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Abstract

In this paper, we propose and investigate several crosstalk reduction techniques for hybrid quantum-classical dense-

wavelength-division-multiplexing systems. The transmission of intense classical signals alongside weak quantum ones

on the same fiber introduces some crosstalk noise, mainly due to Raman scattering and nonideal channel isolation,

that may severely affect the performance of quantum key distribution systems. We examine the conventional methods

of suppressing this crosstalk noise, and enhance them by proposing an appropriate channel allocation method that

reduces the background crosstalk effectively. Another approach proposed in this paper is the usage of orthogonal

frequency division multiplexing, which offers efficient spectral and temporal filtering features.

Index Terms

Quantum key distribution, orthogonal frequency division multiplexing, crosstalk reduction, wavelength assignment

I. Introduction

Quantum key distribution (QKD) is one of the main candidates for providing data security in the quantum era.

Whereas conventional cryptographic methods are based on computational complexity assumptions, QKD enables two

distant parties to securely exchange a secret key, with a security guaranteed by the laws of quantum mechanics. In
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the past three decades, QKD has seen much progress in its theoretical development [1]–[7], as well as experimental

demonstrations [8]–[11]. At its early stages of development, the QKD research was focused on the enhancement of

the reach and the performance in point-to-point scenarios where a fiber link was dedicated to the QKD system [12].

To make this technology available at a large scale, the current trend has shifted to QKD networks and their adaptation

to the existing infrastructures of classical networks [13], [14]. In particular, we are interested in architectures that

enable simultaneous transmission of high-rate quantum and classical signals over the same fiber. In fiber-optic

communications, one of the main technologies that enables the transmission of multiple optical signals on the same

fiber is dense-wavelength-division-multiplexing (DWDM). This technique is an attractive candidate for enabling the

simultaneous transmission of quantum signals alongside the classical data signals. However, in such a setup, the

crosstalk noise generated by the data channels may severely affect the performance of QKD systems. This crosstalk

is mainly generated by the nonlinear interactions in the fiber, as well as the nonideal channel isolation in DWDM

demultiplexers [15]. In this paper, we consider these main sources of crosstalk and investigate different methods of

enhancing the operation of QKD links in the presence of such a background noise.

One major challenge in a DWDM system that integrates quantum and classical channels on the same fiber is the

crosstalk generated by the intense data signals. Because the quantum signals are often weak, even a small amount

of crosstalk may severely degrade the operation of QKD links. This crosstalk is partially due to the nonlinear effects

in the fiber, e.g., Raman scattering, four wave mixing, and Brillouin scattering [16]. In [15], [17], these sources are

investigated and Raman scattering was shown to be the dominant one. Another source of crosstalk is the power

leakage from nearby data channels onto the QKD ones, which can occur due to the nonideal operation of DWDM

multiplexers and demultiplexers. One conventional approach to reduce such a background noise is the usage of

filtering techniques in frequency and time domains [18], [19]. Another effective method is the optimization of the

launch power at the classical transmitters to meet the receiver sensitivity requirements for a target bit error rate

(BER). Using such techniques, the simultaneous operation of several data channels alongside a single quantum

channel has been experimentally demonstrated [17]–[19]. In this paper, we generalize such setups by considering

a DWDM system that exploits its full range of available channels. In this case, the assignment of the DWDM

spectrum to the quantum and classical channels would also influence the performance of QKD links. In this work,

we use an appropriate channel allocation method that further reduces the induced crosstalk on the QKD channels.
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Fig. 1: A hybrid quantum-classical DWDM system. The QKD links (blue; solid) transmit secret key bits from Alice to Bob. The classical

channels (red; dashed) are equipped with circulators to enable bidirectional transmission. NBF denotes narrow bandpass filter.

Another effective method proposed here for reducing the background noise entering a quantum receiver is to use

orthogonal frequency division multiplexing (OFDM). OFDM-QKD is a spectrally efficient method of multiplexing

a number of quantum channels [20]. In this approach, the orthogonality between the subchannels is exploited to

efficiently multiplex spectrally overlapping signals. This task is performed by an all-optical circuit that imitates

inverse discrete Fourier transform (IDFT) in the optical domain. The separation of subcarriers is, then, not possible

by conventional filtering methods. Instead, an optical OFDM decoder performs a discrete Fourier transform (DFT)

operation to demultiplex the input signals. The advantage of using the OFDM-QKD technique in a hybrid quantum-

classical DWDM system is twofold. First, the spectral efficiency of OFDM can potentially enable a higher total

key rate per unit of bandwidth. Secondly, the OFDM decoder uses optimal filtering in both frequency and time

domains, which would efficiently reduce the crosstalk noise.

In the following, in Sec. II, we describe our hybrid quantum-classical DWDM system. In Sec. III, an analysis

for the secret key generation rate is presented. In Sec. IV, the conventional methods of crosstalk reduction are

introduced. In Sec. V and Sec. VI, the proposed wavelength assignment method and the OFDM-QKD scheme are,

respectively, described. We present our numerical results in Sec. VII, and conclude the paper in Sec. VIII.

II. System Description

We consider a DWDM system, as shown in Fig. 1, that multiplexes several quantum and classical channels.

We assume that there are a total of D DWDM channels, where M of which are assigned to the QKD channels.

Furthermore, we assume that N forward classical channels and N backward classical channels carry data in the
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Fig. 2: A schematic diagram of phase-encoded QKD. Alice encodes her key bits by choosing a phase value, φA, from one of the bases {0, π} and

{π/2, 3π/2}. Each optical pulse passes through the MZI and produces two output pulses with the relative phase φA. On the Bobs side, another

MZI is used to recombine r and s pulses, followed by photodetection.

system. Each classical channel utilizes circulators to enable the transmission of classical data in both directions.

The QKD signals are, however, unidirectional, i.e., the qubits are transmitted from Alice to Bob; see Fig. 1. We

assume that all classical signals have equal launch power, denoted by I. This power is matched to the receiver

sensitivity such that a maximum bit error rate of 10−12 is guaranteed.

In this paper, we use the decoy-state version of the phase-encoded BB84 protocol [21]; see Fig. 2. The decoy-state

method enables us to use weak laser pulses, instead of ideal single-photon sources, in a QKD protocol. This is

of great practical importance, which has made the implementation of QKD systems much easier. The key idea in

the decoy-state protocol is to use several different light intensities, in addition to the main signal state, to encode

Alice’s bits. These additional decoy states would enable us to better detect the presence of an eavesdropper, while

achieving a comparable level of security and performance to systems that use single-photon sources. Based on the

BB84 protocol, Alice’s key bits are encoded by the phase parameter φA of a Mach-Zehnder interferometer (MZI),

chosen from one of the basis sets {0, π} and {π/2, 3π/2}. As shown in Fig. 2, Alice transmits a weak laser pulse, with

an average number of photons often less than one, through the MZI at the encoder. The output is two successive

pulses, denoted by r and s, with a relative phase of φA. At the QKD decoder, Bob interferes the received r and s

pulses via another MZI whose phase parameter, φB, is chosen randomly from the set {0, π/2}. He can then infer

the transmitted bit by measuring the recombined pulses at the output of his MZI.

The existence of data signals alongside the quantum ones on the same fiber leads to certain problems that may

affect the QKD operation. The key problem is the background noise induced by the data channels at the quantum

receivers. Two main sources of this crosstalk noise are the Raman scattering and the power leakage from adjacent

channels. Raman scattering occurs due to the nonlinear photon-phonon interactions in an optical fiber. Due to its

wide spectrum, Raman noise overlaps with the spectrum of quantum channels. Depending on whether the direction
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of the data transmission is from Alice to Bob, or from Bob to Alice, the induced Raman light is, respectively,

referred to by forward or backward scattering. Backward Raman scattering is often the stronger component as it

does not decay with the channel length. Another source of crosstalk is the power leakage from adjacent channels

due to the nonideal channel isolation by DWDM demultiplexers.

In our DWDM system, each classical channel generates certain amount of Raman noise at each quantum receiver.

We denote the set of available wavelengths by G = {λ1, ..., λD}. Furthermore, the set of wavelengths assigned to the

quantum, forward classical, and backward classical channels are represented by Q = {λq1
, ..., λqM

}, F = {λ f1 , ..., λ fN
},

and B = {λb1
, ..., λbN

}, respectively. Then, the Raman noise power induced by the nth forward and backward channels,

respectively, on the mth quantum channel, is given by [15], [18]:

I
f
nm = Ie−αLLΓ(λ fn , λqm

)∆λ (1)

and

Ib
nm = I

(1 − e−2αL)

2α
Γ(λbn

, λqm
)∆λ, (2)

where Γ(λ fn , λqm
) and Γ(λbn

, λqm
) are the Raman cross section (per fiber length and bandwidth) for forward and

backward scattering, respectively. In the above equations, α, L and ∆λ are, respectively, the fiber attenuation

coefficient, the fiber length and the optical bandwidth of the quantum receiver. Here, we have assumed equal fiber

attenuation coefficients for quantum and classical channels. As an example, Fig. 3 shows the measurement results

for Raman cross section, ρ(λ) = Γ(1550nm, λ), for a pump laser centered at 1550 nm in a standard single mode

fiber [15].

Insufficient channel isolation in the DWDM demultiplexer, as well as the nonideal operation of its multi-

plexer/demultiplexer, can also result in crosstalk noise. In general, the amount of crosstalk induced on adjacent

channels is higher than that of the non-adjacent ones. Furthermore, the crosstalk induced on a distant channel

on the wavelength grid can typically be neglected. In this paper, we model the crosstalk generated by a classical

channel as a two-level function. We denote the adjacent and nonadjacent channel isolation in dB, by ξa and ξna,

respectively. Note that the usage of narrow bandpass filters (NBFs) at the quantum receivers (see Sec. IV) can

further reduce the power leakage from data channels. We take into account this effect by representing the transfer

function of the NBF at the passband of adjacent and nonadjacent channels by βa and βna, respectively. Then, the
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Fig. 3: Measured Raman cross section for a pump laser centered at 1550 nm in a standard single mode fiber as reported in [15].

leaked power from the nth forward data channel onto the mth quantum receiver can be expressed as

Ict
nm =



















































βaIe−αL10(−ξa/10) |λ fn − λqm
| = ∆λDWDM

βnaIe−αL10(−ξna/10) |λ fn − λqm
| = 2∆λDWDM

0 |λ fn − λqm
| > 2∆λDWDM

, (3)

where ∆λDWDM is the channel spacing in the DWDM system. In the above equations, the indices “a” and “na” denote

“adjacent” and “nonadjacent”, respectively. Similarly, the power leakage from the backward channels is described

by the directivity parameter of the DWDM multiplexer. In this case, the power induced by the nth backward data

channel onto the mth quantum receiver is given by

Ict
nm =



















































βaI10(−χa/10) |λ fn − λqm
| = ∆λDWDM

βnaI10(−χna/10) |λ fn − λqm
| = 2∆λDWDM

0 |λ fn − λqm
| > 2∆λDWDM

, (4)

where χa and χna, respectively, denote the directivity for adjacent and nonadjacent channels in dB. From the above

equations, the total crosstalk power on the mth quantum channel, from the nth forward and backward data channels,

is, respectively, given by

T
f

nm = I
f
nm + Ict

nm = Ie−αLX
f
nm, (5)

and

T b
nm = Ib

nm + Ict
nm = Ie−αLXb

nm, (6)
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where

X
f
nm =



















































L∆λΓ(λ fn , λqm
) + βa10(−ξa/10) |λ fn − λqm

| = ∆λDWDM

L∆λΓ(λ fn , λqm
) + βna10(−ξna/10) |λ fn − λqm

| = 2∆λDWDM

L∆λΓ(λ fn , λqm
) |λ fn − λqm

| > 2∆λDWDM

, (7)

and

Xb
nm =



















































sinh (αL)

α
∆λΓ(λ fn , λqm

) + βaeαL10(−χa/10) |λ fn − λqm
| = ∆λDWDM

sinh (αL)

α
∆λΓ(λ fn , λqm

) + βnaeαL10(−χna/10) |λ fn − λqm
| = 2∆λDWDM

sinh (αL)

α
∆λΓ(λ fn , λqm

) |λ fn − λqm
| > 2∆λDWDM

. (8)

The above background noise can adversely affect the performance of QKD channels. Hence, crosstalk reduction

methods are crucial to enable the reliable operation of quantum systems alongside the classical ones. In particular,

the adjacent channel crosstalk may severely affect the performance of QKD channels. For example, for typical

values of ξa = 30 dB, βa = −12 dB, and Ie−αL = −25 dBm, we have Ict
nm = 2 × 10−10 W, for |λ fn − λqm

| = ∆λDWDM.

Assuming that the quantum efficiency of detectors is 0.3, this value corresponds to a photon count rate of about

0.47 (ns)−1, which can be extremely high as compared to typical values of the dark count rate. In fact, this value

prevents the QKD system from operating securely. Hence, it is reasonable to avoid the adjacent channel crosstalk

by not placing a classical channel next to a quantum one [15].

III. Key Rate Analysis

In this section, we present the key rate analysis for the QKD systems in the proposed hybrid DWDM link. We

consider a single QKD channel and investigate its operation in the presence of classical channels. Denoting the

average number of photons for the main signal state, in the employed decoy-state protocol, by µ, the secret key rate

per transmitted pulse in the QKD channel, in the limit of an infinitely long key, is lower bounded by max[0, P(Y0)],

where [22]

P(Y0) = Q1(1 − h(e1)) − f Qµh(Eµ). (9)

Here, h(p) = −plog2 p − (1 − p)log2(1 − p) is the binary entropy function and f denotes the error correction

inefficiency. In (9), Qµ, Eµ, Q1, and e1, respectively, represent the overall gain, the quantum BER (QBER), the gain

of the single photon state, and the error rate of the single photon state. The overall gain, Qµ, and the QBER, Eµ,
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are, respectively, given by

Qµ = 1 − (1 − Y0)e−ηµ (10)

and

Eµ = (Y0/2 + ed(1 − e−ηµ))/Qµ, (11)

whereas the gain and the error rate of the single photon state are, respectively, as follows:

Q1 = Y1µe
−µ (12)

and

e1 = (Y0/2 + edη)/Y1. (13)

Here, Y0 represents the probability of having detector clicks at the Bob’s end without transmitting any photons,

and Y1 is the yield of a single-photon state. Furthermore, the parameters η and ed, respectively, denote the total

transmissivity of the link and the misalignment error between Alice and Bob, which characterizes the stability of

the relative phases between r and s pulses at the encoders and through the channel. Denoting the repetition period

of the QKD system by Ts, the secret key rate of the mth QKD channel is given by

Rm = max[0, P(Y0)/Ts], (14)

where

Y0 = 2pdc + pm. (15)

In the above equation, pdc = γdcTd, where γdc denotes the dark count rate of a single-photon detector, Td is the

detectors’ gate interval, and pm denotes the total background crosstalk photon count for the mth quantum channel,

given by

pm = γqm

N
∑

n=1

(Xb
nm + X

f
nm), (16)

where γqm
is

γqm
= Ie−αL

λqm
Tdηd

hc
, (17)

where ηd is the quantum efficiency, h is the Planck’s constant, and c is the speed of light in the vacuum. Roughly

speaking, the QBER in a QKD system is proportional to Y0. The value of pm can then directly affect the performance
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of a QKD system. In the following, several techniques for reducing the above crosstalk terms will be introduced

and investigated in detail.

IV. Conventional Techniques for Crosstalk Reduction

One major approach to suppressing the crosstalk is based on filtering techniques in both frequency and time

domains. As proposed in [18], using an NBF at the entrance of the quantum receiver limits the background noise to

some extent. Moreover, time-gating the detectors, i.e., only activating the photodetectors when a signal is present,

further reduces the background photon count. In [18], [19], NBFs with bandwidths as low as 70 GHz and 15

GHz have been used, with a time-gating window on the order of 100 ps. We note that the implementation of ultra

narrowband filters may impose some practical challenges.

Another crosstalk reduction technique proposed in [18] is to minimize the launch power of data channels for a

desired level of quality of service. For example, if the BER is to be guaranteed to be below 10−12, we can control

the launch power, I, such that Ie−αL matches the required power at the receiver. In our numerical results, we have

used a receiver sensitivity of −28 dBm corresponding to a BER of 10−12.

In the following sections, we further enhance these conventional methods by employing proper channel assignment

as well as OFDM techniques.

V. Crosstalk Reduction by Appropriate Channel Allocation

According to Fig. 3 and the assumed model for the channel crosstalk, the wavelength difference between quantum

and classical channels can have a significant effect on the amount of crosstalk induced on each quantum channel.

Hence, the use of appropriate channel allocation, in addition to conventional techniques summarized in Sec. IV,

can further reduce the crosstalk noise. To this end, in our proposed channel allocation scheme, we prevent the

adjacent channel crosstalk by not assigning a quantum and a classical channel to two adjacent wavelengths. With

this constraint, if we interleave the quantum and classical bands, some null channels are required to separate them.

To enable the maximum usage of available bandwidth, we propose the allocation of all quantum channels on one

side, and all classical channels on the other side. Note that, as shown in Fig. 3, the Raman noise is, in general, less

on the anti-Stokes region of the Raman spectrum, than its Stokes region. Hence, we propose the allocation of all
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Fig. 4: Proposed wavelength allocation scheme in the hybrid quantum-classical DWDM system for M QKD channels. The quantum, classical,

and null channels are represented by colors “blue”, “red”, and “green”, respectively. The last N wavelengths are assigned to classical data

channels, λD−N is a null channel. We select M quantum channels, according to our optimization technique,from the remaining wavelengths.

classical channels to higher wavelengths. Furthermore, to exploit the available bandwidth efficiently, we consider

the case where all classical channels are bidirectional, i.e., λ fn = λbn
, for n = 1, . . . ,N.

Based on above constraints, the allocation scheme shown in Fig. 4 is proposed in this paper. In this scheme,

classical channels occupy the N channels at the higher end of the wavelength grid, while the quantum ones will

be assigned to the remaining wavelengths, according to an optimization protocol. At least one null channel will

separate the quantum band from the classical one.

In order to reduce the crosstalk in our proposed scheme, we optimize the channel assignment for the quantum

channels. To this end, we aim to maximize the total secret key rate of the quantum channels. Hence, we define an

optimization problem in finding the set Q such that

M
∑

m=1

Rm (18)

is maximum. It can be concluded from (15) and (14) that Rm is a decreasing function of pm. Within practical

regimes of interest, the relationship between Rm and pm can be approximated as a linear one [23]. Here, we use

this linear approximation to simplify our optimization problem to finding

min
Q⊂G

M
∑

m=1

pm. (19)

Substituting (16) in (19), the above equation can be expressed as

min
Q⊂G

N
∑

n=1

M
∑

m=1

γqm
(Xb

nm + X
f
nm). (20)

In our proposed scheme the classical band is pre-assigned and the optimal allocation method for the M quantum
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channels is to be determined. To solve this problem, we obtain the vector u = [u1, u2, ..., uD−N−1], where ui is given

by

ui =

N
∑

n=1

γqi
(Xb

ni + X
f

ni
). (21)

Then, the M elements of u with the least values among all will correspond to the optimal locations of quantum

channels.

VI. Crosstalk Reduction in OFDM-QKD

In this section, we investigate the use of OFDM techniques, as an effective approach to suppress the crosstalk

in the DWDM system shown in Fig. 1 [24]. OFDM-QKD has recently been proposed in [20] and is a spectrally

efficient method of multiplexing quantum signals. In this method, K subchannels with the frequency separation of

∆ f = 1/T are multiplexed in the frequency domain, where T is the OFDM symbol duration. In this case, although

the spectrum of the QKD subchannels are overlapping, their orthogonality can be exploited to separate them at the

receiver. The task of demultiplexing cannot be performed by conventional filtering methods, but by the means of

an all-optical circuit that performs DFT in the optical domain.

Figure 5 depicts one of the OFDM-QKD setups proposed in [20], which has been shown to have the potential

to enhance the total key rate. At the transmitter, K QKD encoders are used to prepare the qubits in parallel.

These encoders are fed by a short pulse, with duration Tp ≃ T/K, generated by a mode-locked laser (MLL).

The output optical pulses from the QKD encoders are then fed into an optical circuit that performs optical IDFT.

We assume that the efficient decoy-state BB84 protocol is used in the QKD encoders. The transparent nature of

the IDFT module will make the OFDM setup compatible with various QKD protocols. To make sure the phase

randomization criterion, required in decoy-state protocols [25], is met, some active phase randomization may be

employed right after the MLL. This is to make sure that the overall phase of the coherent states used for each QKD

pulse is randomly different from other QKD pulses. The IDFT module will generate K short pulses representing

one OFDM symbol. The DFT circuit at the receiver will then demultiplex the QKD pulses and send each to its

corresponding decoder.

The optical implementation of IDFT-DFT procedure would automatically remove any signal orthogonal to the

intended QKD signal. This is the key reason why OFDM-QKD can be resistant to the crosstalk noise. Moreover, by
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Fig. 5: The OFDM-QKD setup proposed in [20]: A train of short pulses generated by a mode-locked laser (MLL) is split into K paths, each

encoded by a separate QKD encoder. The output pulses of the QKD encoders are multiplexed by an optical IDFT (OIDFT) circuit. The OFDM

symbol consists of a series of pulses, each being a superposition of pulses from different inputs. At the receiver, the subcarriers are extracted

by an optical DFT (ODFT) circuit.

multiplexing several QKD channels, we can better utilize the available bandwidth per DWDM channel to achieve

a higher overall key rate, and/or to provide service to multiple users. The typical pulse width in conventional QKD

systems is on the order of 100 ps to 1 ns, which requires ultra narrowband filters with a bandwidth of 1-10 GHz

to be used for optimal filtering. With OFDM-QKD, we can use much shorter pulses on the order of 10-100 ps,

for which conventional NBFs can be used. For example, for Tp = 10 ps, a conventional NBF with a bandwidth

of W = Tp
−1 can be used at the entrance of the quantum receiver. This bandwidth approximately corresponds to a

1-nm filter, which is commonly used in optical communications systems.

The implementation of the OFDM-QKD transmitter requires an optical circuit that performs optical IDFT

(OIDFT). Figure 6(a) shows an example of the OIDFT circuit for K = 4. As can be seen, this circuit is made

of multiple MZIs with appropriate phase shift and delay parameters. As for the OFDM-QKD receiver, we assume

that the OFDM decoder shown in Fig. 6(b) is implemented [20]. This decoder employs an active optical switch

followed by appropriate delays to perform serial to parallel conversion. Then, a passive optical circuit consisted of

beam splitters and phase shifters is used to perform DFT in the optical domain.

In [20], several practical issues with implementing OFDM-QKD have been addressed and studied. In particular,

the authors find the time misalignment issue as one of the major sources of error in such systems. They show,

however, that so long as a small number of subcarriers, up to around 8, is being used, we can benefit from the

advantages that OFDM-QKD can offer, without being affected much by its potential implementation challenges. In

this paper, we therefore work in this few-subcarrier regime, and neglect time misalignment errors.
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Fig. 6: (a) OIDFT circuit for K = 4. It consists of two stages of MZI. (b) The OFDM decoder implemented by an optical switch followed by

appropriate delays and a passive DFT circuit; see [20] for more detail.

VII. Numerical Results

In this section, the proposed crosstalk reduction methods are numerically investigated. We consider a DWDM

system with 100 GHz of channel spacing with the wavelength set W = {1530 nm, 1530.8 nm, ..., 1564.4 nm} in the

C-band. The classical channels are assumed to be bidirectional. We assume that the conventional crosstalk reduction

techniques discussed in Sec. IV are used in the DWDM system. We then investigate the further enhancement our

proposed crosstalk reduction methods may offer. The nominal values used for the system parameters are listed

in Table I. The launch power of data lasers are set to I = 10(−2.5+αL/10) mW. In this case, the received power is

guaranteed to be -25 dBm. This value is matched with the receiver sensitivity of -28 dBm for BER < 10−12, after

considering 3 dB of safety margin [19]. The fiber attenuation coefficient, α, is assumed to be 0.2 dB/km. The laser

pulse repetition rate for QKD channels is assumed to be 4 GHz. At quantum receivers, optical filters with 70 GHz

of bandwidth is used [19]. We assume that the parameters βa and βna are −12 dB and −60 dB, respectively, which

match a Gaussian profile spectrum for the NBF. Furthermore, the effective time gate of photodetectors is assumed

to be 100 ps [18].

Figure 7 shows the optimum wavelength assignment for N = 14 classical channels and different values of quantum

channels, M. In these figures, “∗” and “◦”, respectively, denote the location of classical and quantum channels on

the grid. Each row indicates the location of quantum and classical channels for a specific value of M. As can

be seen, for most values of M, the optimum allocation method of quantum channels is not compatible with the

conventional approach of having two separate quantum and classical bands in the wavelength grid. Instead, the

optimum pattern may include several null channels in between quantum ones. In other words, the QKD channels

populate the two ends of the band, which is mainly due to the shape of the Raman-noise spectrum in Fig. 3. We
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Fig. 7: Appropriate wavelength assignment patterns for N = 14 in a hybrid DWDM system with a 100-GHz channel spacing. Each row depicts

the location of quantum (“◦”) and classical (“∗”) channels in the wavelength grid.

have verified that, for the particular set of numerical values used for our system parameters, the results in Fig. 7

would remain the same for distances as high as 200 km.

Next, we compare our proposed optimum wavelength assignment with the conventional method that assigns the

highest and lowest wavelengths in the wavelength grid, respectively, to the classical and quantum bands. Figure 8

depicts the average secret key generation rate for M = 14 at a fiber length of 60 km. It is clear that, within the

constraints of Sec. V, the optimum wavelength assignment to quantum channels enhances the average key rate. For

example, for N = 6 classical channels, the achieved key rate of our proposed channel allocation method is roughly

ten times that of the conventional one.

Finally, let us investigate the effect of efficient filtering in the OFDM-QKD setup. We compare the total secret

key generation rate offered by an OFDM-QKD system with subchannels over one DWDM channel with the one

obtained from a single QKD channel. We consider two cases for the NBF at the QKD receiver of a single QKD

channel by considering two different values of 15 GHz and 70 GHz for its bandwidth. In all cases, the repetition

rate for the QKD channel is assumed to be 4 GHz. We assume that N = 14 bidirectional classical channels are

located at the highest wavelengths of the grid, while the quantum channel is assigned to the wavelength 1552.4 nm,

considering one null channel between the classical band and the quantum channel. In this case, both Raman noise

and nonadjacent channel crosstalk are present at the quantum receiver. This is a rather extreme case, in terms
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TABLE I: Nominal values used for system parameters based on existing commercial devices and experimental demonstrations.

Parameter Value

Average number of photons per signal pulse, µ 0.48

Quantum efficiency, ηd 0.3

Receiver dark count rate, γdc 1E-7 ns−1

Error correction inefficiency, f 1.16

Phase stability error, ed 0.015

Bandwidth of NBF for single channel 15, 70 GHz

Time gate for single channel 100 ps

Pulse width for single channel 100 ps

Laser pulse repetition interval, Ts 250 ps

OFDM symbol duration, T 100 ps

Pulse width for OFDM-QKD, Tp 11.5 ps

Number of subcarriers, K 8

Time gate for OFDM-QKD 11.5 ps

Receiver sensitivity -28 dBm

Adjacent channel isolation, ξa 30 dB

Nonadjacent channel isolation, ξna 40 dB

Directivity for adjacent channels, χa 50 dB

Directivity for non-adjacent channels, χna 80 dB

of background noise, which can properly show the noise reduction power of OFDM-QKD. The total secret key

generation rate for all cases is depicted in Fig. 9. It can be seen that the OFDM-QKD system provides higher rate

per DWDM channel, compared to the single QKD channel. This is mainly because of multiplexing 8 channels

within one symbol period. In principle, if shorter pulses and higher repetition rates are used for the single QKD

channel, we can potentially achieve a higher secret key rate. However, even in that case, OFDM-QKD can, in

principle, offer a better spectral efficiency. From Fig. 9, it can also be concluded that the maximum secure distance

for the OFDM-QKD system is higher than that of single QKD channels. This also certifies the improved crosstalk

reduction feature of OFDM-QKD systems.
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Fig. 8: The average secret key generation rate for the proposed and conventional wavelength assignment methods for different numbers of

classical channels at M = 14 and L = 75 km.
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Fig. 9: Secret key generation rate for the OFDM-QKD setup, single QKD channel with 15 GHz bandwidth, and single QKD channel with 70

GHz bandwidth, versus distance.

VIII. Conclusion

In this paper, we examined different crosstalk reduction techniques in a hybrid quantum-classical DWDM system.

We considered two main sources of crosstalk, namely, Raman scattering and the power leakage due to nonideal

channel isolation in DWDM systems. We investigated their effect on the QKD operation. To suppress this crosstalk

noise, two new techniques were proposed. The first one was based on an appropriate channel allocation scheme

for the quantum and classical channels in the grid. It was shown that this method could enhance the average secret
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key generation rate of quantum channels. Another effective method proposed was the usage of OFDM-QKD for

the quantum links. OFDM-QKD offered efficient spectral and temporal filtering that could suppress the crosstalk

noise efficiently, up to its fundamental limit. It was shown that OFDM-QKD could improve the total secret key

rate per unit of bandwidth.
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