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Abstract—An efficient method for optimal allocation of wave-
lengths in a hybrid dense-wavelength-division-multiplexing sys-
tem, carrying both quantum and classical data, is proposed.
The transmission of quantum bits alongside intense classical
signals on the same fiber faces major challenges arising from
the background noise generated by classical channels. Raman
scattering, in particular, is shown to have detrimental effects
on the performance of quantum key distribution systems. Here,
by using a nearly optimal wavelength allocation technique, we
minimize the Raman induced background noise on quantum
channels, hence maximize the achievable secret key generation
rate for quantum channels. It turns out the conventional solution
that would involve splitting the spectrum into only two bands, one
for quantum and one for classical channels, is only a suboptimal
one. We show that, in our optimal arrangement, we might need
several quantum and classical bands interspersed among each
other.

I. Introduction

Quantum key distribution (QKD) is a promising technology

that offers unconditional security in applications with high

security requirements. In the past three decades, there has been

much progress in both theoretical and experimental aspects

of QKD. Since the first experimental demonstration of QKD

[1] up until now, QKD has seen considerable enhancement

in reach and performance in point-to-point scenarios [2]. To

further make QKD a cost-effective technology for large-scale

applications, its adaptation to the infrastructure of existing

classical communications networks is unavoidable [3], [4]. In

particular, dense-wavelength-division-multiplexing (DWDM)

techniques can enable the simultaneous transmission of both

quantum and classical data on the same fiber. However,

the transmission of quantum data alongside strong classical

signals, in practice, faces some challenges due to nonlinear

effects in fiber, such as Raman scattering and four-wave mixing

[5], which may severely affect the operation of QKD links.

Here, we consider a hybrid DWDM link with known numbers

of quantum and classical channels and find a nearly optimal

wavelength assignment method in the presence of Raman

noise. Our proposed technique can be generalized to account

for other sources of noise as well [6]. Raman noise has,

however, been shown to be the dominant source of background

noise in such hybrid setups [5].

The key problem in integrating quantum and classical

communications channels is the background noise induced by

classical channels onto quantum ones. Even if we allocate

different wavelengths to the quantum and classical channels,

as in DWDM, some of the noise generated by classical signals,

especially the Raman noise, has non-zero components over a

wide range of spectrum. Such a noise is not necessarily a ma-

jor issue in conventional high-SNR classical communications

systems, but it is a serious drawback to QKD systems, which

often rely on single photons to carry information. In existing

experiments that demonstrate the simultaneous operation of

quantum and classical signals, various filtering schemes, in

time and frequency, are used to reduce the effect of such a

background noise [7], [8]. Such experiments, however, only

consider very few classical/quantum channels. It is not clear,

if we want to use the entire spectrum available in a DWDM

link, how we should assign wavelengths to each of QKD and

classical channels. Here, we propose an optimal wavelength

allocation technique that maximizes the average key rate of

a known number of QKD channels in the presence of a

certain number of classical channels. We show that the optimal

solution may involve grouping quantum and classical channels

into multiple bands, interspersed among each other.

In the following, we first describe the problem in Sec. II,

followed by its corresponding key-rate analysis in Sec. III.

In Sec. IV, we describe our optimal wavelength allocation

scheme followed by some numerical results in Sec. V, before

concluding the paper in Sec. VI.

II. System Description

Consider the DWDM link shown in Fig. 1, where, consistent

with the conventional notation in cryptography, the two nodes

are denoted by Alice and Bob. We assume that there are a

total of P channels, where M of which are to be allocated

to QKD usage, while N forward and N backward channels

will carry classical data. In Fig. 1, each QKD link uses

efficient decoy-state BB84 protocol to generate secure keys

[9]. The QKD signals are transmitted from Alice to Bob,

while the classical data links can in general be bidirectional.

Each classical channel is equipped with optical circulators to

enable the transmission of signals in both directions on the

same wavelength. We assume that the launch power of all

data channels are chosen in such a way to guarantee a BER

no more than 10−9. For simplicity, here we have assumed that

the laser power for all data channels is the same and is denoted

by I.

The key problem we address here is to find the optimum

wavelength assignment for specific values of N and M such

that the sum of the secret key rates from our M QKD channels

is maximized. We define the set W = {λ1, λ2, ..., λP} as the set



of available wavelengths to be assigned to quantum and classi-

cal channels. The set of wavelengths assigned to forward clas-

sical, backward classical, and quantum channels, respectively,

are denoted by F = {λ f1 , λ f2 , ..., λ fN
}, B = {λb1

, λb2
, ..., λbN

}, and

Q = {λq1
, λq2
, ..., λqM

}.

The key source of background noise considered in our

analysis is the Raman-induced noise by classical channels

onto quantum ones. Raman scattering arises from the inelastic

scattering of photons and will introduce optical signals over

a wide range of frequencies overlapping with the quantum

channels [10]. We assume that data lasers with optical intensity

I are used at the transmitter of the classical channels. The

Raman noise power resulted from the data channel n, with

wavelength λdn
∈ {λ fn , λbn

}, received at the Bob’s end of the

QKD link m, with wavelength λqm
, for forward and backward

scattering is, respectively, given by [5], [7]:

I
f
nm = Ie−αLLΓ(λdn

, λqm
)∆λ, (1)

Ib
nm = I

(1 − e−2αL)

2α
Γ(λdn

, λqm
)∆λ, (2)

where α and L are, respectively, the fiber attenuation coeffi-

cient and the fiber length. Here, we have assumed equal fiber

attenuation coefficients for quantum and classical channels

[11]. In the above equations, Γ(λdn
, λqm

) is the Raman cross

section (per fiber length and bandwidth) and ∆λ denotes the

bandwidth of the quantum receiver. Figure 2 shows measured

Raman cross section, ρ(λ), for a pump laser centered at 1550

nm in a standard single mode fiber [5]. To obtain Γ(λdn
, λqm

),

we assume that the Raman spectrum for a classical signal at

wavelength λdn
would be a shifted version of the spectrum

shown in Fig. 2. That is, Γ(λdn
, λqm

) = ρ(λ1), where the

wavelength λ1 corresponds to the Raman frequency shift

∆ f = c/λqm
− c/λdn

, where c is the speed of light, given by

λ1 = (
1

λqm

−
1

λdn

+
1

1550
)−1 (nm). (3)

The Raman induced photon count probability at the detectors

of the mth quantum receiver, for forward and backward

channels can, respectively, be expressed as

p
f
nm = I

f
nmλqm

Tdηd/(2hc) = γ fλqm
Γ(λdn

, λqm
), (4)

pb
nm = Ib

nmλqm
Tdηd/(2hc) = γbλqm

Γ(λdn
, λqm

), (5)

where γ f and γb are given by

γ f = Ie−αLL∆λTdηd/(2hc), (6)

γb = I
(1 − e−2αL)

2α
∆λTdηd/(2hc). (7)

Here, h is the Planck’s constant, ηd denotes the quantum

efficiency, and Td is the gate width of the QKD receiver pho-

todetectors. The factor 1/2 reflects the fact that the background

noise would be split between two orthogonal polarizations at

the QKD receiver. Note that, in (6) and (7), the right-hand side

is wavelength independent.

There are several methods proposed in the literature to

mitigate the effect of the Raman crosstalk. Effective filtering

Fig. 1: The hybrid quantum-classical DWDM system structure. The classical
channels (green) are equipped with circulators to enable bidirectional trans-
mission. The quantum channels (blue) provide secure communications from
Alice to Bob. NBF denotes narrow bandpass filter.

in both frequency and time domains at quantum receivers can

significantly suppress the Raman noise. Another approach is

to reduce the launch power of data lasers, I, to the value

that matches the receiver sensitivity [7], [8]. In this paper,

we assume that such conventional noise reduction methods

are in place. For more advanced setups, one can consider

orthogonal frequency division multiplexing techniques, which,

in principle, can limit the background noise to only one time-

frequency mode [12], [13].

III. Key Rate Analysis

In this section, we examine the performance of the quantum

channels in the proposed DWDM system in more detail. We

consider a single QKD channel and investigate its operation

in the presence of multiple classical channels. Denoting the

average number of photons for the main signal state, in the

employed decoy-state protocol, by µ, the secret key rate per

transmitted pulse in the QKD channel, at the limit of an

infinitely long key, is lower bounded by max[0, P(Y0)], where

[14]

P(Y0) = Q1(1 − h(e1)) − f Qµh(Eµ). (8)

Here, h(p) = −plog2 p− (1− p)log2(1− p) is the binary entropy

function and f denotes the error correction inefficiency. In

the above equation, Qµ, Eµ, Q1, and e1 represent the overall

gain, the quantum bit error rate (QBER), the gain of the single

photon state, and the error rate of the single photon state,

respectively. The overall gain, Qµ, and the QBER, Eµ, are

respectively given by

Qµ = 1 − (1 − Y0)e−ηµ,

Eµ = (Y0/2 + ed(1 − e−ηµ))/Qµ, (9)

while the gain and the error rate of the single photon state are,

respectively, as follows:

Q1 = Y1µe
−µ,

e1 = (Y0/2 + edη)/Y1. (10)



Fig. 2: Measured Raman cross section for a pump laser centered at 1550 nm
in a standard single mode fiber as reported in [5].

Here, Y0 represents the probability of having detector clicks

at the Bob’s end without transmitting any photons, and Y1 is

the yield of a single-photon state. Furthermore, the parameters

ed and η denote the misalignment probability and the total

transmissivity of the link, respectively. With the repetition

period of the QKD signal denoted by Ts, the secret key rate

of the mth QKD channel is given by

Rm = max[0, P(Y0)/Ts], (11)

where

Y0 = 1 − (1 − (pdc + pm))2. (12)

In the above equation, pdc = γdcTd, where γdc denotes the

photodetectors dark count rate and pm denotes the total Raman

photon count probability per QKD detector, given by

pm = γ
b

N
∑

n=1

λqm
ρb

nm + γ
f

N
∑

n=1

λqm
ρ

f
nm, (13)

where, from (4) and (5), ρ
f
nm = Γ(λ fn , λqm

) and ρb
nm =

Γ(λbn
, λqm

), respectively, represent the Raman cross section

noise for the nth forward and backward channels.

IV. OptimalWavelength Assignment

The key rate analysis presented in the previous section

indicates that the operation of QKD channels in the DWDM

system in Fig. 1 is highly dependent on the number of classical

(and quantum) channels, as well as their location in the

wavelength grid. A proper wavelength assignment method is,

therefore, of significant importance in this hybrid DWDM

system. In this section, we propose an optimal wavelength

assignment method that maximizes the overall key rate of

QKD channels. We will then compare the optimal solution

with what conventionally may seem to be the best option, as

explained next.

The form of the Raman cross section in Fig. 2 may imply

that the best strategy for allocating wavelengths to QKD chan-

nels is to locate them on the left-hand side of the classical ones

[11]. That is, given that the noise in the anti-Stokes region of

Fig. 2 is seemingly lower than that of the Stokes region, it may

make sense if we allocate the higher wavelengths to classical

channels, and the lower ones to quantum channels. It turns

out, however, that this technique is only a suboptimal solution,

and the optimum wavelength allocation scheme intersperses

classical and quantum channels.

In our optimization problem, we look for sets of wave-

lengths, F, B, and Q, such that the total key rate is maximized.

In this case the maximum key rate is given by

MRavg = max
F,B,Q⊂W

M
∑

m=1

Rm, (14)

where Ravg is the average key rate obtained from our M

QKD channels. In order to simplify the above formulation, we

investigate the dependence of the secret key rate on Raman

photon count probabilities. Based on the key rate analysis

presented in Sec. III, by increasing Raman photon count

probability the generated secret key rate would drop. As an

example, Fig. 3 shows the secret key rate of a single QKD

channel as a function of Raman photon count probability, at

a fiber length of 50 km. The QKD system parameters are

explained in Sec. V and shown in Table I. As expected, the rate

is a descending function of the background noise. Moreover,

within the regime of interest, we can fit a line to this curve

without losing much accuracy. We can then approximate the

optimization criterion in (14) with the following

min
F,B,Q⊂W

M
∑

m=1

pm, (15)

which is linear in pm. The above approximation will, in

principle, provide us with a near-optimal solution to the

optimization criterion in (14). Our simulation results, however,

show that this approximation provides us with the optimum

solutions for the wavelength assignment cases considered in

Sec. V. It also substantially reduces the complexity of the

optimization problem. Using (6) and (7), (15) can be written

as

min
F,B,Q⊂W

γb{

N
∑

n=1

(

M
∑

m=1

λqm
ρb

nm)} + γ f {

N
∑

n=1

(

M
∑

m=1

λqm
ρ

f
nm)}. (16)

Since γb and γ f are wavelength independent, we should mini-

mize the terms in the brackets. It can be shown that both terms

are minimized over the same sets of wavelengths. Therefore,

we can conclude that, for optimal wavelength assignment,

all classical channels should essentially be bidirectional, i.e,

λ fn = λbn
, for n = 1, ...,N. In this case, (16) reduces to finding

min
B,Q⊂W

N
∑

n=1

(

M
∑

m=1

λqm
ρnm), (17)

where ρnm = ρ
b
nm = ρ

f
nm.

The optimum wavelength assignment is obtained by solving

the optimization problem in (17). To start, we define a P × P

matrix, D, with elements given by

Dnm =

{

λqm
ρnm n � m

∞ n = m
. (18)
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Fig. 3: Secret key generation rate versus Raman photon count probability
(blue solid curve) and its linear approximation (red dash-dotted curve).

TABLE I: Nominal values used for QKD system parameters.

Parameter Value

Average number of photons per signal pulse, µ 0.48
Quantum Efficiency 0.3

Receiver dark count rate, γdc 1E-7 ns−1

Error correction inefficiency, f 1.16
Misalignment probability, ed 0.015

Laser pulse repetition interval, Ts 250 ps
Time gate interval, Td 100 ps

According to (18), our problem can be formulated as finding

N rows and M columns of matrix D such that the summation

of elements on the intersection of these rows and columns is

minimum (the diagonal elements of D is excluded). This is

equivalent to finding an assignment for classical and quantum

channels that minimizes the overall background noise on

quantum ones. In order to find the optimum solution, we have

to consider different combinations of N rows out of P (or M

columns out of P) and investigate
(

P

N

)

(or
(

P

M

)

, whichever is

smaller) cases. The total number of cases to search through

is min{
(

P

N

)

,
(

P

M

)

}. In each case, the corresponding rows (or

columns) of D are added. Then, the M columns (or N

rows) with the smallest summation is chosen. In the end, the

case with the smallest total summation is determined as the

optimum solution.

Note that the optimization problem in (17) is also applicable

in a unidirectional scenario. For instance, in dual-fiber DWDM

systems, since backward Raman scattering is stronger than

the forward one, it is reasonable to multiplex the quantum

channels with the forward data signals on the same fiber. In

this case, the optimum wavelength assignment pattern can be

obtained by the above proposed method.

V. Numerical Results

In this section, we provide numerical examples for the pro-

posed wavelength assignment method. We consider a DWDM

system with 200 GHz channel spacing with the wavelength

set W = {1530.8 nm, 1532.4 nm, ..., 1564.4 nm} in the C-band.
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Fig. 4: Optimum wavelength assignment patterns for M = 12 in a hybrid
DWDM system with 200-GHz channel spacing. Each row depicts the optimum
location of quantum and classical channels in the wavelength grid, where ∗
represents a classical channel and ◦ represents a quantum one.
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Fig. 5: Optimum wavelength assignment patterns for N = 12 in a hybrid
DWDM system with 200-GHz channel spacing. Each row depicts the optimum
location of quantum and classical channels in the wavelength grid.

We use the numerical values reported in relevant experiments

for our system parameters. For the QKD channels, these

values are summarized in Table I. For the classical channels,

we assume that on-off-keying signaling with a data rate of

1 GHz is used. The launch power of data lasers are set to

I = 10(−3.5+αL/10) mW, which corresponds to -35 dBm receiver

sensitivity, corresponding to a BER < 10−9 [7]. The fiber

attenuation coefficient, α is assumed to be α = 0.2 dB/km.

At QKD receivers, optical filters with 15 GHz of bandwidth

are used [8]. The effective time gate of detectors is 100 ps [7].

Figure 4 shows the optimum wavelength assignment for

M = 12 quantum channels and different values of classical

channels, N. In this figure, “∗” and “◦”, respectively, denote

the location of classical and quantum channels on the grid.

For instance, at N = 5, the optimum allocation assigns the



first six channels to QKD users, the following five channels

remain unused, while the next three channels are quantum

again. The first batch of classical channels will then follow the

previous three quantum channels, followed by another three

quantum and three classical channels. As can be seen, the

optimum pattern for each N is, in general, not compatible

with the conventional method of having two separate quantum

and classical bands in the wavelength grid. For example in

Fig. 4, for N ≤ 2, there are four bands, where three of them

are allocated to quantum channels, and the classical band is

surrounded by quantum bands. As N increases, the optimum

wavelength pattern may include more interleaved quantum and

classical bands. For 3 ≤ N ≤ 7, we have two classical and

three quantum bands. For N ≥ 8, the number of bands reaches

its maximum of six. In none of the cases considered in this

example, the optimum wavelength pattern is compatible with

the conventional suboptimal method of two separate quantum

and classical bands.

Figure 5 shows the optimum wavelength assignment for N =

12 classical channels and different values of quantum channels,

M. It can be seen that there is a duality between almost all

the patterns in this figure and that of Fig. 4. In both cases,

the optimally allocated wavelengths create a pattern similar to

the Raman cross section in Fig. 2. This is in line with the

fact that the only source of background noise considered in

our analysis is the Raman-induced noise. In the presence of

other sources of noise, one can extend the optimal wavelength

allocation technique developed in Sec. IV to obtain the optimal

assignment. For instance, one may need to leave an unused

channel between quantum and classical sub-bands in Figs. 4

and 5 if one considers the high power leakage from classical

channels to their immediate adjacent channels [8].

Finally, we compare our proposed optimum wavelength as-

signment with the conventional method that assigns the highest

and lowest wavelengths in the wavelength grid, respectively, to

the classical and quantum bands. Figure 6 depicts the average

secret key generation rate for M = 6 at a fiber length of

90 km. It is clear that our optimum wavelength assignment

enhances the average key rate. For example, for N = 12

classical channels, we achieve about 70% increase in the key

rate by using our optimum wavelength assignment technique.

VI. Conclusions

In this paper, we examined the optimum wavelength alloca-

tion in an integrated quantum-classical network. We showed

that the conventional solution of assigning two separate bands

to quantum and classical channels would not necessarily be

the optimal solution. We further investigated the optimum

wavelength allocation patterns. Our results showed that these

patterns could include multiple quantum and classical bands.

Moreover, we showed that, by using our proposed optimal

assignment technique, the achievable secret key generation

rates in QKD channels could be improved.
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Fig. 6: The average secret key generation rate, Ravg, for optimum and con-
ventional wavelength assignment methods for different numbers of classical
channels at M = 6 and L = 90 km.
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[11] R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable

QKD with intense DWDM classical channels,” New Journal of Physics,
vol. 17, no. 4, p. 043027, 2015.

[12] S. Bahrani, M. Razavi, and J. Salehi, “Orthogonal frequency-division
multiplexed quantum key distribution,” Lightwave Technology, Journal

of, vol. 33, no. 23, pp. 4687–4698, Dec. 2015.
[13] S. Bahrani, M. Razavi, and J. A. Salehi, “Orthogonal frequency division

multiplexed quantum key distribution in the presence of Raman noise,”
in Proc. SPIE, vol. 9900, 2016, pp. 99 001C–99 001C–7.

[14] M. Razavi, “Multiple-access quantum key distribution networks,” IEEE

Trans. Commun., vol. 60, no. 10, pp. 3071–3079, 2012.


