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Abstract 

The effect of obstacle separation distance on the severity of gas explosions has received little 

methodical study. It was the aim of this work to investigate the influence of obstacle spacing 

of up to three flat-bar obstacles. The tests were performed using methane-air (10% by vol.), in 

an elongated vented cylindrical vessel 162 mm internal diameter with an overall length-to-

diameter, L/D, of 27.7. The obstacles had either 2 or 4 flat-bars and presenting  20% blockage 

ratio to the flow path. The different number of flat-bars for the same blockage achieved a 

change of the obstacle scale which was also part of this investigation. The first two obstacles 

were kept at the established optimum spacing and only the spacing between the second and 

third obstacles was varied. The profiles of maximum flame speed and overpressure with 

separation distance were shown to agree with the cold flow turbulence profile determined in 

cold flows by other researchers. However, the present results showed that the maximum effect 

in explosions is experienced at 80 to 100 obstacle scales about 3 times further downstream 

than the position of maximum turbulence determined in the cold flow studies. Similar trends 

were observed for the flames speeds. In both cases the optimum spacing between the second 

and third obstacles corresponded to the same optimum spacing found for the first two 

obstacles demonstrating that the optimum separation distance does not change with number of 

obstacles. In planning the layout of new installations, the worst case separation distance needs 

to be avoided but incorporated when assessing the risk to existing set-ups. The results clearly 

demonstrate that high congestion in a given layout does not necessarily imply higher 

explosion severity as traditionally assumed.  Less congested but optimally separated 

obstructions can lead to higher overpressures. 

Keywords: gas explosions, obstacles, obstacle separation, turbulence intensity 
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1. Introduction 

Investigators of gas explosions in congested volumes as typically found in industrial layouts,  

have  identified a number of important obstacle characteristics that affect the severity the 

explosion  (in addition to the combustion chemistry). These include: blockage ratio, size, 

shape, scale, location of obstacles relative to the ignition and the path of flame propagaton, 

the number of obstacles, and spacing between the obstacles. The separation distance (pitch) 

between obstacles is one of the areas that has not received adequate attention by the 
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researchers despite general recognition of the important role it plays in determining the 

explosion severity. According to Lee and Moen (1980), sustained flame acceleration could 

not be attained for large pitch due to decay of turbulence in between obstacles while for small 

pitch the pocket of unburned gas between the obstacles would be too small to allow for the 

flame to accelerate before reaching the next obstacle. In between there has to be a worst case 

explosion interaction obstacle spacing and there is no previous work that determines this. In 

compliance with the ATEX directive (ATEX, 1994), the worst case scenarios need to be used 

in assessing the severity of the hazard posed by gas explosions in process plant or offshore oil 

and gas platforms.  In planning the layout of new installations, it is appropriate to identify the 

relevant worst case obstacle separation in order to avoid it. In assessing the risk to existing 

installations and taking appropriate mitigation measures it is important to evaluate such risk 

on the basis of a clear understanding of the effects of separation distance and congestion.  

A number of experimental explosion studies have demonstrated the effect of obstacle 

separation distance as part of wider assessment of the effects of congestion. These include the 

works of:  Moen et al. (1980); Moen et al. (1982); Chan et al. (1983); Harrison and Eyre 

(1987); Lindstedt and Michels (1989); Teodorczyk et al. (1989); Mercx (1992); Beauvais et 

al. (1993); Obara et al. (1996); Mol’kov et al. (1997); Yu et al. (2002);  Cicarelli et al. 

(2005); Teodorczyk et al. (2009); Rudy et al. (2011); Vollmer et al. (2011); Pang et al. 

(2012); Boeck et al. (2013) and Porowski and Teodorczyk (2013). The bulk of studies was 

performed with repeat obstacles spaced over a short distance, the spacing between obstacles 

was small and varied just from 1.3 to 10 characteristic obstacle scales. However, this is not up 

to the range of 3 to 20 characteristic obstacle scales downstream of the grid where the 

maximum combustion rate usually occurs as discussed by Phylaktou and Andrews (1991).  

The authors (Na'inna et al., 2013a) reported an experimental study in an elongated tube with 

two orifice plate obstacles of 30% blockage ratio each, where the obstacle separation distance 

was varied systematically from 0.5 m to 2.75 m. They reported a direct influence of the 

obstacle separation distance on flame speed and overpressure. A separation distance of 1.75 m 

produced close to 3 bar overpressure and a flame speed of about 500 m/s with 10% 

methane/air explosions. These values were of the order of twice the overpressure and flame 

speed with a separation pitch of 2.75 m. The profile of effects with separation distance was 

shown to agree with the turbulence profile determined in cold flows by other researchers. 

However, the experimental results showed that the maximum effect in explosions was 

experienced further downstream than the position of maximum turbulence determined in the 

cold flow studies. Also, the authors (Na’inna et al., 2013b) investigated the influence of 

mixture reactivity and fuel type on the optimum obstacle separation distance for generation 

using two induced turbulent generating orifice plates of 30% blockage with variable obstacle 

spacing. 

It was the aim of this work to extend the investigation into the experimental assessment of the 

influence of obstacle spacing using three obstacles of variable number of flat-bars (obstacle 

scale, b) with fixed 20% blockage ratio..  

2. Experiments 

A long cylindrical vessel 162 mm internal diameter made from nine flanged sections, 8 of 

them of 0.5 m length each and one section 0.25m in length (total nominal length of 4.25m). 

The test vessel was rated to withstand an overpressure of 35 bar. It was was mounted 

horizontally and closed at the ignition end, with its open end connected to a large cylindrical 

dump-vessel with a volume of 50 m
3
. This arrangement enabled the simulation of open-to-



 
 

 

atmosphere explosions with accurate control of both test and dump vessels pre-ignition 

conditions.  

Up to three obstacles (flat-bar types) with different number of bars as shown in Fig. 1 made 

from stainless steel of 3.2 mm thick, and 20% blockage were used in the test vessel. The 

different number of flat-bars for the same blockage achieved a variation of the obstacle scale, 

b (width of the bar), which was also part of this investigation.  

 

 

Figure 1: Turbulence generation obstacles: two and four flat-bar obstacles of 20% blockage 

each. 

The obstacles were mounted between the section flanges. For the double obstacle tests, the 

first obstacle was positioned 1 m downstream of the spark (for all tests) while the second 

obstacle’s position was varied from 0.25 m to 2.75 m downstream of the first obstacle in order 

to obtain the worst case obstacle spacing. For the triple obstacle tests, the first two obstacles 

were kept at the established worst case spacing and only the spacing between second and third 

obstacles was changed.  

A pneumatically actuated gate valve isolated the test vessel prior to mixture preparation. A 

vacuum pump was used to evacuate the test vessel before  a 10 % (by vol.) methane-air 

mixture was formed using partial pressures, to a total mixture pressure of 1 atm. The dump 

vessel was filled with air to a pressure of 1 atm as well. After mixture circulation, allowing for 

at least 4 volume changes, the gate valve to the dump vessel was opened and a 16 Joule spark 

plug ignition was effected at the centre of the test vessel closed-end flange. The test vessel 

had an overall length-to-diameter ratio, L/D of 27.7. The set-up is shown in Fig. 2. 

 

(a) 



 
 

 

 

(b) 

Figure 2: Experimental set-up (a) Photograph (b) Schematic diagram.  

An array of 24 type-K mineral insulated exposed junction thermocouples positioned along the 

axial centre line of the test vessel was used to record the time of flame arrival. Average flame 

speeds allocated to the midway position between two thermocouples were obtained by 

dividing the distance between two thermocouples by the difference in time of flame arrival at 

each thermocouple position. A smoothing algorithm was applied to the flame arrival data, as 

described by Gardner (1998), to avoid either high or negative flame speeds where the flame 

brush appears to arrive at downstream centreline locations earlier than upstream ones, 

particularly in the regions of strong acceleration downstream of the obstacles. 

The test vessel and dump vessel pressure histories were recorded using an array of 8 Keller-

type pressure transducers - 7 gauge pressure transducers (PT1to PT7) and 1 differential 

(DPT), as shown in Fig. 2. Wall static pressure tapping measured by a differential pressure 

transducer (DPT) were located at 0.5D upstream and 1D downstream of the first obstacle as 

specified by BS5167-2 (2003). Pressure transducers, PT3 and PT4 were positioned 0.5D 

upstream and 1D downstream of the second obstacle and they were used to obtain the 

pressure differential across these obstacles. For the third obstacle tests, PT2 and PT5 (0.5D 

and 1D upstream and downstream respectively) were used to measure the pressure drop 

across such obstacles and these were used in calculating the induced gas flow velocities and 

other flow turbulence characteristics (but these are not reported in this paper). Pressure 

transducers PT1 and PT6 were positioned permanently at the ignition position-end flange and 

end of the test vessel (25D from the spark) respectively. The pressure history in the dump 

vessel was measured using PT7 positioned as shown in Fig.2.  

A 32-channel (maximum sampling frequency of 200 KHz per channel) transient data recorder 

(Data Logger and FAMOS) was used to record and process the explosion data. Each test was 

conducted three times in order to demonstrate repeatability and ensure representative data and 

the average of the repeat tests was used for the analysis of the flame speed and overpressure.  

Table 1 shows a list of the tests carried out as part of this work and an overview of the results.  

 

 

 

Table 1: Summary of test conditions and results.( explain symbols) 

Test Nobst Nb b xs1 xs2 xs1/b xs2/b Sfmax Pmax 

(-) (-) (-) (m) (m) (m) (-) (-) (m/s) (bar) 



 
 

 

1 - - - - - - - 122 0.26 

2 1 2 0.013 - - - - 227 0.56 

3 2 2 0.013 1 - 78 - 333 0.98 

4 2 2 0.013 1.25 - 98 - 386 1.18 

5 2 2 0.013 1.75 - 137 - 360 1.08 

6 3 2 0.013 1.25 1 98 78 489 1.90 

7
* 

3 2 0.013 1.25 1.25 98 98 569 2.16 

8
* 

3 2 0.013 1.25 1.75 98 137 338 1.68 

9 1 4 0.006 - - - - 206 0.43 

10 2 4 0.006 0.25 - 39 - 276 0.97 

11 2 4 0.006 0.5 - 78 - 356 1.10 

12 2 4 0.006 1 - 156 - 348 0.77 

13 3 4 0.006 0.5 0.25 78 39 469 1.79 

14 3 4 0.006 0.5 0.5 78 78 498 2.00 

15 3 4 0.006 0.5 0.75 78 117 387 1.63 

16 3 4 0.006 0.5 1.25 78 195 349 1.18 
* An extra pipe section of about 0.25 m length and 0.162 m diameter was used to have equal spacing within the three obstacles 

3. Results and discussion 

3.1 Influence of Obstacle Spacing on Two Obstacles 

Figure 3 presents the maximum overpressure and dimensionless obstacle spacing for  two 4- 

flat-bar obstacles. Also shown is the intensity of turbulence profile against the dimensionless 

distance downstream of a bar-grid obstacle of 0.22 BR from Baines and Peterson (1951). It 

was observed that the maximum overpressure increased with the reduction in number of flat-

bars. This was as a result of the increase in obstacle scale, b with decrease in number of flat-

bars. A maximum overpressure of about 1.18 bar at 1.25 m obstacle spacing (98 obstacle 

scales) was achieved with 2-flat-bar whereas 4-flat-bar obstacles produced a maximum 

overpressure of 1.10 bar at 0.5 m obstacle spacing (78 obstacle scales). This shows as the 

obstacle scale increased  the optimum obstacle spacing also increased in absolute terms. 

However the optimum obstacle separation distance in terms of number of obstacle scale was 

roughly constant between 80 and 100 within the resolution of the data due the limited spacing 

distances possible in the experiments.   

The qualitative overall pattern of the maximum overpressure with dimensionless obstacle 

spacing for all the obstacles was similar to the turbulence intensity profile from Baines and 

Peterson  (1951) see Fig.3. For nearly equal obstacle blockage ratio (0.2 BR) between the cold 

flow and the present work, the present results showed that the maximum effect in explosions 

is experienced further downstream (about 3 times the distance) than the position of maximum 

turbulence determined in the cold flow studies. It is suggested that this may be due to the 

detachment of the turbulence region from the obstacle, once the flame goes through the 

obstacle, and the subsequent convection of the turbulent flow plug  ahead of  the propagating 

flame, while the flame simultaneously burns into it.  

The effect of maximum flame speeds on dimensionless obstacle spacing between two 

obstacles for 2 and 4 flat-bar obstacles is shown in Fig. 4. The general profiles of maximum 

flame speed and their dependence on obstacle scale and obstacle spacing were similar to those 

observed for the maximum overpressure results.  

 



 
 

 

 

Figure 3: Comparison between intensity of turbulence from cold flow turbulence and transient 

experimental work with flat-bar obstacles.  

 

Figure 4: Influence of obstacle scale on maximum flame speeds and dimensionless obstacle spacing. 

 



 
 

 

3.2 Optimum Spacing of the Third Obstacle  

The positioning of the third obstacle was investigated  by keeping the positioning  of the first 

two obstacles for  optimum acceleration  as established in 3.1,  and changing  only the 

position of the third obstacle relative to the second . Figure 5 shows an overpressure profile of 

three obstacles against the dimensionless obstacle spacing between the second and third 

obstacles. The profile is similar to that produced by the positioning of the second obstacle 

relative to the first obstacle. For 2-flat-bar obstacles, a peak overpressure of 2.2 bar was 

attained at a separation of 98 obstacle scales (1.25 m separation distance). This distance 

corresponds to the optimum spacing obtained with two obstacles. In the case of the 4-flat-bar 

obstacles, a maximum overpressure of 2 bar was realised at the third obstacle spacing of 78 

obstacle scales from the second i.e. again at the same relative positioning as the optimum 

distance of the second obstacle from the first in the two obstacle configuration.   

Also shown in Fig. 5 are the flame speed results for the 2 and 4 flat-bar obstacles in the triple 

obstacle configuration. The flame speeds showed similar turbulence profile and position to 

peak intensity as the overpressures with maximum  flame speed of 569 m/s for the 2-flat-bar 

and 498 m/s the 4-flat-bar. 

 

Figure 5: Influence of obstacle separation between 2
nd

 and 3
rd

 obstacles on maximum overpressures 

and flame speeds. 

This work shows that for both obstacle types the optimum spacing between the second and 

third obstacles corresponded to the same optimum spacing found for the first two obstacles. 

This suggests that the optimum absolute separation distance does not change with number of 

obstacles nor with the severity of the explosion, but it does change with the obstacle scale. 

Therefore this suggests that in multi-obstacle explosions, the spacing between obstacles must 

be kept away from the worst case explosion severity separation if high overpressures are to be 

avoided. Wide separation also represents a relatively uncongested scenario and so the 



 
 

 

assumption often made that fast explosions require congested volumes might not be the 

complete picture 

 

3.3 Influence of Number of Obstacles  

The influence of number of obstacles as a wider assessment of multi-obstacle congestions 

typically found in industries have been studied previously by Chapman and Wheeler (1926), 

Moen et al. (1982), Hjertager et al. (1988) and Ning et al. (2005). All the authors observed 

that the severity of explosions in terms of overpressure and flame speeds were increased as 

the number of obstacles increased. However, in all the previous works, only orifice plate 

obstacles were used to generate turbulence in the system.  

Figure 6 shows an overpressure-time profile of 1 to 3 obstacles (2-flat-bar type). The 

obstacles were spaced at 1.25 m each (98 obstacle scales) which was established in 3.1 to give 

the worst case obstacle separation distance. Upon ignition, the overpressure-time profile was 

fairly constant in all the obstacle configurations up to the position of the first obstacle 

positioned at 6.2D from spark. For all the obstacle tests, a sharp rise in overpressure was 

noticed downstream of the first obstacle and attained a maximum value of about 0.6 bar. This 

overpressure value doubled that of the no obstacle test. Subsequently, the overpressure in the 

first obstacle test attenuated and exited the vent at about 72 ms. Another rise in overpressure 

behind the second obstacle (14D from spark)  was observed for the double and triple obstacle 

tests and a peak value of close to 1.1 bar was achieved with the former while the latter had 

about 1.3 bar. However, the time to such maximum overpressures were nearly the same in 

both scenarios. The maximum overpressures doubled that of the single obstacle test. The 

overpressure in the double obstacle test later decayed and left the vent at the almost the same 

time with that of the single obstacle test.  As the flame approached the third obstacle (21.6D 

from spark) in the triple obstacle configuration, an increase in overpressure was measured 

close to 2.2 bar downstream of the third obstacle.  This value was nearly two and four times 

greater than that of double and single obstacle tests respectively.  

The influence of number of obstacles in terms of flame speeds against a dimensionless 

distance from spark is shown in Fig. 7.  The flame speeds in comparison to the patterns shown 

by pressure-time profile demonstrated similar flame development in all the three tests. Similar 

maximum flame speed of about 43 m/s upstream and 200 m/s downstream of the first obstacle 

was achieved in all the test configurations.  The double obstacle test attained a maximum 

value of 386 m/s downstream of the second obstacle. This value nearly doubled that of a 

single obstacle test (a similar factor obtained with overpressure effect). For the three obstacle 

configuration, a maximum flame speed value of about one and a half times higher than that of 

the double obstacle was achieved.  



 
 

 

 

Figure 6: Pressure-time profile for 1, 2 and 3 obstacles spaced at optimum obstacle separation 

distance.  

 

Figure 7: Flame speeds against flame position for 1, 2 and 3 obstacles spaced at optimum obstacle 

separation distance. 

 



 
 

 

The effect of up to three repeat obstacles on overpressure for 2 and 4 flat-bar obstacles tested 

in the present research spaced at optimum obstacle separation distance is given in Fig. 8. As 

shown the overpressure increased significantly  with increasing number of obstacles optimally 

spaced. In all cases the overpressure with the larger scale 2-flat-bar obstacles was 10 to 40% 

higher than the smaller scale 4-flat-bar ones and this is consistent with the reported effect of 

scale (ref our groups paper on scale). The biggest effect of scale was observed in the lower 

over-pressure tests. 

In comparison with the literature, Moen et al. (1982) studied the influence of number of 

obstacles on explosion overpressures. The authors performed their tests in a large tube of 2.5 

m in diameter and 10 m long corresponding to 50 m
3
 by volume. The tube was fully opened at 

one end and closed at the other and accommodated up to nine regularly spaced orifice plates 

providing blockage ratios from 0.16 to 0.84.  Stoichiometric methane-air mixture ignited at 

the end of the tube was used to initiate the explosions. For 16% BR obstacles, an overpressure 

of about 1 bar was achieved with nine plates 1 m apart. This value was 2.2 times lower than 

that obtained with just three 2-flat-bar obstacles of 0.2 BR in the current work. Also, the 

authors observed a lower value of overpressure (compared to the present work) of close to 2 

bar with three obstacles of 30% blockage. The likely possibility of the lower overpressure in 

the work of Moen et al. (1982) compared to the present one was that the obstacle spacing in 

the former was not at optimum value as in the case of the present work. However, a general 

trend of increase in overpressure with number of obstacles was similar in both two tests.  

 

Figure 8: Effect of number of obstacles spaced at optimum position on maximum overpressure for all 

the obstacles tested in the present research. 

Also shown in Fig. 8  is the influence of number of obstacles on maximum flame speed for all 

the obstacles used in the present research spaced at worst case obstacle separation distance. 

Patterns similar to overpressures were equally observed with the flame speeds. Also for the 



 
 

 

three obstacle configurations, maximum flame speeds of 569 m/s and 498 m/s were obtained 

for the 2-flat-bar and 4-flat-bar obstacles respectively downstream of the third obstacle.  

The highest flame speed from 2-flat-bar obstacles was about 1.4 times higher than that 

obtained from the pioneer work of Chapman and Wheeler (1926) with up to 20 obstacles of  

0.91-0.48 blockage spaced at 5 cm to each other. The explosion geometry used was a brass-

tube of 5 cm diameter and 2.4 m long with near stoichiometric methane air mixtures as in the 

present tests.  The maximum flame speed value was achieved at the 12
th

 obstacle, after which 

an increase in the number of obstacles caused no change. That value was sustained constant 

throughout the rest of the tube. This behaviour was also observed with overpressure in the 

work of Moen et al. (1982); in their work a reduction in overpressure was observed after the 

6
th

 obstacle with 30% obstacle blockage.  

4. Conclusions 

The profile of effects with separation distance in the present research agreed with the cold 

flow turbulence profile determined in cold flows by other researchers. However, in the present 

results the maximum effect in explosions was experienced further downstream than the 

position of maximum turbulence determined in the cold flow studies. It is suggested that this 

may be due to the convection of the turbulence profile by the propagating flame. 

For the triple obstacle tests, the optimum spacing between the second and third obstacles 

corresponded to the same optimum spacing found for the first two obstacles (i.e. 80 to 100 

obstacle scales) demonstrating that the optimum separation distance does not change with 

number of obstacles nor the severity of the explosion. This position of maximum flame 

acceleration was about 3 times further downstream than the position of the maximum 

turbulence in cold flow turbulence measurements. 

Significant increases in explosion overpressures and flame speeds were measure with small 

increase in number of obstacles spaced at optimum separation distance. 

Multi-obstacle studies in the literature have the obstacle spacing (generally) quite close 

compared to the present work.  The results clearly demonstrate that high congestion in a given 

layout does not necessarily imply higher explosion severity as traditionally assumed.  Less 

congested but optimally separated obstructions can lead to higher overpressures. 

In planning the layout of new installations, it is appropriate to identify the relevant worst case 

obstacle separation in order to avoid it. In assessing the risk to existing installations and 

taking appropriate mitigation measures it is important to evaluate such risk on the basis of a 

clear understanding of the effects of separation distance and congestion. The present results 

would suggest that in many previous studies of repeated obstacles the separation distance 

investigated might not have included the worst case set up, and therefore existing explosion 

protection guidelines may not correspond to worst case scenarios.  
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