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Abstract—In this paper, the problem of intrusion detection
using passive infrared sensors (PIR) is investigated. We study the
output PIR signal in the light of the intruder’s trajectory and
the geometry of the sensor’s field of view (FOV) and propose
an inverse-square law that describes the relation of incident
heat flux to the distance. The signal is modeled by a sum of
exponentially modulated sinusoids. Consequently, the intrusion
detection is formulated as a hypothesis testing problem and
we propose an exponentially windowed periodogram (EWP)
detector, which is also able to detect the direction of movement.
The simulation results shows the superior performance of the
EWP detector when compared to conventional detectors such as
the traditional periodogram detector and the energy detector over
large distances. Furthermore, results show nearly 100% correct
detection of the direction of movement.

I. INTRODUCTION

Intrusion detection is a vital field of research with significant

practical impact. Several sensor modalities are used for intru-

sion detection, some of which are magnetic, acoustic, seismic,

and thermal sensors [1]. However, pyroelectric infrared (PIR)

sensors present themselves as an attractive option due to their

low power requirement, low cost, and small form factor. PIR

sensors are made from pyroelectric crystals that are intrin-

sically polarized [2]. When exposed to temperature change,

the polarization is temporally disturbed producing a current

proportional to the heat gradient. Thus, PIR sensors measure

the change in temperature making them suitable for motion

detection. Usually, two sensor elements are connected serially

in reverse polarity, thus producing a positive voltage when

motion occurs in the positive element field of view (FOV)

and a negative voltage when motion occurs in the negative el-

ement’s FOV. Hence, PIR sensors can be found in many indoor

applications, such as [3]. Recently, PIR sensors were also used

with wireless sensor networks (WSNs) in outdoor applications

[4], due to the previously stated features. However, due to

limited detection range the outdoor applications are limited.

Therefore, advanced processing techniques are needed in order

to increase the detection range of the PIR sensors

Several processing methods have been suggested in the lit-

erature. In [5], energy detection with adaptive noise threshold

was proposed. Simple high-pass filtering was also used to

improve the SNR. A combination of the Haar transform and

support-vector-machine was used in [6] to detect intrusion in

the presence of clutter. In [7], the authors proposed using a

linear regression model in conjunction with hidden Markov

models to detect and classify human walking movement. PIR

sensors were used for tracking of direction and distance of

motion in [8] via feature extraction methods. A set of two

orthogonal PIR sensor pairs were used in [9] to detect the

direction of movement.

In this paper we investigate increasing the detection range

of PIR in outdoor environments using the statistical hypoth-

esis testing framework leading to advanced signal processing

methods, in contrast to the simplified processing adopted in

[6]. Firstly, we show that the incident heat flux at the sensor

obeys the inverse square law for an arbitrary source shape.

Secondly, we model the incident heat flux time varying signal

as a function of the intruders’ trajectory parameters. Finally,

we formulate the detection problem as multiple hypothesis

testing.

This paper is organized as the following. Section II presents

the system model. In Section III, the detection problem is

formulated and the corresponding detection algorithms are

proposed. Simulation results are provided in IV. Finally, the

conclusions and future work are given in Section V.

II. MODELING OF INTRUDER’S SIGNATURE

In this section the time-varying heat flux signature generated

by the intruder and the PIR sensor are formulated.

A. Intruder Heat Flux

We are interested in measuring the heat flux generated by
a mobile intruder moving with constant speed and direction.
The intruder is assumed to be in thermal equilibrium with
its environment. The measured flux at the sensor mainly
depends on the temperature, source geometry, and the spatial
orientation of the intruder and the sensor with respect to
(wrt) each other. Assuming a Lambertian grey body emitting
uniformly in space, the heat flux at the sensor is [2]

Φ =
1

π
εkBωi,s

(

T
4

i − T
4

e

)

Ai (1)

where 0 < ε < 1 is the intruder’s emissivity, kB ≈ 1.381 ×
10−23kg.m2/s2K is the Steveman-Boltzmann constant, Ti is
the intruder’s absolute temperature, Te is the environment’s
temperature, Ai is the intruder’s surface area, and ωi,s is the
projected solid angle of the intruder onto the sensor. So the
geometry of the source w.r.t. the sensor is given by

ωi,s =
1

As

∫

Ai

∫

As

cosβi cosβs

R2

i,s

dAidAs (2)

where As is the sensor’s area, βi and βs are the angles of

dAi and dAs wrt to the axis connecting them, and Ri,s is the
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Fig. 1: Heat flux, Φ, as a function of distance R for the FEM and the
approximation in (3). The human source is modeled by a rectangular head
and body with dimensions of 0.22m × 0.14m and 1.7m × 0.4m
respectively. The human temperature is Ti = 37

o with emissivity ε = 1,
environment temperature Ti = 20

o, sensor area As = 20µm2, intruder area
Ai = 0.7m2.

distance separating the infinitesimal elements dAi and dAs.

Consequently, the total heat flux is found by solving the double

integration in (1) and substituting in (1).

For an arbitrary geometry, the incident heat flux is usually

found by the finite element method (FEM), which is known

to be cumbersome. Instead, we propose the following closed-

form approximation

Φ ≈ εkB
(
T 4
i − T 4

e

) AiAs

4R2
. (3)

which is simply an inverse square law relationship. The the

above approximation is compared with the FEM results in

(1) for a human source at different distances. The results

show excellent matching with our approximation for distances

greater than 5 meters.

As the intruder passes in front of the PIR sensor, a Fresnel

lens modulates the incident heat flux by partitioning the FOV

into multiple segments1 as shown in Fig. 2(a), where each seg-

ment concentrates the flux onto the PIR sensor. Consequently,

the PIR sensor’s signal depends on the intruder’s trajectory

through the FOVs. Take for example an intruder crossing the

central FOV segment with constant speed v making an angle

ψ0 with the main sensor axis at distance R0 as shown in Fig.

2(b). The squared distance between the intruder and the sensor

is given by the cosine rule [6] as

R2(t) = v2t2 +

(
R0 sinψ0

sin (ψ0 + γ)

)2

+
2vtR0 sinψ0

tan (ψ0 + γ)
. (4)

Therefore, the incident heat flux has the form

Φ(t) =
Φ̃

R2(t)

[
Π

(
t− t0

d+0 /v

)
−Π

(
t− t0 − d+0 /v

d−0 /v

)]
(5)

where Φ̃ = εkB
(
T 4
i − T 4

e

)
AiAs/4, t0 is the entry time,

and Π(t) is fa unit rectangular function in the time interval

1In the context of intrusion detection, such an arrangement increases the
probability of detection.
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(a) Multiple-segment FOV Fresnel lens configuration. Each segment has a FOV with
angle 2γ.
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(b) Intruder crossing FOV.

Fig. 2: Intruder crossing the FOV of the Fresnel lens.

[0, 1]. In general, For (2F + 1) FOV segments indexed by

j = −F, · · · , F , we have ψj = ψ0 − jϕ for j �= 0. Thus, the

heat flux signature has the form

Φ(t) =
Φ0

R2(t)

F∑

i=−F

[
Π

(
t− tj

d+j /v

)
−Π

(
t− tj − d+j /v

d−j /v

)]

(6)

where tj is the jth segment entry time.

Figs. 3(a) and 3(b) show the heat flux signal for an intruder

moving toward and away from the sensor.

B. PIR Signal

The PIR sensor converts the impinging heat flux into an

electrical voltage. The responsivity, which is the ratio of the

output voltage to the input heat flux, completely characterizes

the sensor. The responsivity is actually a bandpass system [10]

given by

H(s) =
V (s)

Φ(s)
=

Ks

(1 + τts) (1 + τes)
(7)

where K is the sensor’s gain, τt is the thermal time constant

of the sensor, and τe is the electrical time constant. Therefore,

the output voltage signal is a filtered version of the heat flux

in (6), i.e.,

s(t) = h(t) ∗ Φ(t)

=
Φ0

R2(t)

F−1∑

i=0

h(t) ∗Π

(
t− ti
di/v

)
(8)
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Fig. 3: For an intruder with R0 = 50m, v = 5 kmph, and ψ = 50
0, Figs.

(a) and (b) show the heat flux, Figs (c) and (d) show the sensor signal for
K = 6.× 10

3, τT = 4.2 sec, and τE = 1 sec. Figs. (e) and (f) show the
periodograms of the sensor signal sampled with Fs = 10 Hz and a FFT
length of 2048. The first column is for the intruder moving toward the
sensor and the second column for it moving away.

where h(t) is the sensor’s time-domain responsivity and ∗ is

the convolution operator. An example is given in Figs. 3(c)

and 3(d).

The PIR sensor elements are usually followed by a JFET

voltage buffer, which superimposes the sensor signal on a

dc bias of the transistor. Also, the signal is corrupted by

noise, which is dependent on the sensor and the environment

background heat radiation. However, we assume that the

voltage signal at the input of the analog to digital converter,

x(t), is appropriately conditioned to remove the dc bias and

reduce the noise before being sampled at a sampling frequency

of Fs. Hence, the raw available sensor is

x[n] = s[n] + w[n]

for 0 ≤ n ≤ N−1 where w[n] is assumed to be additive white

Gaussian noise with zero mean and known variance, σ2.

III. INTRUSION DETECTION

For a given intruder’s class (e.g. humans) the signal’s energy

is dependent on the separation distance, since the intruder’s

energy and the sensor’s noise energy are fixed. Hence, we

resort to statistical hypothesis testing methods to provide

acceptable performance.The intrusion detection problem is

formulated as the following hypothesis testing problem, i.e.,

H0 : x[n] = w[n], 0 ≤ n ≤ N − 1

H1 : x[n] = s[n] + w[n], 0 ≤ n ≤ N − 1. (9)

One way to tackle this problem is to assume that s[n] is

completely unknown, and so the optimal detector in this case

would be the energy detector (ED), with the following test

statistics

TED(x) =
1

σ2

N−1∑

n=0

x2[n]. (10)

Unfortunately, the energy detector has the worse perfor-

mance among all detectors, since no prior information is used.

Interestingly, we can infer some valuable information from

the shape of the PIR signal. Indeed, s(t) in Fig 3(c) has a

striking resemblance to an exponentially decaying sinusoid

and to an exponentially increasing sinusoid in Fig. 3(d).

This observation is also consolidated by (8). Furthermore,

Figs 3(e) and 3(f) suggest having several dominant sinusoidal

components. Hence, we propose the following approximation

s[n] ≈
L−1∑

i=0

αnAi cos (2πfin+ φi)

=

L−1∑

i=0

aiα
n cos(2πfin) + biα

n sin(2πfin) (11)

where Ai, fi, φi are the ith amplitude, frequency, and phase

of the ith component respectively. Whereas α ≥ 0 is the

exponential factor and the parameter vector, ai = Ai cos(φi)
and bi = Ai sin(φi). The above can be compactly represented

in vector format as

s = G(θ)c (12)

c = (a0, · · · , aL−1, b0, · · · , bL−1)
T

(13)

G(θ) =
(
gc(α, f0) · · ·gc(α, fL−1)gs(α, f0) · · ·gs(α, fL−1)

)

(14)

where s = (s[0], · · · , s[N − 1])
T

, the signal parameters are

lumped in θ = (α, f0, · · · , fL−1)
T

, and the columns of the
matrix G(θ) are

gc(α, fi) =
(

1, α cos(2πfi), · · · , α
N−1 cos(2πfi(N − 1))

)T

(15)

gs(α, fi) =
(

0, α sin(2πfi), · · · , α
N−1 sin(2πfi(N − 1))

)T

.(16)

Consequently, the detection problem can be formulated as

H0 : x = w

H1 : x = G(θ)c+w (17)



where x = (x[0], x[1], · · · , x[N − 1])T and w =
(w[0], w[1], · · · , w[N − 1])

T
. The above is a composite hy-

pothesis testing, since θ needs to be estimated. An asymp-

totically optimal detector is the generalized likelihood ratio

test (GLRT) [11]. It can be shown that the GLRT reduces to

finding the best projection of x onto the space spanned by the

columns of G(θ), i.e.,

TGLRT(x) = max
θ

‖PG(θ)x‖2 (18)

where PG(θ) =
(
GT (θ)G(θ)

)−1
G(θ)T is the projection

matrix on the space spanned by the columns of G(θ).

Apparently, the GLRT is computationally demanding

mainly due to the non-zero correlation between the columns

of G(θ). Consequently, we propose a sub-optimal detector

in which we assume orthogonal columns in G(θ). In other

words,

L−1∑

i=0

L−1∑

j=0

gT
c (α, fi)gs(α, fj) =

{
N, i = j

0, i �= j
(19)

for all α and fi’s. Hence, the resulting detector in this case

has the form

T (x) = max
α,f0,··· ,fL−1

1

N

L−1∑

i=0

|xTgc(α, fi)|
2 + |xTgs(α, fi)|

2

(20)

which for a given α is a separable maximization problem, i.e.,

it has L peaks at the optimal frequencies (f̂i) values.

The detector in (20) can be further simplified by noting that

the correlations xTgc(α, fi) and xTgs(α, fi) can be decom-

posed into two steps. First, multiply the data samples, x[n],
by the window function αn for a given α and 0 ≤ n ≤ N −1.

Defined the windowed data xα[n] and then the detector in (20)

becomes

TEWP(x) = max
α,f0,··· ,fL−1

1

N

L−1∑

i=0

|Xα(fi)|
2 (21)

which we will call the exponentially windowed periodogram

(EWP) detector. Xα(fi) in (21) is the widowed periodogram

defined as

Xα(fi) =

N−1∑

n=0

xα[n]e
(−j2πfi). (22)

Thus, the EWP detector chooses the window the gives the

greatest L spectral peaks. It follows that the periodogram

detector (PD) is a special case of the EWP detector when

α is fixed at unity, giving

TP (x) = max
f0,··· ,fL−1

L−1∑

i=0

|X1(fi)|
2. (23)

Interestingly, the optimal window, α̂, found earlier gives

an indication about the movement direction. If α̂ < 1 then

the signal is decreasing with time implying that the intruder

is moving away from the sensor. Oppositely, if α̂ > 1 the

intruder is moving toward the sensor. Thus,

Decide intruder is moving away from sensor, α̂ > 1;

Decide intruder is moving toward from sensor, α̂ < 1.

IV. SIMULATION RESULTS

In this section we have simulated a human intruder passing

through the FOV of a PIR having F = 4 segments and γ =
7.5o. The intruder moves with a constant speed of v = 5 kmph

in a straight line making angle with the main PIR sensor axis

of ψ = 500 away from the sensor. The intruder’s temperature

is Ti = 37o with emissivity ε = 1, environment temperature

Ti = 20o, sensor area As = 20µm2 and intruder area Ai =
0.7m2. The PIR sensor has K = 6. × 103, τt = 4.2 sec, and

τe = 1 sec. The noise in the system is zero-mean AWGN with

standard deviation of 50µV.

We compare the detection performance via ROC graphs

showing the probability of detection (PD) against the proba-

bility of false alarm (PFA) of the ED in (10), the EWD in (21),

and the PD in (23) (both use L = 3 sinusoidal components)

in a Monte Carlo simulation with 105 iterations. Two sets of

simulations are run, one with the intruder moving away from

the sensor and the second when the intruder is moving toward

the sensor. Figs. 4-8 depict the ROC for different R0 values

when the intruder is moving away from the sensor, whereas

Figs. 9-13 show the ROC when the intruder is moving toward

the sensor. In general, for a relatively small distance, both the

EWP and the PD achieve a similar performance as shown in

Figs. 4,5,9, and 10, while still performing better than the ED.

On the other hand, the rest of the figures show the superior

performance of the EWD over large distances. Finally, the

direction of movement is estimated by the EWD algorithm, by

testing the α̂ as mentioned before. The EWD achieves almost

100% correct direction estimation for all different distances as

shown in Table I.

TABLE I: Direction Estimation

R0 10m 30m 50m 70m 90m

Intruder moving away 100% 100% 100% 100% 100%

Intruder moving toward 100% 100% 100% 100% 99.89%

V. CONCLUSIONS AND FUTURE WORK

We have investigated the problem of long range intrusion

detection using PIR sensors. An inverse square-law relation

is established for the incident heat flux and the separation

distance. Then, the PIR sensor output signal is modeled by

the sum of exponentially modulated sinusoids. Accordingly,

an exponentially windowed periodogram detector is proposed

showing very good detection performance for long distance

cases when compared to both the conventional periodogram

detector and the energy detector. In future work, we intend to

investigate the use of sensor arrays for intrusion detection.
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