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Abstract 

This note revisits the issue of the specification of categorical variables in choice models, in the context 

of ongoing discussions that one particular normalisation, namely effects coding, is superior to another, 

namely dummy coding. For an overview of the issue, the reader is referred to Hensher et al. (2015, see 

pp. 60-69) or Bech and Gyrd-Hansen (2005). We highlight the theoretical equivalence between the 

dummy and effects coding and show how parameter values from a model based on one normalisation 

can be transformed (after estimation) to those from a model with a different normalisation. We also 

highlight issues with the interpretation of effects coding, and put forward a more well-defined version 

of effects coding. 
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1. Introduction 

 

Choice models describe the utility of an alternative as a function of the attributes of that alternative. 

Those attributes might be continuous or categorical, where the simplest example of the latter is a binary 

present/absent attribute. In the case of continuous attributes, the associated coefficient (say 𝛽) measures 

the marginal utility of changes in the attribute (say x), and the analyst simply needs to make a decision 

on whether that marginal utility is independent of the base level of the attribute (i.e. linear) or not (i.e. 

non-linear). For the latter, we would simply replace 𝛽𝑥 in the utility function with 𝛽𝑓(𝑥), where 𝑓(𝑥) 

is a non-linear transformation of 𝑥. 

 

Just as for continuous attributes, an analyst needs to make a decision on how categorical variables are 

treated in the computation of an alternative’s utility. For continuous variables, it is clear that different 

assumptions in terms of functional form (linear vs non-linear, and the specific degree of non-linearity) 

will lead to different model fit and behavioural implications. However, in the case where 𝑥 is a 

categorical variable with a finite number of different levels, neither a linear nor a function-based non-

linear treatment is likely to be appropriate. With 𝑥 taking the values 1, … , 𝐾 for the 𝐾 different levels it 

can assume, a linear treatment would imply that the difference in utility between successive levels are 

equal. The fundamental differences in meaning of different levels of categorical variables may also 

make it difficult for an analyst to find an appropriate functional form for 𝑓(𝑥) in a non-linear 

specification. 

 

For categorical variables, model estimation captures the impact on utility of moving from one level of 

the attribute to a different level. Because of linear dependency, it is then impossible to estimate a 

separate parameter for each level. Different approaches have been put forward in the literature to 

address this issue, in particular dummy coding and effects coding, although many other approaches 

would be possible. The purpose of this note is to address ongoing discussions in the choice modelling 

literature which claim that some of the ways of dealing with such variables (in particular effects coding) 

are superior to others. For an overview of the issue, the reader is referred to Hensher et al., (2015, see 

pp. 60-69) or Bech and Gyrd-Hansen (2005). 

 

2. Equivalence and interchangeability of dummy and effects coding of categorical variables 
 

We start by noting that the most widely found example of a categorical variable is that of an alternative-

specific constants (ASC). These ASCs capture the mean of the error term for the utility of an alternative 

in a choice model. In the case of J different alternatives, we can easily specify J different binary 



variables for alternative j, say 𝑧𝑗,𝑘, with 𝑘 = 1, … , 𝐽, where, for a given alternative 𝑗, 𝑧𝑗,𝑘 = 1, if 𝑗 = 𝑘, 

and 0 otherwise. It is important to stress that this applies both in the case of labelled alternatives, where 

e.g. 𝑧𝑗,𝑘 may refer to a given mobile phone model, or unlabelled alternatives, where e.g. 𝑧𝑗,𝑘 may refer 

to whether an alternative is presented on the left hand side in a survey. Not including ASCs is equivalent 

to an assumption that the means of the error terms, including unmeasured variables, are identical across 

alternatives. With this notation, the contribution of the ASC component to the utility of alternative j 

would now be given by ∑ 𝛿𝑘𝑧𝑗,𝑘𝐽𝑘=1 , where, for any given alternative j, only one element in 𝑧𝑗,𝑘, with 𝑘 = 1, … , 𝐽, will be equal to 1 (and all others will be 0).  

 

It is then widely known that a restriction has to be imposed to make the model identifiable, i.e. it is 

impossible to estimate a value 𝛿𝑘 , ∀𝑘, where 𝑘 = 1, … 𝐽. This is a result of the fact that probabilities in 

choice models are defined in terms of utility differences across the J alternatives in the consumer’s 

choice set, and an infinite number of combinations of values for the ASCs would lead to the same 

differences. A constraint needs to be applied to avoid linear dependency and thereby make the model 

identifiable. A typical approach in this context is to set the ASC for one alternative (e.g. the last) to 

zero, e.g. 𝛿𝐽 = 0, and estimate the remaining ones, i.e. 𝛿𝑗 , ∀ 𝑗 < 𝐽. As we will see later on, this is in 

effect using dummy coding for the ASCs, with the value of one ASC set to 0 and all others being 

estimated.  

 

While the use of dummy coding for ASCs is commonplace, substantial discussion has gone into the 

appropriate specification to use for other categorical variables, which are our main focus. Let us 

consider, for example, the case of a categorical variable for alternative j, say 𝑥𝑗, where we assume that 

this variable has K different levels (i.e. possible values)1. In the absence of an acceptable assumption 

about some continuous relationship between the different levels of 𝑥𝑗 and the utility of alternative j, we 

are then in a situation where we want to estimate independent different utility components for its 

different levels. This leads to the need for recoding and/or, as mentioned above, for some constraints to 

be imposed on the specification. The key distinction made in the literature has been between dummy 

coding and effects coding. We will now illustrate how these can be arrived at through different ways of 

recoding the categorical variable. The rationale behind recoding is that we create a number of separate 

variables for the separate levels of each categorical variable, where different parameters are associated 

with the resulting variables. 

 

Table 1 presents the way in which a four-level categorical variable would typically be recoded into 

dummy and effects coding (see also Hensher et al. (2015, see pp. 60-69) or Bech and Gyrd-Hansen 

(2005)). With either approach, we recode the categorical variable x into four new variables, which each 

have an associated parameter, i.e. 𝛽1. . 𝛽4 for the dummy-coded variables or, in the alternative model 

specification, 𝛾1. . 𝛾4 for the effects-coded variables. 

 

When adopting either of these coding conventions, we can without loss of generality normalise the 

parameter of the fourth (last) level to zero for identification purposes.2 We thus estimate three 

parameters with either approach. The difference arises in the final level of x. For the first K-1 levels, 

one recoded variable is equal to 1 (e.g. with the first level, 𝐷1,𝑥 for dummy coding and 𝐸1,𝑥 for effects 

coding), while all others are zero. However, while this is still the case for the final level of x also for 

dummy coding, with effects coding, we additionally set the values for the first K recoded variables to  

-1. The utility contribution ωK,D associated with level K under dummy coding is then zero since 𝛽𝐾 = 0, 

while, under effects coding ωK,E= − ∑ 𝛾𝑘𝑘<𝐾 , i.e. the negative sum of all the estimated effects coded 

parameters (remembering that 𝛾𝐾 = 0).  The sum of utility contributions across all K levels is thus zero 

with effects coding and this is the objective of effects coding. 

 

                                                      
1 Similar coding procedures would also be applicable when linearly dependent variables occur across alternatives, 

but for simplicity we focus here on the case of variables applying for a single alternative. 
2 In dummy coding correlations between the parameters can be minimised by selecting the base category to be the 

one most frequently observed. This step will additionally reduce the reported estimation errors of the parameters. 



The first point that we wish to make in this paper is that while the approach described above is the 

‘standard’ way of understanding effects coding in much of the literature, the recoding itself is not 

required. Indeed, a completely equivalent approach would be to retain the dummy coded variables but, 

instead of setting 𝛽𝐾 = 0, we could use a normalisation that 𝛽𝐾 = − ∑ 𝛽𝑘𝑘<𝐾 . This would then give us 

that 𝛽𝑘 = γ𝑘∀𝑘 < 𝐾, and 𝜔𝑘,𝐷 = 𝜔𝑘,𝐸 , ∀𝑘. In short, the two alternative recoding approaches are 

identical, but rely on alternative normalisations. The recoding typically applied when analysts use 

effects coding is thus not required. Should we wish to have effects coded parameters, we can just recode 

the categorical variable into K binary 0-1 variables as in dummy coding, and impose the constraint  𝛽𝐾 = − ∑ 𝛽𝑘𝑘<𝐾 . 

 
Table 1: Illustrative example 

 Dummy coding Effects coding 

 Recoded variables Utility 

contribution 

(𝜔𝑘,𝐷) 

Recoded variables Utility 

contribution 

(𝜔𝑘,𝐸) 
Level of 𝑥 𝐷1,𝑥 𝐷2,𝑥 𝐷3,𝑥 𝐷4,𝑥 𝐸1,𝑥 𝐸2,𝑥 𝐸3,𝑥 𝐸4,𝑥 

1 1 0 0 0 𝛽1 1 0 0 0 𝛾1 

2 0 1 0 0 𝛽2 0 1 0 0 𝛾2 

3 0 0 1 0 𝛽3 0 0 1 0 𝛾3 

4 0 0 0 1 0 -1 -1 -1 1 −𝛾1 − 𝛾2 − 𝛾3 

associated 

parameter 
𝛽1 𝛽2 𝛽3 𝛽4= 0 

 𝛾1 𝛾2 𝛾3 𝛾4= 0 

 

 

Moving away from the issue of recoding of variables, our next point relates to the equivalence between 

the two approaches. The above discussion highlights that the utility contribution of dummy and effects 

coding differs up to a constant, i.e. 𝜔𝐷𝑘 = 𝜔𝐸𝑘 + ∑ 𝛾𝑧𝑧<𝐾 . The latter term drops out when taking 

differences across levels leaving the utility difference between any two categories unchanged.  

 𝜔𝑘,𝐷 − 𝜔𝑙,𝐷 = 𝜔𝑘,𝐸 − 𝜔𝑙,𝐸  for ∀𝑘, 𝑙   = 1. . 𝐾 

 

When level K is not contrasted then we get 𝛽𝑘 − 𝛽𝑙 = 𝛾𝑘 − 𝛾𝑙  for ∀𝑘, 𝑙 = 1. . 𝐾 − 1. This directly 

follows from the utility contributions in Table 1. More important, we can use the contrast with level K 

to establish the correspondence between the two coding schemes.  

 𝜔𝐷𝑘 − 𝜔𝐷𝐾 = 𝜔𝐸𝑘 − 𝜔𝐸𝐾 = 𝛽𝑘 = 𝛾𝑘 + ∑ 𝛾𝑙𝑙<𝐾   
  

where 𝛽𝑘 is the dummy-coded parameter for category 𝑘 

 𝛾𝑘 is the effects-coded parameter for or category 𝑘 𝜔𝑘,𝐷 is the utility associated with category k under dummy coding, with a corresponding 

definition for 𝜔𝑘,𝐸 under effects coding 

 𝐾 is the number of categories. 

 

Adding these relationships for all of the categories except 𝐾, we obtain 

 

 ∑ 𝛽𝑙 = ∑ 𝛾𝑙𝑙<𝐾 + (𝐾 − 1) ∑ 𝛾𝑙 = 𝐾 ∑ 𝛾𝑙𝑙<𝐾𝑙<𝐾𝑙<𝐾  

 

so 

 

 𝛾𝑘 = 𝛽𝑘 − ∑ 𝛾𝑙𝑙<𝐾 = 𝛽𝑘 − 1𝐾 ∑ 𝛽𝑙𝑙<𝐾  

 

The simplicity of these relationships means that we can easily move from a model estimated with one 

specification to one estimated in the other specification. The information contained in one set of 

parameters is exactly the same as that contained in the other set. This means that an analyst can use one 



approach in estimation and then transform the estimates after estimation to the values that would have 

been obtained with a different approach, and use the Delta method (cf. Daly et al, 2012) to compute the 

associated standard errors. This directly refutes the notion that one recoding approach is inferior a priori 

or prevents an analyst from gaining particular insights after estimation.  

 

This now brings us to a key argument put forward by advocates of effects coding in the literature, 

namely that of confounding between dummy coded ASCs and dummy coded categorical variables. Let 

us consider the simple example of a choice between two types of mobile phone, say from company A 

and company B. Let us further assume that these two phones are described on the basis of cost (which 

is treated continuously), screen size (4, 5 and 6 inches) and connectivity (3G, 4G, 4G+wifi). Assuming 

that we would use dummy coding for the ASCs (as is commonly done), we would estimate the 

parameters in Table 2 from our model with the two coding approaches for the categorical variables. 

 
Table 2: Illustrative example 2 

 Brand 
Price 

Screen size Connectivity 

 A B 4” 5” 6” 3G 4G 4G+wifi 

Dummy coding for screen 

and connectivity 
0 𝛿𝐵,𝐷 𝛽𝑝  𝛽4𝑖𝑛𝑐ℎ 𝛽5𝑖𝑛𝑐ℎ 0 𝛽3𝐺 𝛽4𝐺 0 

Effects coding for screen 

and connectivity 
0 𝛿𝐵,𝐷 𝛽𝑝 𝛾4𝑖𝑛𝑐ℎ 𝛾5𝑖𝑛𝑐ℎ -𝛾4𝑖𝑛𝑐ℎ − 𝛾5𝑖𝑛𝑐ℎ 𝛾3𝐺 𝛾4𝐺 −𝛾3𝐺 − 𝛾4𝐺 

 

We know from the earlier discussion that both specifications will give exactly the same model fit to the 

data, but the actual parameter estimates will differ between the two specifications. The argument put 

forward by advocates of effects coding is that with dummy coding, there is confounding between the 

base level for the dummy coded ASC and the base levels for the dummy coded categorical variables, 

as well as between the base levels for the individual dummy coded categorical levels. It is indeed true 

that with the above, we have that 𝛿𝐴,𝐷 = 𝛽6𝑖𝑛𝑐ℎ = 𝛽4𝐺+𝑤𝑖𝑓𝑖 = 0, while it is quite likely that  −𝛾4𝑖𝑛𝑐ℎ − 𝛾5𝑖𝑛𝑐ℎ ≠ −𝛾3𝐺 − 𝛾4𝐺 ≠ −𝛿𝐵,𝐷. An interpretation used in some literature is that, in dummy 

coding, we then do not know whether it is better (or worse) to have brand A, or a screen size of 6 inches, 

or a phone with 4G and wifi. However, this misses the crucial point that only differences in utility 

matter, in comparisons between alternatives and also between values for a given attribute. What matters 

is not the absolute contribution of say 𝛽6𝑖𝑛𝑐ℎ to the utility, but the change in utility say for moving from 

a 5-inch screen to a 6-inch screen, and how that compares to moving from brand A to brand B. From 

the above theoretical discussions, we know that the differences in utility between individual levels for 

a given variable are not affected by which normalisation is used, and as a result, this confounding does 

not actually matter. More importantly, as we will see in the next section, the values obtained for a given 

level in effects coding are a function of the specification used for that effects coding. With the dummy 

coding above, the estimate for say 𝛽5𝑖𝑛𝑐ℎ would give us the value for a five inch screen relative to a six 

inch screen, while, with effects coding, 𝛾5𝑖𝑛𝑐ℎ gives the value of a five inch screen relative to the 

unweighted average of all the categories. The estimate for 𝛾5𝑖𝑛𝑐ℎ is thus not reference free either. In 

Section 4, we will investigate whether different specifications may yield more stable reference points. 

 

3. Interpretation of effects coding  

 

We saw above that, irrespective of the selected approach, only (𝐾 − 1) additional parameters can be 

estimated to avoid linear dependencies in the model3. However, another question that arises in choosing 

an approach is the usefulness of the outputs. In what follows, we move away from the discussion about 

confounding highlighted at the end of the previous section, and attempt to gain insights into the specific 

nature of the estimates from models with effects coding.  

 

                                                      
3 This restriction on the number of parameters applies to estimating the main effects on the utility of an alternative. 

Limitations of the experimental design might further restrict identification of all (𝐾1 − 1) or (𝐾2 − 1) parameters. 



The model shown in Table 3 is a simple example based on the dataset used in Dekker et al. (2016) 

where a Dutch online panel of 224 respondents was presented with alternative flood risk reduction 

policies mitigating the future impact of climate change in the Netherlands. Key attributes were flood 

risk probability (four levels equally spaced between 1/4,000 years to 1/10,000 years), percentage of 

compensation received after a flood (0%, 50%, 75% and 100%), available evacuation time (6, 9, 12 and 

18 hours) and increases in taxes to the local water authority (€0, €40, €80, €120 and €160). Each 
respondent answered 10 choice tasks where two policy options where contrasted with the status quo 

option. The status quo option took the following levels: (1/4,000 years, 0%, 6 hours and €0 additional 
tax). The presented policy options all provide an improvement relative to the do nothing (status quo) 

scenario in the non-cost attributes, but an increase in cost (so €0 does not apply). A D-efficient 

experimental design was used to choose the combinations of improvements in non-cost attribute levels 

and the increase in cost for the policy options. Apart from the €0 cost level, the D-efficient experimental 

design used all possible attribute levels to construct policy options as long as they provided an 

improvement over the ASC.4 No status quo ASC is estimated as the €0 cost level is specific to the status 
quo alternative.              

 

With this data, the base value for cost (€0) applies only to the status quo alternative, and the estimation 

of values for the other four levels thus preclude the estimation of an ASC. The coefficient estimates 

shown in the first columns of the table, headed ‘Base Model’, for dummy coding and effects coding 

illustrate that the differences between given levels for a given attribute are the same across the two 

coding types. Moreover, the models are identical in the probabilities that they generate for each 

observation and then of course the overall likelihood is the same. In these models the coefficient for the 

first level of the attribute does not appear, as it is used as the base; in the dummy-code version this 

coefficient is zero, while in the effects-code version the coefficient is equal to minus the sum of the 

other coefficients for that attribute. Returning briefly to the notion in the literature about confounding,  

a comparison of say the estimates for “flood ever 10,000 years” between the two models is not 
informative – for dummy coding, the estimate of 0.858 is the difference to the base level of a flood 

every 4,000 years, while, for effects coding, the estimate of 0.310 is the value relative to the unweighted 

average of all four levels. However, we confirm that the differences across levels within a given attribute 

are constant, the arguments towards the end of Section 2 thus apply, and there is no confounding in 

either specification of the model.  

 
Table 3: Estimates of base and reduced model 

 Base Model Reduced Model 

 
Dummy 

coefficients 

Effects 

coefficients 
Dummy coefficients Effects coefficients 

Respondents 224 224 224 224 

Observations 2,240 2,240 2,240 2,240 

Log-likelihood -2,166.5 -2,166.5 -2,166.8 -2,166.8 

           

Parameters est. 
rob. 

t-rat. 
est. 

rob. 

t-rat. 
est. 

rob. 

t-rat. 
Diff 't' est. 

rob. t-

rat. 
Diff 't' 

flood every 

6,000 years 
0.591 5.6 0.043 0.7 0.545 5.21 -0.4 0.028 0.43 -0.2 

flood every 

8,000 years 
0.743 6.8 0.195 2.8 0.705 6.36 -0.4 0.187 2.71 -0.1 

flood every 

10,000 years 
0.858 8.3 0.310 4.8 0.820 8.2 -0.4 0.303 4.74 -0.1 

                                                      
4 It should be noted that the obtained dummy / effects coded parameters are point estimates of recoded continuous 

variables and that any form of marginal analysis related to cost, probability, compensation or evacuation time is 

no longer valid as the recoded variables are no longer in the respective dimension. An idea of marginal sensitivities 

can still be defined, but only over the ranges covered by the experimental design. 



50% 

compensation 
0.586 5.5 -0.046 -0.8 0.543 5.1 -0.4 -0.063 -1.02 -0.3 

75% 

compensation 
0.857 7.6 0.225 3.6 0.830 7.75 -0.2 0.224 3.61 0.0 

100% 

compensation 
1.085 8.6 0.453 6.7 1.053 8.4 -0.3 0.446 6.55 -0.1 

9 hours 

evacuation time 
0.223 2.1 0.017 0.2 0.187 1.93 -0.3 0.007 0.09 -0.1 

12 hours 

evacuation time 
0.251 1.9 0.045 0.5 0.211 1.69 -0.3 0.031 0.38 -0.2 

18 hours 

evacuation time 
0.350 3.4 0.144 2.1 0.321 3.42 -0.3 0.141 2.1 0.0 

€40 tax -0.109 -0.7 0.488 6.8 
-0.214 -1.77 n.a. 0.429 5.67 n.a. 

€80 tax -0.304 -1.7 0.293 3.5 

€120 tax -0.998 -5.7 -0.401 -5.8 -0.900 -7.94 0.6 -0.256 -4.59 -3.5 

€160 tax -1.574 -8.3 -0.977 -10.7 -1.460 -10.9 0.6 -0.816 -9.9 2.1 

 

For effects coding, it is then often implied that 𝜔𝑘,𝐸 indicates the utility of the k-th level on some 

cardinal scale, but we must ask what the zero of this scale represents. The answer is given by the 

constraint 𝜔𝑘,𝐸 = − ∑ 𝛾𝑙𝑙<𝐾 , i.e. ∑ 𝜔𝑙,𝐸𝑙 = 0. Therefore, 𝜔𝑘,𝐸 can be interpreted as giving the 

difference in utility between 𝑘 and the unweighted average of all the categories. Note that this applies 

to category 𝐾 also. 

 

However, this ‘zero’ is ultimately not well defined. This is illustrated in the ‘Reduced Model’ in Table 

3, where the coefficients for cost levels 2 and 3, which were similar in the base model, have been 

constrained to be the same. Again, the dummy-coded and effects-coded versions are identical, yielding 

a likelihood value reducing from –2166.50 to –2166.83 which indicates (through a 𝜒2 test for one degree 

of freedom) that the merging of the coefficients does not significantly impact the fit to the data. The 

column headed “Diff. ‘t’” indicates the change in the coefficient value relative to the base model 
compared with the estimation error in the base mode coefficient. Here we see that none of the 

coefficients in the dummy-coded model have changed significantly, but the coefficients for the 

unaffected levels of the cost attribute in the effects-coded model have indeed changed significantly. The 

impact of a given level of an attribute relative to this zero thus depends on the way in which other levels 

of the attribute are coded. It seems that the interpretation of effects coding is not quite what is intended. 

While there is no confounding, the interpretation of the meaning of the effects codes is uncertain. 

 

This uncertainty of meaning can be eliminated by a redefinition of the way in which effects codes are 

defined, but the values do not become reference free. 

 

4. Well-defined effects coding 

 

The key problem in standard effects coding is that the constraint on the codes is applied without 

considering the relative importance of the categories involved. An alternative is to consider a weighted 

coding, i.e.  

 

instead of ∑ 𝜔𝑘,𝐸𝑘 = 0, consider ∑ 𝑠𝑘𝜔𝑘,𝐸𝑘 = 0 

 

where  𝑠𝑘 is the share observed for category 𝑘. This approach relates to a simple ANOVA on unbalanced 

data, where it is also known as Type 1 Sum of Squares or sequential sum of squares (Herr, 1986, Shaw 

and Mitchell-Olds, 1993).  

 

To obtain this improved specification for effects coding, it is necessary to redefine the constraint, so 

that instead of 𝜔𝐾,𝐸 = − ∑ 𝛾𝑘𝑘<𝐾  we specify 𝜔𝐾,𝐸 = − ∑ 𝑠𝑘𝛾𝑘 𝑠𝐾⁄𝑘<𝐾 . When a category is merged, 

the 𝜔 values now no longer change, as they are referred to a permanent zero definition, the population-



weighted average instead of the category-weighted average. This change may be seen to help in 

comparing values across different categorical variables, as they are estimated relative to a stable base, 

however, the crucial point is that the estimates still refer to a base. 

 

Introducing 𝑠 changes the equations relating 𝛽 and 𝛾 

 𝛽𝑘 = 𝛽𝑘−𝜔𝐾,𝐷 = 𝛾𝑘−𝜔𝐾,𝐸 = 𝛾𝑘 + ∑ 𝑠𝑙𝛾𝑙 𝑠𝐾⁄𝑘<𝐾  

 

Adding these relationships multiplied by 𝑠𝑘 for all of the categories except 𝐾, we obtain 

 

 ∑ 𝑠𝑙𝛽𝑙 = ∑ 𝑠𝑙𝛾𝑙𝑙<𝐾 + (𝐾 − 1) ∑ 𝑠𝑙𝛾𝑙 = 𝐾 ∑ 𝑠𝑙𝛾𝑙𝑙<𝐾𝑙<𝐾𝑙<𝐾  
 

so 

 

 𝛾𝑘 = 𝛽𝑘 − ∑ 𝑠𝑙𝛾𝑙 𝑠𝐾⁄𝑙<𝐾 = 𝛽𝑘 − 1𝐾 ∑ 𝑠𝑙𝛽𝑙𝑙<𝐾  

 

A practical procedure would be to estimate 𝛽, then derive 𝛾, taking advantage of the fact that dummy 

coding is slightly easier to set up than effects coding. The calculation could then use weights that can 

be adjusted to meet different estimates of the population. For example, a model may be developed from 

a sample that is deliberately biased to focus on population segments of particular interest, but the 

coefficients could then be adjusted to give better representation of the whole population. 

 

The way in which this recoding would impact on the model of Table 3 is shown in Table 4 – these 

values are obtained through calculations, no re-estimation is needed, using the final equation given 

above to make the calculations. The first column of the table gives the weights 𝑠 that have been used, 

in this case the shares of the SP sample with each value of the attribute. The second column shows the 

weighted effects-coding coefficients, i.e. relative to the population mean. The third column shows the 

weighted effects-coded coefficients for the reduced model, while the final column presents a ‘t’ test of 
the hypothesis that the values are unchanged. In this case we see that the unaffected cost coefficients 

have not changed significantly, since they are measured relative to the fixed overall mean value.  

 
Table 4: Weighted effects coding 

  Base Model Reduced Model 

Parameters 

 Weighted 

coefficients 

Weighted 

coefficients 

 Weight Estimates Estimates Diff 't' 

flood every 6,000 years 0.2288 0.000 -0.046 -0.7 

flood every 8,000 years 0.2710 0.152 0.113 -0.6 

flood every 10,000 years 0.2969 0.266 0.229 -0.6 

50% compensation 0.2679 -0.040 -0.057 -0.3 

75% compensation 0.3208 0.231 0.230 0.0 

100% compensation 0.1792 0.459 0.452 -0.1 

9 hours evacuation time 0.3750 0.018 0.009 -0.1 

12 hours evacuation time 0.1920 0.045 0.033 -0.2 

18 hours evacuation time 0.2098 0.145 0.143 0.0 

€40 tax 0.2029 0.745 
0.536 n.a. 

€80 tax 0.1971 0.550 

€120 tax 0.3000 -0.144 -0.150 -0.1 

€160 tax 0.3000 -0.720 -0.710 0.1 

 



Errors can also be estimated, using the approach of Daly et al. (2012). This requires calculating the 

derivative of 𝛾 with respect to 𝛽: 

 

 𝜙𝑘𝑙′ = 𝛿𝑘𝑙 − 𝑠𝑙𝐾 , for 𝑙 < 𝐾; 𝜙𝑘𝐾′ = 0. 

 

where 𝛿𝑘𝑙 = 1 if 𝑘 = 𝑙 and zero otherwise. 

 

The covariance matrix Ω𝛾 for errors in 𝛾 can then be calculated as 

 

 Ω𝛾 = Φ′𝑇Ω𝛽Φ′ 
 

where Ω𝛽 is the covariance matrix for errors in 𝛽 and 

 Φ′ is the Jacobian matrix [𝜙𝑘𝑙′ ]. 
 

These calculations can easily be set up in a spreadsheet or similar calculation procedure. 

 

5. Conclusions 
 

The coding schemes commonly used for categorical variables, dummy coding and effects coding, are 

shown to contain exactly the same information and conversion from one form to the other is simple and 

unambiguous. However, effects coding does not provide all the advantages that are claimed by some 

practitioners, and we question the argument put forward by some that it avoids confounding between 

base levels of categorical variables and dummy coded alternative specific constants. Indeed, we 

highlight that what matters is not the sensitivities to given levels across attributes but the differences 

across levels for given attributes (and the comparison of those differences). These are equivalent 

independently of the coding scheme used. 

 

Independent of the approach used in recoding variables, an analyst cannot get away from the fact that 

only differences across levels matter, and this is specifically why the need for a normalisation arises. 

The specific approach used will determine what the estimates of parameters for given levels of a 

categorical variable actually mean, in that they are relative to a specific base value. In dummy coding, 

that reference is the value of the level chosen as the base, while, in simple effects coding, it is the 

unweighted average of the values of all levels.  

 

We also offer an improved specification of effects coding, using population weights, which permits a 

less arbitrary interpretation of effects-coded parameters, and which can readily be calculated from 

dummy coding, if that is used for model estimation. The values of course still relate to a base. It would 

be possible to extend this methodology to consider interactions of parameters, but this is beyond the 

scope of the present short contribution. 
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