the Environment 842 

Agency. 843 
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 844 

Figure A–7 Effect on the simulation of drain flow in MACRO from using the pre-calculated 845 

evapotranspiration from SPIDER and comparison with SPIDER and MACRO original simulation. 846 

 847 

Table A–6 Loads and maximum concentrations of pesticides simulated by MACRO and SPIDER for different 848 

hydrological years and comparison with observed values. 849 

  Observed SPIDER MACRO Observed SPIDER MACRO 

Load (kg/year)    

Chlorotoluron       

2007/08 3.12 1.09 7.61 0.141 0.037 0.359 

2008/09 8.83 0.933 5.48 0.227 0.053 0.256 

2009/10 1.33 3.34 14.0 0.144 0.163 0.539 

2010/11 3.06 3.32 10.1 0.308 0.326 0.742 

Total 4 years 16.3 8.68 37.1     

Mecoprop       

2007/08 12.5 14.1 13.1 0.311 0.688 0.355 

2008/09 9.70 3.86 8.94 0.324 0.638 0.325 

2009/10 3.12 16.4 31.3 0.182 0.646 0.511 

2010/11 5.37 4.26 15.2 0.706 0.380 0.551 

Total 4 years 30.7 38.6 68.6      

Carbetamide       

2007/08 6.71 0.804 1.42 0.271 0.074 0.064 

2008/09 3.95 0.488 1.56 0.322 0.041 0.071 

2009/10 6.44 1.27 1.34 0.622 0.072 0.060 

2010/11 1.85 0.557 1.45 0.155 0.120 0.112 
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Total 4 years 19.0 3.12 5.77      

Propyzamide          

2007/08 9.12 0.841 2.74 0.469 0.069 0.158 

2008/09 5.88 0.272 0.463 0.272 0.018 0.016 

2009/10 3.24 0.724 2.67 0.151 0.053 0.357 

2010/11 3.21 0.737 1.758 0.124 0.108 0.223 

Total 4 years  21.4 2.57 7.63       

Clopyralid          

2007/08 8.74 3.35 0.945 0.134 0.242 0.009 

2008/09 6.81 2.57 0.011 0.161 0.325 0.000 

2009/10 2.00 3.26 0.722 0.031 0.239 0.106 

2010/11 1.42 3.17 0.086 0.038 0.456 0.000 

Total 4 years 19.0 12.3 1.76      

MCPA          

2007/08 14.7 0.314 0.517 3.76 0.014 0.018 

2008/09 7.48 0.007 0.038 0.384 0.001 0.002 

2009/10 3.96 0.020 0.320 1.76 0.005 0.028 

2010/11 2.11 0.005 0.108 3.76 5.32 0.015 

Total 4 years 28.3 0.346 0.983      

 850 

  851 
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Table A–7 Pesticide loads simulated by MACRO and SPIDER for different application dates and comparison 852 

with the observed value. 853 

Pesticide/ Model Loads (kg/4 years)   
  

  20 Oct 25 Oct
*
 30 Oct 4 Nov 9 Nov 14 Nov 19 Nov Observed data 

Chlorotoluron           

SPIDER  6.88 8.68 7.12 7.18 7.08 6.74 6.34 16.3 

MACRO  31.5 37.1 45.5 45.8 52.9 43.7 39.5   

           

  25 Oct
*
 30 Oct 4 Nov 9 Nov 14 Nov 19 Nov 24 Nov Observed data 

Mecoprop           

SPIDER  38.6 60.2 90.3 139 186 198 188 30.7 

MACRO  68.6 83.7 96.1 125 172 96.9 102   

           

  1 Nov 5 Nov 10 Nov 15 Nov 20 Nov 25 Nov 30 Nov
*
 Observed data 

Propyzamide           

SPIDER  2.60 2.67 2.69 2.57 2.61 2.43 2.57 21.4 

MACRO  12.2 12.5 14.4 10.8 10.5 8.91 7.63   

           

 17 Mar 17 Mar 7 Mar 17 Mar 7 Mar 25 Feb 7 Mar 25 Feb* 25 Feb Observed 

data  5 May 15 May 15 May 25 May 5 May 15 May 25 May 25 May 5 May 

Clopyralid        
  

SPIDER 0.855 1.17 1.24 1.96 11.8 12.3 12.9 13.0 22.8 19.0 

MACRO 0.186 0.186 0.230 0.186 0.230 0.670 0.230 0.669 0.669  

* Typical application date 854 

  855 
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Table A–8 Simulated pesticide loads for combinations of maximum and minimum sorption and degradation 856 

values, together with the simulated load using average inputs and the observed value. 857 

 
Avg. Koc  

Avg. DT50 

Max. Koc  

Max DT50 

Max. Koc  

Min. DT50 

Min. Koc 

Max DT50 

Min. Koc  

Min. DT50 

Observed 

load 

Loads (kg/4 years) 

Chlorotoluron      

SPIDER 8.68 2.33 1.91 30.0 22.5 
16.3 

MACRO 37.1 14.5 14.1 137 88.5 

       

MCPA       

SPIDER 0.346 0.230 0.000 9.53 0.036 
28.2 

MACRO 0.983 1.14 0.002 6.52 0.007 

       

Clopyralid      

SPIDER 13.0 18.0 9.07 22.8 9.32 
19.0 

MACRO 0.669 0.878 0.176 1.76 0.183 

 858 
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 860 

Figure A–8 Hydrographs simulated by MACRO for different soil types for a) drain flow and b) percolation. 861 
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 863 

Figure A–9 Hydrographs simulated by SPIDER for different soil types for a) drain flow and b) percolation. 864 

0

2

4

6

8

10

12

14

16

18

20

1-Sep-07 1-Mar-08 1-Sep-08 1-Mar-09 1-Sep-09 1-Mar-10 1-Sep-10 1-Mar-11

P
e

rc
o

la
ti

o
n

 (
m

3
/s

) 

Date 

Newport

Barrow

Beccles

Burlingham

Isleham

b) 


