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A transposon-mediated gene trap screen identified the zebrafish line qmc551 that expresses a GFP re-
porter in primitive erythrocytes and also in haemogenic endothelial cells, which give rise to haemato-
poietic stem and progenitor cells (HSPCs) that seed sites of larval and adult haematopoiesis. The trans-
poson that mediates this GFP expression is located in intron 1 of the gfi1aa gene, one of three zebrafish
paralogs that encode transcriptional repressors homologous to mammalian Gfi1 and Gfi1b proteins. In
qmc551 transgenics, GFP expression is under the control of the endogenous gfi1aa promoter, re-
capitulates early gfi1aa expression and allows live observation of gfi1aa promoter activity. While the
transposon integration interferes with the expression of gfi1aa mRNA in haematopoietic cells, homo-
zygous qmc551 fish are viable and fertile, and display normal primitive and definitive haematopoiesis.
Retained expression of Gfi1b in primitive erythrocytes and up-regulation of Gfi1ab at the onset of de-
finitive haematopoiesis in homozygous qmc551 carriers, are sufficient to allow normal haematopoiesis.
This finding contradicts previously published morpholino data that suggested an essential role for
zebrafish Gfi1aa in primitive erythropoiesis.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Haematopoietic stem cells (HSCs) are immature blood cells that
can self-renew and give rise to mature cells of all blood lineages
(Doulatov et al., 2012). HSCs first develop in the embryo. During
embryogenesis, haematopoietic cells (HCs) arise in waves from me-
sodermal progenitors (reviewed in (Ciau-Uitz et al., 2014; Clements
and Traver, 2013; Frame et al., 2013; Medvinsky et al., 2011)). In
mammals, the first HCs are primitive red blood cells (prRBCs),
macrophages and neutrophil granulocytes (Palis et al., 1999; Tober
et al., 2007). They develop in the yolk sac from haemangioblasts,
mesenchymal cells that are bipotent progenitors for blood and en-
dothelial cells (ECs) (Huber et al., 2004). Haematopoietic progenitor
cells (HPCs) and HSCs arise in subsequent waves. They form from
haemogenic endothelial cells (HECs) (Chen et al., 2011; Chen et al.,
r Inc. This is an open access article
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2009; Frame et al., 2016; Yokomizo et al., 2001; Zovein et al., 2008)
that undergo endothelial to haematopoietic transition (EHT) and
form HC clusters inside the vessels. HPCs develop in yolk sac arteries
and veins (Frame et al., 2016) while HSCs form from arterial HECs of
the ventral wall of the dorsal aorta (vDA) and from other major ar-
teries (de Bruijn et al., 2000; Gordon-Keylock et al., 2013; Medvinsky
and Dzierzak, 1996; Taoudi and Medvinsky, 2007). Explant studies
have visualized this process in the mouse vDA (Boisset et al., 2010).
Once born, HSCs establish the definitive wave of haematopoiesis that
maintains the blood system throughout life.

In zebrafish, primitive blood cells also differentiate from me-
senchymal haemangioblasts. The anterior and posterior lateral
mesoderm (ALM, PLM) give rise to primitive myeloid and ery-
throid cells, respectively (Gering et al., 1998; Herbomel et al., 1999;
Liao et al., 1998). PLM cells migrate to the midline to form the
intermediate cell mass (ICM) where they differentiate into prRBCs,
as well as ECs of the DA and the posterior cardinal vein (PCV)
(Detrich et al., 1995; Kohli et al., 2013). Primitive erythroblasts first
enter circulation between 24 and 25 h post fertilization (hpf). In
circulation, they mature over the following days (Qian et al., 2007;
Weinstein et al., 1996). After the onset of circulation, definitive HCs
begin to arise from HECs in the zebrafish vDA. Unlike in mammals,
zebrafish vDA HECs undergo basal epithelial to mesenchymal
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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transition (bEMT) as they turn into HCs (Bertrand et al., 2010;
Kissa and Herbomel, 2010; Lam et al., 2010; Zhen et al., 2013).
These enter circulation through the vein (Kissa et al., 2008) and
seed the caudal haematopoietic tissue (CHT) (Jin et al., 2007;
Murayama et al., 2006). The CHT is a transient larval site of hae-
matopoiesis in the tail mesenchyme, where haematopoietic stem
and progenitor cells (HSPCs) occupy perivascular niches (Tamplin
et al., 2015) before they leave for the kidney and the thymus
(Traver et al., 2003).
Fig. 1. The zebrafish gene trap line qmc551 expresses GFP in primitive red blood cells and
of the gene trap transposon and strategy of the gene trap screen. (B) Lateral view of a fix
diaminobenzidine staining on a qmc551 embryo. (E) A magnified image of the trunk. (F) A
(G) A maximum intensity projection of a 67.5 mm thick confocal Z-stack showing a later
Z-stack shown in (G). (I,J) Confocal images of the trunk of a qmc551;gata1:dsRed (I) and
(K) Confocal images of a live qmc551;csl:cer double transgenic embryo. The csl:cer transg
expressed in arterial ECs (Gray et al., 2013). (L) Double fluorescent runx1 and flk1/kdrl
munohistochemistry. (O-R) Confocal timelapse microscopy of the DA of qmc551;flk1:tdT
minutes after fertilization. Note that prRBCs in circulation appear as short lines in the c
performed at single cell resolution on 2 (I), 1.8 (J), 2.5 (K), 2.0 (L,N), 1.0 (M) and 2.1 (O-R)
dorsal up. Red arrows – prRBCs; red arrowheads –- prRBC progenitors trapped in the m
Gene expression analyses combined with gain- and loss-of-
function studies in different vertebrate model organisms have
defined sets of transcription factors and co-regulators expressed in
developing HCs that tightly regulate gene expression during blood
development and, thereby, control cell fate and identity (Orkin and
Zon, 2008). The closely related transcriptional repressors Gfi1 and
Gfi1b are two of these transcription factors. Gfi1 and Gfi1b play
important overlapping roles in adult HSCs and fulfill non-re-
dundant functions in cells of particular blood lineages (Möröy
in haemogenic endothelial cells of the ventral wall of the dorsal aorta. (A) Structure
ed qmc551 embryo. (C) Close-up of the trunk. (D-F) GFP immunohistochemistry and
10 mm transverse section through the trunk of the embryo after plastic embedding.

al view of the trunk of a fixed qmc551 embryo. (H) A 1.1 mm YZ cross section of the
qmc551;flk1:tdTom (J) double transgenic embryo after fluorescent immunostaining.
ene is a derivative of the csl:venus transgene which we have previously shown to be
WISH. (M,N) Fluorescent runx1 (M) and cmyb (N) WISH combined with GFP im-
om embryos. Images were taken every 3 min. Times on panels represent hours and
onfocal image, while stationary cells are round. The confocal analyses in (I-R) were
μm optical slices. All images (B-E,G,I-R) show embryos with anterior to the left and
esenchyme; green arrows – HECs in the vDA.
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et al., 2015). Gfi1b knockout mice die during gestation with ab-
normal erythropoiesis and megakaryopoiesis (Saleque et al.,
2002). By contrast, Gfi1 knockout mice are viable, but have inner
ear defects and severe neutropenia (Hock et al., 2003; Karsunky
et al., 2002; Wallis et al., 2003). Gfi1b expressed in place of Gfi1
can substitute for Gfi1 during haematopoiesis, but is not sufficient
for normal inner ear development (Fiolka et al., 2006). The zeb-
rafish genome harbors three Gfi1 paralogs (Cooney et al., 2013;
Dufourcq et al., 2004; Wei et al., 2008). Two paralogs, gfi1aa and
gfi1ab are orthologs of mammalian Gfi1, arisen during a genome
duplication in the teleost lineage. The third paralog encodes a
Gfi1b protein. Morpholino knockdown studies have indicated that
zebrafish gfi1aa plays an important role in primitive erythropoiesis
(Cooney et al., 2013; Wei et al., 2008) and that gfi1b alone is es-
sential for the development of all definitive HC lineages in the
embryo (Cooney et al., 2013). While observed defects in definitive
erythrocyte and thrombocyte development are consistent with the
phenotype of the mouse gfi1b knockout, the apparent deficiency in
all definitive lineages, as well as the loss of primitive erythropoi-
esis in the gfi1aa morphant embryo were unexpected and sug-
gested a remarkable reshuffling of responsibilities between Gfi1/
1b proteins in the bony fish lineage since their divergence from the
common teleost and tetrapod ancestor. Here, we report a zebrafish
gfi1aa gene trap line that demonstrates that the loss of haemato-
poietic Gfi1aa expression is compatible with primitive ery-
thropoiesis. Our data contradict the previous morpholino studies
and suggest that the roles of the mammalian Gfi1 and Gfi1b pro-
teins are conserved in the teleost lineage.
2. Results

2.1. qmc551:GFP is expressed in primitive erythrocytes and in hae-
mogenic endothelial cells of the dorsal aorta

A transposon-based gene trap approach was used in zebrafish
to identify novel genes involved in embryonic haematopoiesis
(Fig. 1A). F1 progeny of transposon-injected fish were analyzed for
GFP expression at 26 hpf, once most prRBCs had entered circula-
tion. One line, designated qmc551, displayed GFP in circulating
blood cells and in spindle-shaped cells located between the DA
and the PCV (Fig. 1B and C; Movie 1A). Sectioning of GFP-im-
munostained qmc551 embryos confirmed GFP expression in blood
cells and suggested that the spindle-shaped cells are ECs located in
the vDA (Fig. 1D-F). Confocal microscopy revealed additional me-
senchymal GFPþ cells that appeared to be located just outside the
blood vessels (Fig. 1G and H; red arrowheads; Movie 1B). Sub-
sequent examination of double transgenic embryos at single cell
resolution in 1.8–2.5 mm optical sections showed that both, the
round GFPþ cells inside and the mesenchymal cells outside the
vessels, co-expressed the prRBC marker gata1: dsRed (Traver et al.,
2003), demonstrating that these cells were prRBCs and their
precursors, respectively (Fig. 1I/S1A). The spindle-shaped GFPþ

cells co-expressed the EC reporter flk1: tdTom and were indeed
localized in the vDA (Fig. 1J/S1B). Co-expression of the Notch re-
porter gene csl: cer (Fig. 1K/S1C) confirmed these cells were
arterial.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ydbio.2016.07.010.

HECs of the vDA are known to express the stem cell tran-
scription factor Runx1 (Gering and Patient, 2005). Fluorescent
whole-mount in situ hybridization (WISH) experiments showed
that runx1 mRNA is localized in foci in flk1/kdrlþ ECs of the vDA
(Fig. 1L/S2A). The same runx1 mRNA foci were also observed in
GFPþ vDA ECs in qmc551 transgenic embryos (Fig. 1M/S2B).
Moreover, a subset of the GFPþ ECs contained cmyb mRNA
(Fig. 1N/S2C), which is known to be induced downstream of Runx1
(Burns et al., 2005; Kalev-Zylinska et al., 2002). To determine
whether these GFPþ ECs could undergo EMT to give rise to HCs,
confocal timelapse microscopy was performed on qmc551;flk1/
kdrl: tdTom double transgenic embryos. These experiments re-
vealed that individual ECs with elevated GFP slowly bent towards
the mesenchyme, rounded up and eventually joined the me-
senchyme as the endothelium closed up above them (Fig. 1O/S2D;
Movie 2A). Throughout the process, the cells co-expressed the
endothelial reporter transgene (Fig. 1P/S2E; Movie 2B). In addition
to bEMT, we also observed that individual GFPþ cells left the en-
dothelium apically to enter the DA directly, a process seen only up
to 40 hpf (Fig. 1Q/S2F; Movie 3A). Cells, which had undergone
bEMT, spent variable periods of time in the mesenchyme before
they entered the vein to join the circulation (Fig. 1R/S2G; Movie
3B). These data strongly suggested that qmc551: GFP expression
marks HECs prior to, during and after EHT. It is worth noting that
the events observed in qmc551 transgenics were also seen in flk1/
kdrl: gfp;csl:cer double transgenic embryos (Movies 4 and 5)). Al-
together, these data confirmed the erythroid nature of the
qmc551: GFPþ blood cells and showed that the spindle-shaped
GFPþ cells were HECs of the vDA. Intrigued by the interesting
expression pattern we wanted to know which gene was trapped
by the transposon.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ydbio.2016.07.010.

2.2. The gene trapped in qmc551 is gfi1aa

To identify the gene, Southern blot experiments were per-
formed using a probe embedded in the gfp gene on the transposon
(Fig. 2A). These experiments detected seven copies of the trans-
poson in the genomic DNA of qmc551 transgenics (Fig. 2B). To
reduce the number of genomic integrations in the progeny, out-
crosses with wild-type (wt) fish were performed. In all of these
outcrosses, half of the progeny were GFPþ and displayed the full
GFP expression pattern, demonstrating that the pattern was not a
composite, but reflected GFP expression from a single transposon
that was inherited in Mendelian fashion. After 4 generations,
nested inverse polymerase chain reaction (PCR) was performed
and identified a 134 bp sequence upstream of the transposon
(Fig. 2C; for details see Fig. S3) that was identical to a sequence in
intron 1 of the zebrafish gfi1aa gene (Fig. 2D). This integration site
was validated in PCR experiments in which genomic DNA frag-
ments were amplified across both intron 1-transposon boundaries
(Fig. 2E). These experiments showed that the GFP expression
strictly correlated with the presence of the transposon in gfi1aa.
Furthermore, PCR experiments with two gfp-internal primers,
confirmed the absence of silent transposon copies in the qmc551
line (Fig. 2F). Consistent with the transposon's position, reverse
transcription PCR (RT-PCR) allowed successful amplification,
cloning and sequencing of a cDNA in which exon 1 of gfi1aa was
spliced to the splice acceptor on the transposon (Fig. 2G), de-
monstrating that GFP was transcribed under the control of the
gfi1aa promoter.

2.3. qmc551:GFP reveals endogenous gfi1aa expression

Consistent with its expression under the control of the gfi1aa
promoter, embryonic GFP mRNA and protein expression patterns
in qmc551 transgenic embryos reflected endogenous gfi1aa mRNA
expression in non-transgenic embryos. Following early maternal
expression (Fig. 3A), zygotic GFP and gfi1aa expression was first
seen in prRBC progenitors of the PLM (Fig. 3B,C). While gfi1aa
mRNA diminished in prRBC progenitors between 21 and 28 hpf
(Fig. 3C,D), GFP mRNA and protein were still detected in prRBCs in

http://dx.doi.org/10.1016/j.ydbio.2016.07.010
http://dx.doi.org/10.1016/j.ydbio.2016.07.010


Fig. 2. The qmc551 transposon is located in intron 1 of gfi1aa on zebrafish chromosome 2. (A) Gene trap transposon with relevant restriction sites and the probe used in the
Southern blot experiment. (B) Southern blot experiment on digested genomic DNA isolated from wt and qmc551 transgenic embryos. Black arrows: 7 detected BglII frag-
ments. Blue arrow: single XbaI-XhoI band. Restriction enzymes: BglII (B), PstI (P) or XbaI and XhoI (X). (C) DNA sequence of the nested inverse PCR product. Sequence color
code: orange - tol2; black - genomic DNA upstream of transposon; blue - splice acceptor. (D) Map of the gfi1aaqmc551Gt locus. The MboI sites used in the inverse PCR are
highlighted. Positions of oligos used in PCR and RT-PCR experiments are shown and the sizes of the expected PCR products are given. (E) PCR amplification across the intron
1/transposon borders on genomic DNA isolated from wt embryos, and GFP-negative and GFPþ progeny of a qmc551 outcross. (F) PCR on the same genomic DNAs using gfp-
internal oligos. (G) RT-PCR on total RNA isolated from 3 dpf qmc551 embryos. Sequence color code: black - vector, red - gfi1aa exon 1, blue - splice acceptor; green - GFP.
Sequences corresponding to oligos G and H are underlined.
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Fig. 3. qmc551:GFP expression recapitulates gfi1aa expression and marks haematopoietic stem and progenitor cells throughout ontogeny. Views of embryos are posterior in (B) and
lateral in (A,C-E,G-I,O). Anteroposterior and dorsoventral axes are indicated. (A-H) Images of live qmc551 embryos and of fixed non-transgenic and qmc551 transgenic embryos after
WISH with probes against endogenous gfi1aa and gfp mRNA. (F) Confocal timelapse images (2.0 mm thick optical slice) through the CHT of a 48 hpf qmc551;flk1:tdTom embryo. (I)
Images of a qmc551 transgenic embryo immunostained for GFP expression using diaminobenzidine. (J-N). Transverse 10 mm sections of the same embryo after plastic-embedding. The
positions along the anteroposterior axis are indicated in (I). (O) Timelapse microscopy of the head region. (P) GFP immunohistochemistry and diaminobenzidine staining on 10 mm
sections of adult kidneys isolated from wt, qmc551 and cd41:gfp fish. (Q) Flow cytometric analysis of KM cells of wt and qmc551;gata1:dsRed double transgenic adults. GFP/dsRed
fluorescence and forward/side scatter were analyzed. Excitation and detection wavelengths are indicated in nm. Cell populations were gated according to Traver et al. (2003). (R-U)
Cytocentrifugation and Giemsa staining of the qmc551:GFPþ KM cells identified neutrophils (R), macrophages (S), progenitors (T) and lymphocytes (U). Annotations: caudal hae-
matopoietic tissue (CHT), glomerulus (Gl), goblet cell (GC), gut (G), inner ear (IE), lateral line organ (LL), medial crista (MC), mesenchyme (M), notochord (Nc), pancreas (P), posterior
blood island (PBI), putative Paneth cell (PC), pharyngeal sensory cells (asterisks), posterior macula (PM), swim bladder (SB), somitic muscle (SM), thymus (T) and ventral wall of the DA
(vDA) and of the caudal artery (vCA). HSPCs, pRBCs, thymocytes and wandering leukocytes are labeled with green, red, white and turquoise arrows, respectively.
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Fig. 4. Gfi1aa expression in haemogenic endothelial cells is induced downstream of VegfA and Notch signaling, but independent of Runx1. Fixed qmc551;gata1:dsRed double
transgenic embryos after GFP/dsRed immunohistochemistry are shown in (A, D-E, I). Fixed wt, qmc551 and qmc551;gata1:dsRed double transgenic embryos stained by WISH
are shown in (B-C, H, K), (L) and (J), respectively. Live qmc551 embryos that were wt, heterozygous or homozygous mib carriers were imaged in (F-G). Confocal images of
optical sagittal sections through the DA are 1.6 and 0.995 mm (A), 6.5 and 6.6 mm (D), 1.2 mm (E) and 2.7 mm (I) thick. A confocal maximum intensity projection of a 37 mm
optical slice is shown in (G). Embryos were treated with DMSO, the VegfR inhibitors 676,475 (A) and SU5416 (B,C) or DAPM (D) from tailbud stage (10 hpf). Rbpja/b (E) and
runx1 (I-L) morpholinos were injected at 2–4 cell stage. PrRBCs, HECs and inner ear hair cells are labeled with red, green and yellow arrows, respectively. Arrowheads mark
reduced or absent staining. Fractions x/y give the number of embryos, x, with depicted phenotype out of all embryos analyzed, y. Embryos are shown with anterior left and
dorsal up.
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circulation and in the posterior blood island, the posterior exten-
sion of the trunk ICM (Fig. 3D). This suggests that GFP mRNA and
protein were more stable than endogenous gfi1aa mRNA. GFP and
gfi1aa expression were also found in the inner ear and in ECs of the
vDA (Fig. 3D). As GFPþ HSPCs left the AGM, they started to accu-
mulate in the CHT where they displayed dynamic interactions
with ECs (Fig. 3F, Movie 6A). At 2 and 3 dpf, GFPþ ECs expanded
Fig. 5. Gfi1aa expression is lost in primitive erythrocytes of homozygous qmc551 emb
gfi1aaqmc551Gt locus. Oligos I and J were used in the RT-PCR experiments. The sequence co
with the exon 1/2 boundary and is not shown. (B) Fluorescent images of 20 hpf wt, qmc5
carriers. (C,H,I,L,M) RNAWISH experiments with indicated probes on 13–20 hpf wt and q
13–16 hpf and lateral with anterior to the left and dorsal up on all images of 18, 20 and
whole embryos. EF1α mRNA was used as a loading control. (E) Flow cytometric analysi
488 nm laser, and detected using the band pass filters 529/28 and 580/23 (central wav
cells in embryos at 19 hpf. Please note that values are shown relative to heterozygous
embryos at 19 hpf. (J,Q) Diaminofluorene staining to detect hemoglobin in 3 dpf embry
anaesthetized 3 day-old embryos and stained with May-Grünwald and Giemsa. (N) Struc
gfi1b morpholinos. In the morphant, exon 3 and 5 sequences are spliced together (dash
injected wt embryos. (P) gfi1b cDNA sequence representing the alternatively spliced gfi1
amino acid sequences are underlined. Sequences derived from different exons are show
entry NM_001271841. Encoded amino acids are counted below. Arrows: red – prRBCs, ye
gland precursors. Arrowheads: red – prRBCs in heart. Fractions x/y give the number of
shown with anterior left and dorsal up.
posteriorly into the ventral wall of the caudal artery (vCA)(Fig. 3F,
G). In addition to the lateral line organ, the exocrine pancreas was
seen to express GFP and gfi1aa mRNA (Fig. 3H,I). By contrast, only
GFP could be detected in cells of the gut, which, based on their
position and morphology, as well as in analogy to Gfi1 expression
in the mouse (Bjerknes and Cheng, 2010), are likely to be mucus-
filled goblet and crypt-base localized Paneth cells (Fig. 3I and K).
ryos, yet primitive haematopoiesis is unaffected. (A) Genomic organization of the
mplementary to the gfi1aa WISH probe is indicated. The TaqMan probe overlapped
51 heterozygous and homozygous siblings from an incross of qmc551 heterozygous
mc551 homozygous embryos. Views are posterior with anterior up on all images of
22 hpf embryos. (D) QRT-PCR to determine relative levels of gfi1aa mRNA in 16 hpf
s of embryonic cells at 19 hpf showing green and red fluorescence excited with a
elength/width in nm), respectively. (F) Mean green fluorescence observed in GFPþ

controls (Two-tailed t-test: po0.0001). (G) The relative numbers of GFPþ cells in
os. (K,R) Images of prRBCs that were isolated from the sinus venosus of terminally
ture of the gfi1b transcript before and after splicing in the presence and absence of
ed line). (O) RT-PCR performed on RNA isolated from uninjected and morpholino-
b mRNA isolated from gfi1b morphant embryos. PCR oligo and divergent C-terminal
n in different colors. The numbering of nucleotides corresponds to that of database
llow – inner ear hair cells, light blue – anterior lateral mesoderm, orange – hatching
embryos, x, with depicted phenotype out of all embryos analyzed, y. Embryos are
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Fig. 5. (continued)
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While haematopoietic gfi1aa expression was undetectable by
3 dpf, GFP mRNA and protein could still be observed in the vDA, in
the trunk mesenchyme and in the CHT at 3 and 5 dpf (Fig. 3H–K).
In haematopoietic cells, gfi1aa mRNA may be present at lower
levels that become increasingly difficult to detect by WISH as the
larvae grow older. In the live qmc551 transgenics, GFPþ blood cells
first seeded the thymus on day 3 (Fig. 3H,I,M) and the larval kid-
ney at day 5 (Fig. 3L). On day 6, wandering GFPþ cells were visible
throughout the head (Fig. 3O, Movie 6B). These were probably
immature leukocytes, since they did not stain with the mature
neutrophil marker Sudan black (Le Guyader et al., 2008) and did
not co-express the macrophage reporter mpeg1: dsRed (Ellett
et al., 2011) (Fig. S4). In adult kidney sections, individual GFPþ

cells were found between the renal tubules. The sections displayed
fewer GFPþ cells than kidney sections of the cd41: gfp fish, which
are known to express GFP in HSPCs and in cells of the platelet/
thrombocyte lineage (Ma et al., 2011) (Fig. 3P). Flow cytometry on
kidney marrow (KM) cells of qmc551;gata1: dsRed transgenics
demonstrated that (a) the GFPþ cells fall mainly into the pro-
genitor and lymphoid gates of the forward and side scatter profile
(Traver et al., 2003) and (b) do not co-express gata1: dsRed
(Fig. 3Q). Thus, while qmc551: GFP was seen in embryonic prRBCs,
there was no expression in definitive erythrocytes. Consistent with
the flow cytometric data, cytospins of GFPþ KM cells identified
very few neutrophils with multi-lobed nuclei (Fig. 3R) and mac-
rophages with granules (Fig. 3S). Most of the stained cells were
early progenitors with large nuclei and scant cytoplasm (Fig. 3T),
and small lymphocytes (Fig. 3U). No erythrocytes were found
among the GFPþ cells. Altogether, these data show that qmc551:
GFP is not only expressed in HECs that initiate definitive haema-
topoiesis, but is also found in their HSPC progeny that seed sub-
sequent sites of larval and adult haematopoiesis.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ydbio.2016.07.010.

2.4. Haemogenic endothelial qmc551:GFP expression is induced in
parallel to Runx1 downstream of Vegf and Notch signaling

It had previously been shown that gfi1aa expression in
prRBCs occurs downstream of cloche and scl/tal1, but is in-
dependent of gata1 and frs (Cooney et al., 2013). Here, we fo-
cused on the regulation of gfi1aa in HECs of the vDA. In HECs,
runx1 expression is known to be induced downstream of a sig-
naling cascade that includes Hedgehog, VegfA and Notch sig-
naling (Burns et al., 2005; Gering and Patient, 2005; Rowlinson
and Gering, 2010). We, therefore, tested whether qmc551: GFP
and gfi1aa expression in HECs also required Vegf and Notch
signaling. Treatment of double transgenic embryos with a VegfR
inhibitor led to the pooling of qmc551: GFPþ/gata1: dsRedþ
prRBCs in the ICM and to a complete loss of GFPþ spindle-
shaped ECs (Fig. 4A). Likewise, non-transgenic embryos lacked
all gfi1aa and cmyb mRNA in the trunk HECs in the absence of
Vegf signaling (Fig. 4B and C).

To determine whether gfi1aa expression in the vDA required
the Notch pathway, qmc551;gata1: dsRed embryos were either
treated with the γ-secretase inhibitor DAPM (Geling et al., 2002)
or injected with the Rbpja/b morpholino (Sieger et al., 2003). The
qmc551 transgene was also crossed into the mindbomb (mibta52b)
(Itoh et al., 2003) mutant background. All three types of Notch-
depleted embryos specified GFPþ prRBCs, but lacked GFPþ HECs
(Fig. 4D-G). A WISH experiment performed on non-transgenic mib
mutants confirmed the loss of gfi1aa expression in the vDA
(Fig. 4H). Increased expression of GFP and gfi1aa mRNA within the
inner ear in these embryos (Fig. 4F and H) reflects an expected
increase in the number of gfi1aa-expressing hair cells in Notch-
depleted embryos (Haddon et al., 1998).
Next, we examined whether qmc551: GFP induction in HECs
was also dependent on Runx1. We found that the same runx1
morphant embryos expressed GFP in the vDA (Fig. 4I), but dis-
played a loss of cmyb expression after fixation and WISH staining
(Fig. 4J). Likewise, non-transgenic runx1 morphants retained en-
dogenous gfi1aa mRNA (Fig. 4K) while losing cmyb expression
(data not shown). Midline gfi1aa expression had previously been
shown to be independent of Runx1 and was, therefore, thought to
be unrelated to definitive haematopoiesis (Cooney et al., 2013).
Our transgenic line reveals that this Runx1-independent gfi1aa
expression occurs in HECs. Interestingly, GFP expression in circu-
lating prRBCs was reduced in runx1 morphants, suggesting that
runx1 promotes gfi1aa expression in prRBCs (Fig. 4L).

2.5. The transposon interferes with normal gfi1aa transcription in
primitive red blood cell progenitors, but erythrocyte differentiation is
unaffected

The location of the gene trap transposon (Fig. 5A) suggested
that it might interfere with the expression of the gfi1aa gene. To
address this issue, qmc551 heterozygotes and homozygotes were
sorted based on the level of GFP fluorescence (Fig. 5B) and used in
gfi1aa WISH. These experiments showed that gfi1aa expression
was retained in the inner ear, but lost in the prRBCs of qmc551
homozygotes (Fig. 5C). At 16 hpf, quantitative RT-PCR (qRT-PCR)
confirmed that gfi1aa mRNA was substantially reduced in qmc551
homozygotes (Fig. 5D). Despite this reduction, homozygous em-
bryos did not appear to carry less prRBCs. Flow cytometric ana-
lyses revealed that the GFPþ qmc551 homozygous prRBCs had a
twofold higher mean fluorescence (Fig. 5E and F), but that prRBC
numbers were similar in heterozygous and homozygous carriers
(Fig. 5E and G). The normal number of prRBCs was also reflected in
normal gata1 and β-globin (hbee1) expression patterns in 22 hpf
qmc551 homozygotes (Fig. 5H and I). By day 3, circulating prRBCs
of qmc551 homozygotes stained normally with the hemoglobin
peroxidase substrate diaminofluorene (DAF) (Fig. 5J) and displayed
normal overall cell morphology (Fig. 5K), clearly demonstrating
that prRBCs were not only specified, but also matured in the ab-
sence of Gfi1aa. Normal primitive erythropoiesis in qmc551
homozygous embryos could be sustained due to functional re-
dundancy between the three zebrafish Gfi1 paralogs. While gfi1ab
expression could not be detected in prRBCs in the presence or
absence of Gfi1aa (Fig. 5L), gfi1b expression was present and un-
altered in the homozygous qmc551 embryos (Fig. 5M). To test
whether Gfi1b compensates for the loss of Gfi1aa expression
during primitive erythropoiesis, Gfi1b morpholinos were injected
into homozygous qmc551 embryos. The morpholinos were de-
signed to target the splice junctions that flank exon 4 of the pri-
mary gfi1b transcript (Fig. 5N). RT-PCR showed that injected
morphant embryos carried an alternatively spliced gfi1b mRNA
(Fig. 5O). The sequence of its RT-PCR fragment revealed that exons
3 and 5 were spliced together, leading to a shift of the gfi1b
reading frame (Fig. 5N and P). This frame shift is predicted to cause
the production of a truncated Gfi1b protein that retains the
N-terminal 20 amino acid-long SNAG (SNAIL/GFI1) domain and
parts of the linker domain, but lacks all Zn-fingers of Gfi1b's DNA
binding domain. Instead, a divergent sequence of 22 amino acids
forms the C-terminus of the truncated product. The loss of the
DNA binding domain is likely to interfere with the protein's
function. While injected wt embryos displayed normal ery-
thropoiesis at 3 dpf, morphant qmc551 homozygous embryos
showed a dramatic reduction in DAF staining (Fig. 5Q). In com-
parison to the normal morphology of prRBCs in uninjected em-
bryos, prRBCs of morphant qmc551 homozygotes appeared larger
and their nuclei were less condense (Fig. 5R). Nuclear condensa-
tion and a reduction in cell size are hallmarks of RBC

http://dx.doi.org/10.1016/j.ydbio.2016.07.010


R. Thambyrajah et al. / Developmental Biology 417 (2016) 25–3934



R. Thambyrajah et al. / Developmental Biology 417 (2016) 25–39 35
differentiation (Qian et al., 2007; Weinstein et al., 1996). Thus, in
the absence of Gfi1aa and Gfi1b, prRBCs failed to mature. The
apparently normal maturation of prRBCs in uninjected qmc551
homozygous embryos suggests that Gfi1b is sufficient to rescue
primitive erythropoiesis in the absence of Gfi1aa.

2.6. Gfi1aa is not essential for definitive haematopoiesis

Next, we examined whether the transposon also interfered
with gfi1aa expression at the onset of definitive haematopoiesis.
WISH experiments on 26 hpf qmc551 homozygous embryos
showed that gfi1aa expression was lost in the vDA, while expres-
sion was retained in the inner ear (Fig. 6A). QRT-PCR confirmed the
substantial reduction in gfi1aa mRNA in the 26 hpf embryo
(Fig. 6B). Despite this loss, cmyb expression in the vDA was normal
(Fig. 6C) and GFPþ cells were observed to seed the CHT (Fig. 6D)
and the thymus (Fig. 6E) of qmc551 homozygous embryos. Their
green fluorescence was matched by the presence of cmyb-positive
HSPCs of the CHT and rag1-expressing T cell progenitors of the
thymus (Fig. 6F and G), demonstrating that definitive haemato-
poiesis commenced as normal. Within the vDA, we found no
evidence for gfi1b mRNA in wt or qmc551 homozygous embryos
(Fig. 6H and I). Gfi1b expression was clearly restricted to prRBCs in
circulation over the yolk and in the PBI (Fig. 6H,I). By contrast,
gfi1ab mRNA which had previously been shown to display a
scattered expression pattern in the vDA (Dufourcq et al., 2004) was
dramatically increased in the homozygous qmc551 embryos
(Fig. 6J). A close-up of the trunk region shows that the gfi1ab ex-
pression pattern displayed an almost continuous line in the em-
bryonic midline (Fig. 6K). Transverse sections demonstrated that
the staining was associated with the vDA (Fig. 6L), suggesting that
gfi1ab expression was upregulated and likely to substitute for
Gfi1aa at the onset of definitive haematopoiesis.

Upregulation of gfi1ab expression was first observed at 22 hpf
(Fig. 6M). At this time, gfi1aa expression decreases in prRBCs and
only individual cells located in the position of the future vDA
display weak gfi1aa expression (Fig. 6N). Given that gfi1ab ex-
pression was not seen in prRBCs between 13 and 20 hpf in wt or
qmc551 homozygous embryos (Fig. 5L), the gfi1ab-positive cells
seen at 22 hpf are most likely definitive precursor cells (Fig. 6M).
Interestingly, when gfi1ab expression was examined in qmc551
homozygotes that had been injected with a runx1 morpholino, de-
repressed gfi1ab expression was completely lost at 26 hpf (Fig. 6O),
suggesting that, unlike gfi1aa, gfi1ab expression at the onset of
definitive haematopoiesis requires direct or indirect activation by
Runx1 (Fig. 6P).

Homozygous qmc551 larvae were successfully raised to adult-
hood. Adults were perfectly viable and fertile, and showed no
phenotypic abnormalities. Flow cytometric analysis of adult KM
cells showed that the relative numbers of GFPþ cells were iden-
tical in qmc551 heterozygous and homozygous adult fish (Fig. 6Q),
despite a substantial reduction in gfi1aa mRNA in KM cells of
qmc551 homozygotes (Fig. 6R). As Gfi1 knockout mice display
neutropenia, KM cytospins were prepared to examine neutrophil
granulocytes in qmc551 homozygous fish. KM cytospins stained
Fig. 6. Gfi1aa expression is lost in definitive haematopoietic cells of homozygous qmc55
WISH experiments using indicated probes. Whole embryos are shown in (A,H,J,M-O). Clo
(C,F,I,K), respectively. All embryos, except (G), are shown in a lateral view with anterior
(L) shows a transverse section through the trunk of one of the homozygous qmc551 em
embryos (B) and from adult KM cells (R) to measure the relative level of gfi1aa mRNA (T
control. (D,E) Live images of qmc551 embryos with anterior left and dorsal up. Close-u
Gfi1aa and Gfi1ab expression at the onset of definitive haematopoiesis. (Q) Flow cytome
laser and detected using 529/28 and 580/23 nm band pass filters, respectively. Please not
(S) May-Grünwald/Giemsa stained KM cytospins. (T) Relative number of bilobed and trilo
(U) Sudan Black staining on adult KM cytospins. Arrows: red – prRBCs, green – HECs and
black – neutrophil granulocytes with bilobed nuclei. Arrowheads: green – reduced gene
with May-Grünwald and Giemsa revealed cells with bilobed and
trilobed nuclei (Fig. 6S), which represented about 10% of the KM
cells in wt and qmc551 homozygotes (Fig. 6T). These cells could
successfully be stained with the neutrophil granulocyte stain Su-
dan Black (Fig. 6U). Thus, qmc551 homozygous fish displayed no
obvious signs of neutropenia. Altogether, our data showed that
although the gene trap transposon abrogates gfi1aa expression in
haematopoietic cells, primitive and definitive haematopoiesis re-
main unaffected.
3. Discussion

The zebrafish line qmc551 carries a GFP gene trap transposon
within intron 1 of the gene gfi1aa on chromosome 2. RT-PCR
confirmed the presence of a spliced mRNA that fuses gfi1aa 5′UTR
sequences encoded by exon 1 to the splice acceptor on the gene
trap, showing that GFP transcription is under the control of the
gfi1aa promoter. GFP translation is ensured by an ATG start codon
at the beginning of the gfp open reading frame. The GFP reporter
faithfully recapitulates early embryonic gfi1aa expression inside
and outside the haematopoietic system. Furthermore, it provides a
sensitive live read-out of gfi1aa promoter activity in cell types and
at times when gfi1aa promoter activity cannot easily be detected
by WISH. The expression pattern of qmc551: GFP is much wider
than that of the previously published gfi1aa enhancer trap line
gfi1.1: gfp whose GFP expression was limited to prRBCs (Wei et al.,
2008). The gfi1.1: gfp line's enhancer trap was inserted 20 kb up-
stream of gfi1aa, and its GFP expression was probably dependent
on a single local enhancer. By contrast, our gene trap's GFP re-
porter is likely to be under the control of all cis-regulatory ele-
ments that regulate the activity of the endogenous gfi1aa pro-
moter upstream of exon 1.

Our WISH and qRT-PCR data showed that the gene trap
transposon interferes with gfi1aa transcription in pRBCs, in HECs
of the vDA and in adult KM cells. The absence of exon 4/5-con-
taining RNA sequences suggests that the primary transcript is
terminated at the SV40 polyadenylation signal downstream of the
gfp reading frame. Our WISH data also revealed that the transpo-
son-mediated suppression of gfi1aa transcription is context-de-
pendent. Hair cells in the inner ear express GFP, but also retain
gfi1aa expression. The remaining expression may be due to in-
efficient transcript termination or the use of an alternative pro-
moter downstream of the transposon. It is noteworthy that a
transcript initiated in intron 1 would encode a full-length Gfi1aa
protein. Interestingly, analysis of genome-wide data on histone
3 lysine 4 trimethylation, an epigenetic mark enriched at tran-
scriptionally active promoters, in 24 hpf zebrafish embryos (Aday
et al., 2011) shows that gfi1aa's intron 1 sequences are associated
with this mark. The lack of inner ear defects in qmc551 homo-
zygous embryos is likely due to the residual Gfi1aa expression and
the co-expression of Gfi1ab in the sensory hair cells. This example
highlights that one cannot simply assume that the transposon
interferes with gfi1aa expression in all cell types and at all differ-
entiation stages. A more detailed analysis into this context
1 fish, but definitive haematopoiesis is normal. (A,C,F-O) Fixed embryos stained in
se-up views of anterior and posterior parts of the embryos are presented in (G) and
to the left and dorsal up. (G) shows a close-up dorsal view with anterior to the left.
bryos after gfi1ab WISH. (B,R) QRT-PCR on total RNA isolated from whole 26 hpf

wo-tailed t-test: p¼0.002 (26 h), p¼0.034 (KM)). Ef1α mRNA was used as a loading
p pictures of the tail (D) and the head regions (E) are presented. (P) Regulation of
tric analysis of green and red fluorescence in adult KM cells excited with a 488 nm
e that a substantial proportion of KM cells displays green and red autofluorescence.
bed neutrophil granulocytes observed in May-Grünwald/Giemsa stained cytospins.
definitive HCs, yellow – inner ear hair cells, white – T cell precursors in the thymus,
expression in the vDA.



Fig. 7. Expression of zebrafish gfi1/1b paralogs during primitive erythropoiesis and definitive haematopoiesis in wild-type and homozygous qmc551 embryos. Top – Dia-
grammatic representation of zebrafish embryos from 12.5 to 48 hpf. The images show posterior and lateral views of early and late embryos, respectively. Sites of primitive
erythropoiesis (in red) and definitive haematopoiesis (in green) are depicted. Abbreviations: PLM – posterior lateral mesoderm; ICM – intermediate cell mass; PBI – posterior
blood island; CHT – caudal haematopoietic tissue. Bottom – Expression of gfi1 paralogs in wt and qmc551 homozygous embryos. Solid boxes represent strong expression. Dots
show scattered expression. Lines represent apparent loss of expression.
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dependency was outside the scope of this study.
Despite the loss of Gfi1aa expression in prRBCs, homozygous

qmc551 embryos displayed normal primitive erythropoiesis. PrRBC
progenitors were specified in normal numbers and DAF staining
suggested that they matured normally. These finding contradict
previous morpholino studies that proposed an essential role for
Gfi1aa in primitive erythropoiesis (Cooney et al., 2013; Wei et al.,
2008). The convincing reduction in gfi1aa mRNA in our mutants
suggests that the reported morphant phenotype is possibly due to
off-target effects (Lawson, 2016; Stainier et al., 2015). The normal
development of prRBCs in our mutants is consistent with the
phenotype of the mouse Gfi1 knockout. As in zebrafish, mouse
prRBC progenitors co-express Gfi1 and Gfi1b (Moignard et al.,
2015), and single Gfi1 and Gfi1b knockout mice display normal
primitive erythropoiesis (Hock et al., 2003; Saleque et al., 2002).
By contrast, loss of both proteins causes reduced embryonic βH1
globin expression in the murine yolk sac, suggesting a defect in
primitive erythropoiesis (Lancrin et al., 2012). We show here that
morpholino-mediated knockdown of Gfi1b in Gfi1aa-deficient
embryos also interfered with primitive erythropoiesis in zebrafish.
Initially, prRBCs were specified, but subsequently failed to mature.
The lack of a maturation defect in either gfi1aa mutant or gfi1b
morphant embryos demonstrated that Gfi1aa and Gfi1b could
substitute for each other during primitive erythropoiesis in
zebrafish.

Homozygous qmc551 carriers were viable and fertile, and dis-
played none of the phenotypic abnormalities observed in the de-
finitive blood system of Gfi1 knockout and Gfi1: GFP knock-in
mice (Hock et al., 2003; Karsunky et al., 2002; Wallis et al., 2003;
Yücel et al., 2004). In particular, the neutrophil granulocytes,
which are severely reduced in Gfi1-depleted mice, were present in
normal numbers. The normal blood phenotype was likely due to
functional redundancy with Gfi1aa's paralogs (Fig. 7). At the onset
of definitive haematopoiesis, loss of Gfi1aa expression lifted the
repression of gfi1ab and led to the Runx1-dependent upregulation
of Gfi1ab in HECs of the DA. Mammalian Gfi1 and Gfi1b proteins
are known to auto- and cross-regulate their expression in a con-
text-dependent manner (Doan et al., 2004; Montoya-Durango
et al., 2008; Yücel et al., 2004). In homozygous qmc551 embryos,
upregulation of gfi1ab was first detected in individual cells of the
ICM. Based on their position within the ICM and the lack of gfi1ab
upregulation in prRBCs at earlier time points, we suppose that
these cells represent progenitors of HECs, i.e. haemogenic aortic
angioblasts. These cells may be equivalent to the suspected HSC
precursors recently reported to express gata2b (Butko et al., 2015),
an issue that requires further attention.

In the mouse, loss of Gfi1 alone does not abrogate EHT. Only
Gfi1/Gfi1b double knockout mice display deficiencies in HECs of
the YS and the vDA. In the YS, HEC-derived HCs cannot down-
regulate EC genes and fail to enter circulation (Lancrin et al., 2012).
In the vDA, HECs are specified, but fail to undergo EHT (Tham-
byrajah et al., 2015). In zebrafish, we did not see any convincing
gfi1b expression in vDA HECs, but gfi1b expression was observed in
definitive HCs of the CHT. Whether it plays an important role in
EHT remains to be determined. In addition, the strong expression
of gfi1aa in wt and gfi1ab in Gfi1aa-deficient embryos casts doubts
on the previous morpholino-based assumption that Gfi1b alone is
essential for the formation of all definitive haematopoietic linea-
ges (Cooney et al., 2013). In the mouse, Gfi1 and Gfi1b are co-ex-
pressed not only during EHT, but also in HSCs, and only the loss of
both genes completely abrogates HSC maintenance (Hock et al.,
2004; Khandanpour et al., 2010; Zeng et al., 2004). Single Gfi1b
knockout mice display severe defects only in cell types that do not
co-express Gfi1, i.e. definitive erythrocytes and megakaryocytes
(Saleque et al., 2002). The generation of gfi1ab and gfi1b single, as
well as double and triple mutants in zebrafish is needed to shed
more light on the redundant and non-redundant roles of these
proteins during definitive haematopoiesis. The lines will also allow
us to carefully examine dose-dependent requirements for Gfi1/1b
proteins during tissue differentiation. Unlike the previous mor-
pholino results, our data on the qmc551 line are consistent with
findings in the mouse and strongly support the notion that the
roles of Gfi1 and Gfi1b are at large conserved between teleosts and
mammals. The high level of GFP expression in our qmc551 line and
the transparency of the zebrafish embryo will be instrumental in
unraveling the behavior of cells in gfi1aa/gfi1ab/gfi1b and other



R. Thambyrajah et al. / Developmental Biology 417 (2016) 25–39 37
mutant backgrounds. This line will also be an excellent resource
for HECs and HSPCs for use in transplantation and biochemical
characterization.
4. Materials and methods

4.1. Zebrafish husbandry and experimentation

Information on zebrafish husbandry is provided in Supple-
mentary data. Genetically altered zebrafish are listed in Table S1.

4.2. Transgene construction and molecular biology experiments

Details on the transposon Tol2-embedded gene trap, the flk1:
tdTom and the csl: cer constructs are available upon request. To
generate transgenic lines, plasmid constructs were injected with
Tol2 transposase mRNA into one-cell stage embryos (Kotani et al.,
2006). Embryos that harbored cells with transient reporter ex-
pression that contributed normally to embryonic development
were raised. Adults were crossed to wt fish to identify transgenic
founders. Their progeny established the lines reported herein.
Southern Blots followed standard procedures. The integration site
in qmc551 was identified via inverse PCR as previously described
(Kotani et al., 2006). Briefly, genomic DNA from qmc551 embryos
was digested with MboI, self-ligated and used in a nested PCR. The
amplification product was cloned and sequenced. A Blast search in
ENSEMBL (Flicek et al., 2014) on zebrafish genome assembly zv8
allowed the localization of the transposon. Total RNA was isolated
from qmc551 embryos using the RNeasy mini Kit (Qiagen) and was
reverse transcribed using Superscript II reverse transcriptase (Life
Technologies). Standard PCRs on cDNA and genomic DNA were
performed using Taq polymerase (New England Biolabs). Quanti-
tative TaqMan PCR on cDNA employed the qPCR mix plus Rox
reference dye (Thermo Scientific). Oligo sequences are provided in
Table S2. Statistical analyses were performed using Graph Pad
Prism.

4.3. RNA in situ hybridization and immunohistochemistry

Alkaline phosphatase and tyramide fluorescent WISH experi-
ments were performed using published protocols (Broadbent and
Read, 1999; Schoenebeck et al., 2007). Immunodetection followed
standard protocols, using reagents summarized in Table S3. Some
stained embryos were embedded in JB4 methacrylate (Agar Sci-
entific, Cambridge) and sectioned on a Leica RM2265 microtome.
Sudan Black staining of embryos followed (Le Guyader et al.,
2008). Kidneys were isolated (Gerlach et al., 2011), fixed in 4%
paraformaldehyde overnight, soaked in 30% sucrose overnight,
frozen in OCT and sectioned on a Leica CM1850 cryostat.

4.4. Morpholino injections and inhibitor treatments

Morpholinos (see Table S2) were injected in a volume of 0.5 nl
into 2–4 cell stage embryos. The two gfi1b morpholinos (0.5 ng
each) were co-injected with 0.5 ng of p53 morpholino. The latter
was used to block the frequently observed morpholino-induced
upregulation of p53 and the p53-induced apoptosis (Robu et al.,
2007). Inhibitors were added to the embryo medium and applied
from tailbud stage. Control embryos were treated with the solvent
DMSO. The Diaminofluorene staining followed (Weinstein et al.,
1996). To block pigmentation and immobilize live embryos for
confocal imaging, embryos were treated with MS222, and phe-
nylthiourea, and embedded in 1% low melting point agarose as
described in (Renaud et al., 2011). Details on chemicals are given in
Table S3.
4.5. Fluorescence-activated cell sorting and cytospins

Blood cells were collected from adult kidneys as described
(Traver et al., 2003). Forward scatter, side scatter and GFP/dsRed
fluorescence characteristics of KM cells were analyzed on a Beck-
man Coulter MoFlo Astrios cell sorter using the Kaluza software.
Sytox was used to exclude dead cells. Using a Shandon Cytospin 4,
all or just the GFPþ KM cells were cytocentrifuged for 3 min onto
slides at 300 rpm and medium acceleration. RBCs were isolated
from the sinus venosus of terminally anaesthetized 3 day-old
embryos. The cells were subsequently stained with May-Grün-
wald, Giemsa or Sudan Black following manufacturer's instruc-
tions (see Table S3).

4.6. Microscopy and Imaging

Embryos were examined on a Nikon SMZ-1500 microscope.
Sections and cytospins were analyzed on a Nikon Eclipse i80.
Images were taken with a Nikon DS-5Mc/DS-U1 camera setup
operated by the Nikon ACT-2U software or captured with a
monochrome Hamamatsu Orca-ER camera via IP Lab software.
Orca black and white images were pseudo-colored. Confocal mi-
croscopy was performed on Zeiss Exciter, LSM510 and LSM710
inverted confocal microscopes via ZEN software. All confocal
images were analyzed in Imaris (Bitplane). Videos exported from
Imaris were annotated in iMovie. Images were collated in Photo-
shop CS6.
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