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Abstract

The colonization of the liver by colorectal cancer (CRC) cells is a complicated process which includes many stages, until macrometas-
tases occur. The entrapment of malignant cells within the hepatic sinusoids and their interactions with resident non-parenchymal cells
are considered very important for the whole metastatic sequence. In the sinusoids, cell connection and signalling is mediated by multi-
ple cell adhesion molecules, such as the selectins. The three members of the selectin family, E-, P- and L-selectin, in conjunction with
sialylated Lewis ligands and CD44 variants, regulate colorectal cell communication and adhesion with platelets, leucocytes, sinusoidal
endothelial cells and stellate cells. Their role in CRC liver metastases has been investigated in animal models and human tissue, in vivo
and in vitro, in static and shear flow conditions, and their key-function in several molecular pathways has been displayed. Therefore, tri-
als have already commenced aiming to exploit selectins and their ligands in the treatment of benign and malignant diseases. Multiple
pharmacological agents have been developed that are being tested for potential therapeutic applications.
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Introduction

Colorectal cancer (CRC) is a common malignant tumour and
affects about 650,000 individuals worldwide. The patients are
mainly of advanced age and cases before the age of 50 are infre-
quent, unless for a hereditary cause. CRC is the second leading
cause of cancer-related death in the ‘developed world’, killing
around 205,000 individuals in Europe every year [1–3]. The prog-
nosis and the overall life expectancy are predominantly determined
by the progression of metastatic lesions and not by the primary
carcinoma. The liver constitutes the main host organ for colorectal
metastases and despite the progress in diagnostic modalities,
more than 25% of CRC patients present with metastatic hepatic
lesions at the time of initial diagnosis. Surgery remains the best
therapeutic approach, although only one third are potentially
resectable metastases. Curative resections may prolong survival
up to 5 years in almost half of the patients. Unfortunately, if 

colorectal liver metastases receive no treatment, life expectancy
rarely exceeds 1 year [4–6].

The development of CRC hepatic lesions is a long not com-
pletely understood process. Malignant cells at the primary site ini-
tially migrate through the endothelium of the vasculature and
enter the systemic circulation (intravasation). Then, they need to
survive the mechanical pressure, collisions with other cells and
attacks by immune cells; some of them may reach the portal vein,
which is the gateway to the hepatic sinusoids. The latter are specific
capillaries which form a dense network, where important interac-
tions among CRC and hepatic resident cells occur, including apop-
tosis, angiogenesis, proteolysis and adhesion [7–9].

The maintenance, promotion or disruption of cell adhesion is
critical for liver colonization by CRC cells and numerous cell adhe-
sion molecules (CAMs) are involved [10]. Selectins are present
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within the sinusoids, regulating CRC cell arrest and extravasation
in the liver. As they are expressed on non-parenchymal hepatic
cells, such as sinusoidal endothelial cells (SECs) and stellate cells,
and their ligands on malignant cells, selectins stand at a molecu-
lar crossroads and play a pivotal role in CRC liver metastases [11].

Selectins

The family of selectins includes three transmembrane CAMs: 
E-selectins, which are expressed exclusively by endothelial cells,
L-selectins present in leucocytes and P-selectins in platelets and
endothelial cells. Selectin molecular structure consists of five
domains: an N-terminal c-type lectin, a single epidermal growth
factor like, two to nine complement binding domains, a single
transmembrane and a short intracellular domain which forms a
cytoplasmic tail (Fig. 1). The domain termed transmembrane
anchors the molecules to the cellular surface, whereas the cyto-
plasmic tail supports molecular signalling processes. Notably,
selectins require certain carbohydrates as connection mediators,
including the P-selectin ligand glycoprotein 1 (PSGL-1) and the

sialylated oligosaccharides sialyl Lewis � (sLea) and x (sLex)
[12–15]. Moreover, it is well established that the fucose-generating
FX enzyme is the main agent that interacts with selectin ligands,
when the latter bind homologue molecules, functioning both as a
reductase and an epimerase. Interestingly, terminal fucosylated
glycans may present selectin ligand function in human beings.
Consequently, fucosylation appears to control selectin-dependent
adhesion [16, 17]. Selectins may be expressed and/or activated
when certain mediators are present, such as numerous inter-
leukins, tumour necrosis factor (TNF) or toxins [18].

Selectins mediate tumour cell extravasation and metastasis in
a similar way that they facilitate leucocyte arrest in the vasculature
and migration to inflamed tissues. During the first steps of leuco-
cyte recruitment, L-selectins expressed on T lymphocytes and
other immune cells, in conjunction with P- and E-selectins on
endothelial cells, interact with endothelial and leucocyte carbohy-
drate ligands respectively. When a primary adhesion occurs,
immunoglobulin superfamily (IgSF) members, such as intercellular
adhesion molecules (ICAMs) and vascular CAM 1 (VCAM-1), and
integrins, are expressed to sustain a stable attachment and cellular
signalling during transendothelial migration [19–21]. Following
the methodology and investigating the results of leucocyte loco-
motion, multiple studies suggested that metastasizing CRC cells
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Fig. 1 Selectins and their ligands.
L-selectin ligands: Glycosylation-
dependent CAM 1 (GlyCAM-1),
Mucosal addressin CAM 1
(MadCAM-1), leucocyte leukosialin
(CD34), P-Selectin-Glycoprotein
Ligand 1 (PSGL-1). E-selectin lig-
ands: E-Selectin Ligand 1 (ESL-1)
and PSGL-1. P-selectin ligands:
PSGL-1. Selectins bind their car-
bohydrate ligands via the c-type
lectin domain in calcium-mediated
manner [10, 122].
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originate and maintain their adhesion to the endothelium and
migrate to foreign tissue through the expression of E-, P- and 
L-selectins, as well as their ligands, including sLEx, sLEa and clus-
ter of differentiation 44 variants (CD44v) [22–25]. When initial 
cellular bonds are successfully formed, �1 and �4 integrins in con-
cert with IgSFCAMs are activated to further reinforce the primary
selectin bonds and support signalling toward normal tissue colo-
nization [26–28].

Importantly, in vitro studies using static models [29, 30] or
flow shear stress conditions which better depict the metastatic
environment [31], advocated that not only does E-selectin support
primary malignant cell attachment to the endothelium, but also
regulates diapedesis (the transmigration of circulating cells
through the vascular endothelium) and CRC cell invasion of the
hepatic parenchyma. A DNA microarray analysis revealed that 
E-selectin provoked gene expression alterations in metastatic CRC
cells, down-regulating seven genes; the influence was 10-fold
higher in comparison with primary non-metastatic cells. The cel-
lular expression of high mobility group box 1, a chromosomal pro-
tein involved in DNA transcription and repair, was also decreased,
but its free release was promoted, resulting in endothelial cell acti-
vation and E-selectin expression [32]. It was also observed that
while this CAM is not present on colon cells, it is highly expressed
on small blood vessels, close to metastatic colon cancer lesions
[33]. Furthermore, measurements of soluble E-selectin in patients
with CRC demonstrated that high serum values significantly cor-
related with hepatic metastases [34–36].

P-selectins play a crucial role in platelet-CRC cell interactions,
as they are expressed by the former and bind to fucosylated sialy-
lated mucin ligands of the latter. Accumulating data support that
haematogenous metastasis involves platelet-malignant cell inter-
actions. From a mechanistic point of view, platelets may form
complexes with tumour cells and leucocytes and cause their arrest
in the vascular wall; these cellular masses of increased volume
function as emboli and are prone to entrapment in the vasculature.
Subsequently, platelets appear to promote malignant cell extrava-
sation. Also, platelets may stimulate tumour proliferation, enhance
interactions with the extracellular matrix (ECM) and induce
tumour growth and angiogenesis mediating the production of
molecules like the platelet-derived growth factor or vascular
endothelial growth factor (VEGF) [37, 38].

Experimental analysis of primary CRC tissue specimens, in
comparison with secondary hepatic lesions, indicated that liver
metastases were virtually deprived from P-selectin expression and
leucocyte infiltration. On the contrary, primary tumours presented
significantly higher levels of this CAM, as well as leucocyte intra-
mural activity. It was concluded that P-selectin aids CRC cells to
evade inflammatory reaction, promoting the metastatic process
[39]. Experiments under shear flow conditions revealed that 
P-selectin may form the initial bonds for metastasizing cells to
adhere within the vasculature [40–42]. Similar flow models
showed a favourable therapeutic action of heparin against colon
metastasis through blockade of P-selectin bonds [43].

Venous thromboembolism appears to affect frequently patients
who receive anti-cancer treatment, compromising the quality of their

life and increasing mortality. P-selectin has been identified as a reli-
able biomarker for this complication. Although its clinical use is still
under evaluation, it appears that this CAM could be exploited in the
identification of patients at high risk for venous thromboembolism,
such as those under chemotherapy, who should receive thrombopro-
phylaxis, including low molecular or unfractionated heparin [44, 45].

The in vitro experimental investigation of CRC cell kinetics in
flow conditions indicated that these malignant cells interact with
polymorphonuclear leucocytes and form complexes in the same
order of magnitude, as they bind to platelets. Notably, L-selectin-
mediated bonds appeared to be the most stable against shear
stress and permitted the formation of aggregates, facilitating CRC
cell arrest in the microvessels of distant organs [46]. Additionally,
a synergy of P- and L-selectins during the metastatic process of
colon carcinoma was observed, where P-selectins supported
platelet and tumour cell interactions, while L-selectins acted in
later stages of metastasis [47].

The importance of adhesion molecules in liver metastasis,
including the selectins, was also experimentally highlighted
through intravital microscopy. Fluorescence labelled CRC cells
were injected in rodents and their circulation was observed within
the liver microvasculature. It was concluded that malignant cells
interacted with the sinusoidal endothelium and adhered via E- and
P-selectins, ICAM-1 and VCAM-1. The role of mechanical entrap-
ment was underestimated in these experiments, because no
tumour cell arrest was observed in capillary systems with smaller
diameters, such as renal, mesenteric or muscular ones. Moreover,
TNF-�, a cytokine produced by stimulated Kupffer cells (KCs),
appeared to promote the expression of adhesion molecules early
during the metastatic process [48–50].

Carcinoembryonic antigen (CEA) may function as an auxiliary 
E- and L-selectin ligand and stabilize colon cells against fluid shear
during their dissemination in the vasculature. Also, it was observed
that CEA cooperates with CD44 variant isoforms (CD44v), which
are functional ligands for P-selectin, when fluid shear stress
increases. These important findings could explain the high
metastatic potential of CEA-overexpressing CRC cells, through
selectin-mediated molecular pathways [51].

KCs, the hepatic macrophages, present an 80 kDa CEA receptor
(CEA-R), classified as �-2 adrenergic, responsible for binding and
subsequent degradation of CEA [52, 53]. Experiments on murine
livers, demonstrated that the stimulation of these macrophages
with CEA caused the production of cytokines, such as TNF-� and
IL-1�. Culture of human umbilical cord endothelial cells (HUVECs)
in conditioned media from these stimulated KCs induced the
expression of E-selectin by the endothelial cells and their adhesion
with highly metastatic CRC cell lines [54]. The association of CEA
and E-selectin through KCs and vascular endothelium is another
important clue in liver metastasis research, although it should be
noted that the role of KCs is not limited to cell adhesion. These cells
may also exert cytotoxic activities against tumour cells or release
growth factors, such as hepatocyte growth factor (HGF), and 
proteolytic enzymes, such as metalloproteinase 9 (MMP-9), pro-
moting malignant cell proliferation and extravasation, as well as
angiogenesis and ECM degradation [55, 56].
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Selectins appear to be differentially expressed on the vascular
endothelium of various tissues, as was observed for E-selectin on
the rat central nervous system and the human ocular microvas-
culature [57, 58]. Furthermore, multiple experiments investigated
E-selectin expression after TNF and IL-1 stimulation on human
dermal microvascular endothelial cells and human intestinal
microvascular endothelial cells in comparison with HUVECs
[59–61] or on human iliac venous- and arterial venous endothe-
lial cells [62]; they all concluded that endothelial cells of different
origin express E-selectin in a dissimilar way. On the other hand,
colon cancer cell lines express different selectin ligands and con-
sequently adhere to different selectin molecules. While Colo320
cell line may link with P- and L- selectins, HT-29 only binds 
E-selectin and Caco-2 shows no interaction with members of the
selectin family [63]. Additionally, different colon cancer cell lines
present alternative adhesion kinetics to E-selectin [64]. The
investigation and analysis of the preceding data concluded that
selectins may play a pivotal role in the selection of the host organ
for the development of distant metastases [65]. This is an inter-
esting proposal which may substantially contribute to the expla-
nation of the high incidence of liver colonization by CRC cells.

The association of VEGF with E-selectin was studied in murine
models with sarcoma cells. It was reported that VEGF is produced
by tumour cells and enhances angiogenesis through a significant
up-regulation of E-selectin on vascular endothelial cells [66].
Although this interrelationship appears crucial for the develop-
ment of metastases, no research data have been published on
CRC. However, recent experiments on stellate cells, the liver sinu-
soidal fat-storing cells, showed that when activated, they express
E-selectin ligand 1 (ESL-1) on their cellular membrane and that
this expression could be associated with hypoxia [67]. As stellate
cells may function as oxygen-sensing cells and are involved in
angiogenesis, their expression of the main E-selectin ligand
reveals a new cell type potentially involved in CRC liver metastasis
[68, 69].

Selectins constitute a major therapeutic target for multiple mal-
adies, such as asthma, psoriasis, endotoxemia and cancer, and
various antagonists have been developed. Bimosiamose (Fig. 2) is
a pan-selectin synthetic antagonist and the leading selectin
inhibitor in clinical development. It has been tested in animal mod-
els and human beings for inflammatory diseases, such as asthma and
chronic obstructive pulmonary disease, with favourable results
and low toxicity [70–72]. Heparin also exerts anti-inflammatory as
well as anti-metastatic effects, partly inhibiting L- and P-selectin
binding. Although, its animal origin and heterogeneous structure
limit its value and new semi-synthetic glucan sulphates were pro-
duced and administered in murine models. Phycarin sulphates
were reported to block P-selectin effectively and their application
as anti-inflammatory and anti-cancer drugs will be further 
evaluated [73–75].

Biological engineering achieved the development of numerous
anti-selectin antibodies. A promising one appears to be
HuEP5C7.g2, a humanized antibody, which blocks leukaemia cell
binding to E- and P-selectin positive cells and possesses
favourable pharmacokinetic properties, with long circulation half-

life [76, 77]. Moreover, synthetic ligands for selectin binding were
in vitro tested and gold colloid particles presented high values of
L- and P-selectin immobilization with no cytotoxic effect; their fur-
ther assessment on animal models is on the way [78]. In general,
while the inhibition of selectins appears a promising treatment for
several diseases, it is still under evaluation mainly in animal mod-
els, a limited number of pharmaceutical compounds have reached
small clinical trials and no reliable data exist for solid tumours,
such as CRC and its metastases.

Selectin ligands

Sialyl Lewis antigens

The Lewis blood group includes multiple structurally similar car-
bohydrates present on erythrocytes, but also in other different 
tissues. It has been shown that certain sialylated Lewis antigens,
membranous cell glycoproteins which end in nine carbon mole-
cules named sialic acids, are involved in cellular adhesions with
the ECM and with endothelial cell-related ligands, such as the
selectins, during tumour progression. Typical sLe antigens asso-
ciated with malignant diseases are sLex and sLea (Fig. 3). In the
large bowel it has been discovered that both these antigens are
expressed in tumours located throughout its epithelium, while
sLeb and sLey are expressed only in neoplasms of the distal colon
[79–81]. Glycosyltransferases constitute a wide category of
enzymes that transfer monosaccharide units and include several
families, such as sialyl- and fucosyltransferases. These two
enzyme families are involved in neoplastic transformation and
cancer development through their role in cell differentiation and
adhesion. Therefore, any modification in their function may alter
the status of cell connection [82–84].

In the primary CRC with poor outcome, it was observed 
that both sialyl- and fucosyltransferases were up-regulated. The
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Fig. 2 The pan-selectin antagonist bimosiamose ([hexane-1,6-diylbis
[6�-(�-D-mannopyranosyloxy) biphenyl-3�,3-diyl]] diacetic acid)
http://www.who.int/druginformation (WHO Drug Information Vol.15,
No.3&4, 2001).
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fucosyltransferases-3 and -4 (Fuc-TIII and Fuc-TVI) and sialyl-
transferase3galactosamine-4 (ST3Gal-IV) mediated sLe antigen
synthesis in the colon, but were not responsible for the increased
expression of these antigens in CRC. This increase should be
attributed to a combinational up-regulation of multiple glycosyl-
transferases genes [85, 86]. Immunohistochemical studies
revealed an augmented �Fuc-TVI expression in human colorectal
carcinomas, which was associated with lymph node metastasis
and tumour stage. Notably, increased values of the enzyme corre-
lated with the degree of tumour infiltration through the intestinal
wall [87]. Murine experiments displayed that the expression of
Fuc-TI induces lower levels of sLex in CRC cells, inhibiting their
dissemination and thus liver metastases, due to decreased adhe-
sion capacity to E-selectin [88]. Moreover, in colorectal liver
metastases, there was a decrease in sialyltransferase levels and
increase in fucosyltransferase expression [89].

The sLex antigen is a tetrasaccharide, usually attached to O-
glycans on the cellular surface. It is an E-selectin ligand expressed
on granulocytes and monocytes. It is well studied in CRC and
appears to correlate closely with the bad prognosis of the disease.
Its levels are reversely associated with survival of operated
patients for primary CRC and analogous to CRC metastatic ability
[90]. The same results were announced through an animal-based
model of CRC liver metastases. High levels of sLex were associ-
ated with increased expression of E-selectin, cell adhesion and
liver metastasis [91]. A multivariate analysis of patient records

with CRC metastasis showed that sLex is an independent prognos-
tic factor for the histologic type and the recurrence of the disease,
as well as the invasion depth, in contrast with sLea that is not [92].

Sialyl Lewis �, also termed carbohydrate antigen 19–9 (CA
19–9), is most frequently linked with O-glycans on mucins of the
cellular surface. On normal tissue it is restricted to ductal epithe-
lium, but is widely expressed in multiple carcinomas including
colon cancer [79, 93]. This tetrasaccharide binds to E- and 
P-selectin and controls the extravasation and the attachment of CRC
cells to endothelium. It was also shown that down-regulation of
this antigen on CRC cells via genetic modifications, substantially
reduced their extravasation [94–96]. Several studies on murine
models assessed the involvement of sLea in CRC liver metastases
either in vitro or in vivo. It was reported that the antigen favoured
the metastatic process mainly facilitating cellular adhesion. This
action was also related to increased �Fuc-TIII enzymatic activity
[97–99]. Dabrowska et al. studied the association of Fuc-TIII with
sLea synthesis in five different colon cancer cell lines and con-
cluded in favour of a strong positive regulatory role for the enzyme
[100]. Furthermore, in vitro studies demonstrated that hypoxic
conditions enhanced the expression of E-selectin ligands, such 
as sLea and sLex, by colon cancer cells and promoted selectin-
mediated cell adhesion during metastasis [101].

The clear role of sLea and sLex in CRC metastasis caused ther-
apeutically oriented research, which targeted these molecules.
Cimetidine, a histamine H2 receptor antagonist, was administered
for 1 year to patients with CRC, who had undergone a curative
resection and were under 5-fluorouracil treatment; significant ben-
eficial effects were announced referring to 10-year survival.
Importantly, patients highly expressing sLea and sLex presented
the most favourable results. It was claimed that cimetidine could
block the expression of E-selectin on vascular endothelium and
thus inhibit the adhesion of CRC cell ligands [102]. Moreover, 
in vivo murine experiments, testing the effect of sLex analogue
GSC-150 in CRC liver metastasis, reported that this agent reduced
the number of metastatic nodules, inhibiting malignant cell adhe-
sion; this was also displayed via in vitro studies on HUVECs [103].
Recently, sLea conjugates were synthesized and used as vaccines
in mice, against CRC and lung cancer cells. The produced antibod-
ies proved to be highly active and no reactivity with other sialyl
Lewis antigens was detected. Further experiments will evaluate
this new immunotherapy [104].

CD44 (H-CAM)

CD44 or homing-associated CAM (H-CAM) is a family of trans-
membrane glycoproteins, including several isoforms expressed
on epithelial, endothelial and tumour cells. These isoforms differ
in the extracellular domain, where combinations of 10 variant
exons may occur. CD44 serves as a hyaluronan receptor, a gly-
cosaminoglycan, responsible for cell motility and proliferation.
Furthermore, through interactions with other molecules, such as
osteopontin, collagen, matrix metalloproteinases and selectins, it
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Fig. 3 Chemical structure of sialyl Lewis x (sLex) and � (sLea) [80].
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regulates cell adhesion among endothelial and hematopoietic
cells, fibroblasts and the ECM [25, 105, 106].

The wide expression of CD44 on neoplastic cells has been well
studied and its predictive value has been proposed in tumour inva-
sion, migration and angiogenesis [65]. Increased values of CD44
were associated with venous invasion in CRC and correlated,
along with E-cadherin, to poor overall survival, especially in stage II
[107]. Murine experiments demonstrated that it promotes tumour
growth, anti-apoptosis and CRC cell motility, and its genetic sup-
pression induces malignant cell apoptosis and migration via AKT
kinase [108–110].

Various isoforms of CD44 are frequently present in advanced
stages of colorectal carcinogenesis and its liver metastases. CD44
splice variant 6 (CD44v6) appears to be associated with CRC liver
metastases, although there is no agreement if this glycoprotein is
highly [111] or lowly [112, 113] expressed on tumour cells.
Clinical and experimental studies associated CD44v6 with colon
cancer stage (Dukes’ classification), hepatic metastasis and 5-year
survival [114, 115]. Additional confirmation of CD44’s value in the
prognosis of colonic malignancies was provided by Wang et al.
who revealed that high levels of heat shock protein 72, a molecu-
lar chaperone which regulates cancer cell growth and apoptosis,

were connected with high CD44v6 levels in human colonic cancer,
compared to normal colon [116].

In contrast to the preceding conclusions, a clinical study on 
56 patients with Dukes’ C or D CRC reported no difference of
CD44v6 expression in the primary site and the metastatic lymph
nodes [117]. A recent analysis of CRC metastatic lesions revealed
that the complex of epithelial CAM (EpCAM), claudin-7, CD44v6
and a tetraspanin member was strongly related to poor prognosis
and low disease free survival, although the solitary expression of
each of these proteins showed no similar outcome [118].
Moreover, the expression of CD44v8 to -10 revealed no significant
correlation with the histology, lymphatic and venous invasion of
the primary CRC, but was significantly related with lymph node
and haematogenous metastases. Also, patients with increased val-
ues of these ligands presented higher recurrence and lower 5- and
10-year survival rates [119]. Consequently, there is mounting evi-
dence which connects CD44v isoforms with CRC prognosis and
its migration to the liver, but this relationship is neither well
defined, nor clearly demonstrated in the clinical field.

In vitro studies on multiple colon carcinoma cell lines con-
cluded that CD44v isoforms mediate tumour cell adhesion to
platelets, leucocytes and endothelial cells, through links with 
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Fig. 4 Schematic representation of
CRC cell interactions with hepatic
sinusoidal cells. KCs, presenting
CEA receptors, may be activated
through CEA molecules released by
malignant cells, produce cytokines
which stimulate endothelial cells to
express E-selectin. Metastasizing
colorectal cells also present sLe
and CD44v ligands, which link with
E-, P- and L-selectins. The last two
molecules are expressed on
platelets and leucocytes respec-
tively. CD44v: CD44 variant, CEA:
carcinoembryonic antigen, CEA-R:
CEA receptor, CRC: colorectal 
cancer, IL-1�: Interleukin 1�, sLe:
sialyl Lewis antigen, TNF-�: tumour
necrosis factor �.
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P-, L- and E- selectins, and fibrin. Additionally, heparin reduced cell
adhesion to P- and L- selectins. As the selectin family and fibrin
play a critical role in metastasis, these findings present CD44 as a
potential target of future therapeutic applications [25, 120, 121].

Conclusions – future perspectives

Selectins and their ligands, such as sLex, sLea and CD44 isoforms,
facilitate the metastatic process and promote CRC cell extravasa-
tion from the sinusoids. While selectins are expressed in platelets,
leucocytes and SECs, their ligands are present on malignant cells
and their connections mediate CRC cell apoptosis, proliferation,
motility and adhesion to different cells and the ECM. Importantly,
multiple cytokines released by Kupffer, stellate and other cells, are

also involved in the expression of selectins and thus the cellular
intercommunication within the sinusoids develops and appears
more complicated (Fig. 4).

Effective anti-cancer treatment of the future will primarily rely
on molecular analysis. In the field of CRC liver metastasis, current
research has recognized the importance of selectins and their lig-
ands. Several selectin inhibitors have been composed and tested
via animal models and/or clinical trials, however progress was
slow, because these CAMs are present in numerous physiological
functions and their blockade could cause ample complications.
Cimetidine, a well-established H2 receptor antagonist, showed sig-
nificant anti-cancer action in preliminary studies with CRC patients
and should be additionally studied, in conjunction with other med-
icines of this category. Further research on human tissue should
consolidate successful therapeutic results from animal models
and bigger clinical trials should evaluate the potential of old and
new selectin inhibitors in the treatment of CRC liver metastases.
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