

This is a repository copy of On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/105047/

Article:

Farmer, Thomas James orcid.org/0000-0002-1039-7684, Pellis, Alessandro and Guebitz, Georg (2016) On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions. MOLECULES. 1245. pp. 1-11. ISSN: 1420-3049

https://doi.org/10.3390/molecules21091245

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supplementary Materials: On the Effect of Microwave energy on Lipase-Catalyzed Polycondensation Reactions

Alessandro Pellis, Georg M. Guebitz and Thomas J. Farmer

Table S1. Solvent-free reactions catalyzed by Novozym 435® after 4 h of reaction.

Entry	Diester	Diol	Heating		T	Vessel	Conversion	$M_{\rm w}$	Mn	PDI ^λ
(n°)	(A)	(B)	MW	Oil Bath	(°C)	Open/Close	(%) *	(Da) ^{\(\lambda\)}	(Da) ^{\(\lambda\)}	PDI*
Blank	DMA	BDO	+		50	Open	-	-	-	-
Blank	DMA	BDO		+	50	Close	-	-	-	-
2	DMA	BDO	+		50	Close	39	509	483	1.054
2	DMA	BDO		+	50	Close	40	515	488	1.055
4	DMS	BDO	+		50	Open	44	546	456	1.197
4	DMS	BDO		+	50	Open	47	599	528	1.134
7	DMS	BDO	+		50	Open	11	391	335	1.167
7	DMS	BDO		+	50	Open	46	611	543	1.125

^{*} Calculated via ¹H-NMR spectra; ^{\(\lambda\)} Calculated via GPC. Abbreviations: DMA: dimethyl adipate; DMS: dimethyl succinate; BDO: 1,4-butanediol.

Table S2. Reactions in organic media catalyzed by Novozym 435® after 4 h of reaction.

Embers (m2)	Diester (A)	Diol (B)	Heating		T (°C)	Conversion	Mw (Da) λ	Mn (Da) λ	PDI ^λ
Entry (n°)	Diester (A)	D101 (B)	MW	Oil Bath	1 (C)	(%)*	Mw (Da) *	Min (Da) ^	FDI*
Blank	DMS	BDO	+		38	-	-		
Blank	DMS	BDO		+	38	-	-		
9	DMS	BDO	+		30	39	373	330	1.130
9	DMS	BDO		+	30	38	303	287	1.056
11	DMS	BDO	+		38	45	480	399	1.203
11	DMS	BDO		+	38	46	479	391	1.225
13	DMS	BDO	+		38	47	553	514	1.076
13	DMS	BDO		+	38	48	530	505	1.050

^{*} Calculated via ¹H-NMR spectra; ^{\(\lambda\)} Calculated via GPC. Abbreviations: DMA: dimethyl adipate; DMS: dimethyl succinate; BDO: 1,4-butanediol.

Figure S1. ¹H-NMR spectrum of the polycondensation products of DMS with BDO catalyzed by 10% w'w Novozym[®] 435 at 4 h. Entry 2 Table 1 and Table S1.

Figure S2. Time-course monitoring of the monomers conversion via ¹H-NMR spectra of the bulk reaction performed in a closed vessel at 50 °C without using the Power Max function.

Figure S3. Time-course monitoring of the monomers conversion via ¹H-NMR spectra of the bulk reaction performed in an open vessel at 50 °C without using the Power Max function.

Figure S4. Time-course monitoring of the monomers conversion via ¹H-NMR spectra of the bulk reaction performed in an open vessel at 50 °C using the Power Max function.