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Abstract Understanding which function classes are easy and which are hard for a
given algorithm is a fundamental question for the analysis and design of bio-inspired
search heuristics.Anatural starting point is to consider the easiest andhardest functions
for an algorithm. For the (1+1) EA using standard bit mutation (SBM) it is well known
that OneMax is an easiest function with unique optimum while Trap is a hardest.
In this paper we extend the analysis of easiest function classes to the contiguous
somatic hypermutation (CHM) operator used in artificial immune systems. We define
a function MinBlocks and prove that it is an easiest function for the (1+1) EA using
CHM, presenting both a runtime and a fixed budget analysis. Since MinBlocks is,
up to a factor of 2, a hardest function for standard bit mutations, we consider the
effects of combining both operators into a hybrid algorithm. We rigorously prove that
by combining the advantages of k operators, several hybrid algorithmic schemes have
optimal asymptotic performance on the easiest functions for each individual operator.
In particular, the hybrid algorithms using CHM and SBM have optimal asymptotic
performance on bothOneMax andMinBlocks.We then investigate easiest functions
for hybrid schemes and show that an easiest function for a hybrid algorithm is not just
a trivial weighted combination of the respective easiest functions for each operator.
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1 Introduction

Over the past years many bio-inspired search heuristics such as evolutionary algo-
rithms, swarm intelligence algorithms, or artificial immune systems, have been
developed and successfully applied to various optimisation problems. These heuristics
have different strengths and weaknesses in coping with different fitness landscapes.
Determining which heuristic is the best choice for a given problem is a fundamental
and important question.

We use rigorous theoretical analyses to contribute to a better understanding of bio-
inspired algorithms. A natural step is to investigate which functions are easy andwhich
are hard for a given algorithm as this yields fundamental insights into their working
principles, particularly with respect to their strengths and weaknesses.

Knowing how well an algorithm performs on its easiest and hardest functions, with
regards to the expected optimisation time, provides general insights, as the expected
optimisation time of every function will be no less than that of an easiest function and
nomore than that of a hardest function.With respect to applications, such researchmay
also provide guidelines for the design of benchmarks for experimental studies [10].

For a simple elitist (1+1) evolutionary algorithm (EA) using only standard bit
mutations (SBM) Doerr, Johannsen, and Winzen showed that OneMax, a function
simply counting the number of ones in a bit string, is the easiest problem among all
functions with a single global optimum [8]. This statement generalises to the class of
all evolutionary algorithms that only use standard bit mutation for variation [33] as
well as higher mutation rates and stochastic dominance [37]. On the other hand, He
et al. [10] showed that the highly deceptive function Trap is the hardest function for
the (1+1) EA.

In this work we consider typical mutation operators in artificial immune systems
where no such results are available.Mutation operators in artificial immune systems [6]
usually come with much larger mutation rates than mutation operators in evolution-
ary algorithms. One such example is the somatic contiguous hypermutation (CHM)
operator from the B-cell algorithm (BCA) [23], where large contiguous blocks of a
bit string are flipped simultaneously. Previous theoretical work on comparing SBM
and CHM has contributed to the understanding of their benefits and drawbacks in the
context of its runtime on different problems [14,17,18], the expected solution quality
after a pre-defined number of steps [21], and in dynamic environments [22]. It is easy
to see that hardest functions for CHM with respect to expected optimisation times are
those where the algorithm gets trapped with positive probability such that the opti-
misation time is not finite, e. g., if there exists a second best search point for which
all direct mutations to the optimum involve non-contiguous bits [17]. However, it is
an open problem and the next step forward to determine what kind of functions are
easiest for this type of mutation operator.

The BCA uses standard bit mutations alongside CHM and thus can be considered
as a hybrid algorithm combining two mutation operators. More specifically, it uses
a population of search points and creates λ clones for each of them. It then applies
standard bit mutation to a randomly selected clone for each parent search point and
subsequently applies CHM to all clones. The interplay between these two operators
has been investigated for the vertex cover problem [14].
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Hybridisations such as hyper-heuristics [30] and memetic algorithms [27] have
become very popular over recent years. But despite their practical success their theoret-
ical analysis is still in its infancy, noteworthy examples being thework in [1,24,32,34].
However, nothing is known about easiest or hardest functions for such algorithms.

The goals of this paper are twofold. We first want to understand what functions are
easy for CHM and investigate the performance of CHM and SBM on these functions.
Afterwards we consider hybridisations of SBM and CHM and easiest functions for
such algorithms. We first use the method by He et al. [10], explained in Sect. 3, to
derive an easiest function for CHM which we callMinBlocks. In Sect. 4 we present
an analysis of the optimisation time as well as a fixed budget analysis for CHM on
MinBlocks. We then show that SBM alone is not able to optimise the constructed
function and that a hybridisation of SBM and CHM can have significant advantages
(Sect. 5.1). Finally, we investigate properties of easiest functions for such hybrid
algorithms (Sect. 5.3).

This journal paper extends a preliminary conference paper [4] in several ways.
Firstly, in Sect. 3 it is discussed how the framework for determining easiest and hardest
functions is not restricted to (1+1)-style algorithms, but is general enough to apply
for a much larger class of algorithms including (1+λ) EAs [13] and the recently
popular (1+(λ, λ)) GA using mutation and crossover [7]. Secondly, the analysis of the
advantages of hybridisation in Sect. 5.1 has been considerably extended. Rather than
just giving an example of a hybrid algorithm using one out of two operators at each
step with constant probability, the analysis has been generalised to allow different
hybridisation schemes and an arbitrary number k of operators. Finally, in Sect. 5.2 an
experimental analysis is presented to shed light on the performance of the algorithms
for fitness functions that depend both on the number of ones (i.e., OneMax) and the
number of blocks (MinBlocks) in the bit string.

2 Preliminaries

We are interested in all strictly elitist (1+1) algorithms with time independent variation
operators which we formally define in Algorithm 1 for maximisation problems. We
refer to any algorithm belonging to this scheme as a (1+1) A. This generalised algo-
rithmic scheme keeps a single solution x as a population and creates a single offspring
at every generation. The new offspring is accepted if it is strictly fitter than the parent.
The algorithm outputs the best found solution once a termination condition is satisfied.
Since in this paper we are interested in the expected number of steps required by the
algorithm to find an optimal solution, we will assume that the algorithm runs forever
and we will call runtime the number of fitness function evaluations performed before
the first point in time when the optimum is found.

Different algorithms are obtained from the (1+1) A scheme by using different
variation operators in line 1 of Algorithm 1. Apart from the explicit requirement of
time independence, the variation operators are implicitly restricted to the domain of
unary variation operators since the population size is one. In this paperwewill consider
two different mutation operators that accept a bit string x ∈ {0, 1}n as input. The first is
the most common unary variation operator, called standard bit mutation (SBM). This
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Algorithm 1 (1+1) A
1: input: fitness function f ;
2: generate an initial solution x uniformly at random;
3: while termination condition is not satisfied do
4: y ← is mutated from parent x ;
5: if f (y) > f (x) then
6: let x ← y;
7: end if
8: end while
9: output: x .

variation operator flips each bit independently with probability 1/n. SBM is formally
defined in Algorithm 2.

Algorithm 2 Standard Bit Mutation (SBM)
for i := 0 to n − 1 do
with probability 1/n set x [i] := 1 − x [i];

end for

Wewill refer to the (1+1) A that uses SBM as the (1+1) EA, themost widely studied
evolutionary algorithm.

The other variation operator of interest is the contiguous hypermutation operator
(CHM), which mutates a bit string by picking a bit position and flipping a random
number of bits that follow it (in a wrapping around fashion) each with probability r .
As done in previous work (see, e. g., [17]), we only consider the extreme case here
and set r = 1. CHM is formally defined in Algorithm 3.

Algorithm 3 Somatic Contiguous Hypermutation (CHM)
select p ∈ {0, 1, ..., n − 1} uniformly at random;
select l ∈ {0, 1, ..., n} uniformly at random;
for i := 0 to l − 1 do
with probability r set x [(p + i) mod n] := 1 − x [(p + i) mod n];

end for

We will refer to the (1+1) A that uses a CHM operator as (1+1) CHM.
Note that Algorithm 1 uses strict selection, i. e. only strict improvements are

accepted. For most of our theoretical results we also consider a variant of Algorithm 1
with non-strict selection, where the acceptance condition “ f (y) > f (x)” is replaced
by “ f (y) ≥ f (x)”.

3 Easiest and Hardest Functions

Our work is based on previous work by He et al. [10]. We consider the problem of
maximising a class of fitness functions with the same optima. An instance of the
problem is to maximise a fitness function f :
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argmax
x∈S

f (x), (1)

where S is a finite set.
Let T (A, f, x) denote the expected number of function evaluations for the (1+1) A

to find an optimal solution for the first timewhen starting at x (expected hitting time). In
the following we only consider algorithms and functions that lead to a finite expected
hitting time.

Definition 1 [10, Definition 1] Given a (1+1) A for maximising a class of fitness
functions with the same optima (denoted by F), a function f in the class is said to be
an easiest function for the (1+1) A if T (A, f, x) ≤ T (A, g, x) for every g ∈ F and
every x ∈ S. A function f in the class is said to be a hardest function for the (1+1) A
if T (A, f, x) ≥ T (A, g, x) for every g ∈ F and every x ∈ S.

The above definition of easiest and hardest functions is based on a point-by-point
comparison of the runtime of the EA on two fitness functions. The criteria stated in
the following Lemmas 4 and 5 for determining whether a fitness function is an easiest
or hardest function for a (1+1) A were originally given in [10]. The main proof idea
in [10] is to apply additive drift theorems [11], taking the expected hitting time as drift
function (distance to the target state). We state these drift theorems as Theorem 2,
referring to the presentation of Lehre and Witt [25], who provided a self-contained
proof.

Theorem 2 (Additive Drift [11,25]) Let (Xt )t≥0 be a stochastic process over some
bounded state space S ⊆ R

+
0 , and let T be the first hitting time of state 0. Assume that

E (T | X0) < ∞. Then:

(i) If E (Xt − Xt+1 | X0, . . . , Xt ; Xt > 0) ≥ δu then E (T | X0) ≤ X0/δu.
(ii) If E (Xt − Xt+1 | X0, . . . , Xt ) ≤ δ� then E (T | X0) ≥ X0/δ�.

Before presenting those criteria, we state and prove the following helper lemma. It
is stated as Lemma 3 in [10] without proof.

Lemma 3 If the expected time T (A, f, x) is used as the drift function, then the
expected drift1 is Δ f (x) = 1 for all non-optimal search points x.

Proof Let P(x, y) denote the probability that the search point y is adopted as the
current search point at the end of an iteration of the (1+1) A with current search
point x . Since

∑

y
P(x, y) = 1,

T (A, f, x) =
∑

y

P(x, y)T (A, f, x).

1 In drift analysis, a drift function is a non-negative function d(x) such that d(x) = 0 for an optimal point
and d(x) ≥ 0 for a non-optimal point. The expected drift at point x is E (d(x) − d(y)), where y is the next
iteration’s search point. The expected drift is denoted by Δ f (x) when maximising f (x), or Δ(x) in short.
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For all non-optimal search points x , the (1+1) A will spend one iteration and then
continue from the search point reached during this transition, hence

T (A, f, x) = 1 +
∑

y

P(x, y)T (A, f, y).

Together, we have

∑

y

P(x, y)T (A, f, x) −
∑

y

P(x, y)T (A, f, y) = 1

⇔
∑

y

P(x, y)
(
T (A, f, x) − T (A, f, y)

) = 1

⇔
∑

y

P(x, y)
(
d(x) − d(y)

) = 1.

That is Δ f (x) = 1 for all non-optimal search points x . 	

First, we have the following criterion of determining whether a fitness function is an

easiest function for a (1+1) A. The two lemmasbelowextendTheorem1andTheorem2
in [10], respectively, as they are applicable to both strict elitist selection (that is, the
parent x is replaced by the child y if f (y) > f (x)) and non-strict elitist selection (that
is, the parent x is replaced by the child y if f (y) ≥ f (x)). The framework in [10] was
restricted to strict selection.

Lemma 4 Given a (1+1) Awith elitist selection (either strict or non-strict) and a class
of fitness functions with the same optima, if the following monotonically decreasing
condition holds,

– for any two points x and y, if T (A, f, x) < T (A, f, y), then f (x) > f (y),

then f is an easiest function in this class.

Proof Let g(x) be any fitness function with the same optima as f (x). Choose the
runtime T (A, f, x) as the drift function: d(x) = T (A, f, x).

When maximising f (x), according to Lemma 3, for any non-optimal point x the
drift Δ f (x) = 1. In the following we prove that the drift Δg(x) ≤ Δ f (x) = 1.

Let Pf (x, y) and Pg(x, y) denote the probability of mutating x into y (which is
independent of the function f or g) and then y being accepted (which is dependent on
f or g) when optimising f and g, respectively. We separately consider the negative
drift Δ−

f (x) = ∑
y:d(x)<d(y) Pf (x, y)(d(x) − d(y)) and the positive drift Δ+

f (x) =
∑

y:d(x)>d(y) Pf (x, y)(d(x) − d(y)) and note that Δ f (x) = Δ+
f (x) + Δ−

f (x) as
transitions with d(x) = d(y) do not contribute to Δ f . The same notation is used for
Δg .

Negative drift: let x and y be two points such that d(x) < d(y). According to the
monotonically decreasing condition, f (x) > f (y). For f (x), since f (x) > f (y),
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y is never accepted and then Δ−
f (x) = 0. But for g(x), the negative drift is not

positive. Thus we have

Δ−
g (x) ≤ 0 = Δ−

f (x). (2)

Positive drift: let x and y be twopoints such thatd(x) > d(y). If y is an optimum, then
naturally f (x) < f (y). If y is not an optimum, then according to themonotonically
decreasing condition, f (x) < f (y).

Let P [m](x, y) denote the probability of mutating x into y (which is independent
of f or g).

For f (x), since f (x) < f (y), y is always accepted and then Pf (x, y) =
P [m](x, y). But for g(x), since g(x) might be larger, smaller than or equal to
g(y), Pg(x, y) ≤ P [m](x, y). Hence

Δ+
g (x) =

∑

y:d(x)>d(y)

Pg(x, y)(d(x) − d(y))

≤
∑

y:d(x)>d(y)

Pf (x, y)(d(x) − d(y)) = Δ+
f (x).

Considering both negative drift and positive drift, we get Δg(x) ≤ Δ f (x) = 1.
Since Δg(x) ≤ 1 for all x , according to Theorem 2, the expected runtime is
T (A, g, x) ≥ d(x) = T (A, f, x) and the theorem statement is derived. 	


In a similar way, we have the following criterion of determining whether a fitness
function is a hardest function for a (1+1) A, assuming that all expected optimisa-
tion times are finite2. The monotonically decreasing condition in the above lemma is
replaced by the monotonically increasing condition.

Lemma 5 Given a (1+1) Awith elitist selection (either strict or non-strict) and a class
of fitness functions with the same optima, if the following monotonically increasing
condition holds,

– for any two non-optimal points x and y, if T (A, f, x) < T (A, f, y), then f (x) <

f (y),

then f is a hardest function in this class.

Proof Let g(x) be any fitness function with the same optima as f (x). Choose the
runtime T (A, f, x) as the drift function: d(x) = T (A, f, x).

For f (x), according to Lemma 3, for any non-optimal point x the drift Δ f (x) = 1.
For g(x), we prove that the drift Δg(x) ≥ Δ f (x) = 1, using the notation for positive
and negative drift from the proof of Lemma 4.

2 Hardest functions are formally only defined for functions and algorithmswith finite expected optimisation
times. However, we regard functions leading to infinite expected times as being harder than those with finite
expected times.
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Positive drift: let x and y be two points such that d(x) > d(y). Let P [m](x, y) denote
the probability of mutating x into y (which is independent of f or g). For f (x), if
y is an optimum point, then the probability that x is mutated into y and is accepted,
Pf (x, y), is equal to P [m](x, y). Similarly for g(x), Pg(x, y) = P [m](x, y) if y is
an optimum point. If y is not an optimum point, according to the monotonically
increasing condition, f (x) > f (y). For f (x), since f (x) > f (y), the probability
Pf (x, y) = 0. But for g(x), since g(x) might be larger, smaller than or equal to
g(y), Pg(x, y) ≥ 0. Thus we have Pg(x, y) ≥ Pf (x, y) for all (x, y) such that
d(x) > d(y). Therefore, the positive drifts for g and f satisfy

Δ+
g (x) =

∑

y:d(x)>d(y)

Pg(x, y)(d(x) − d(y))

≥
∑

y:d(x)>d(y)

Pf (x, y)(d(x) − d(y)) = Δ+
f (x).

Negative drift: let x and y be two points such that d(x) < d(y). Then according to
the monotonically increasing condition, f (x) < f (y).

For f (x), since f (x) < f (y), y is always accepted and then Pf (x, y) =
P [m](x, y). But for g(x), since g(x) might be larger, smaller than or equal to
g(y), Pg(x, y) ≤ P [m](x, y). Hence

Δ−
g (x) =

∑

y:d(x)<d(y)

Pg(x, y)(d(x) − d(y))

≥
∑

y:d(x)<d(y)

Pf (x, y)(d(x) − d(y)) = Δ−
f (x).

Considering both negative drift and positive drift, we get Δg(x) ≥ Δ f (x) = 1.
Since Δg(x) ≥ 1 for all x , according to Theorem 2, the expected runtime is
T (A, g, x) ≤ d(x) = T (A, f, x) and the theorem statement is derived. 	


The framework due to He et al. [10] is restricted to search heuristics that base their
search on a single point in the search space and it is not obvious how to expand this
to population-based algorithms. However, it is worth mentioning that the framework
is not restricted to (1+1)-style algorithms. It can also be applied to algorithms that
employ elitist selection but have a more complicated way of deciding on the next
search point to use as next parameter. Such algorithms can be described as (1+1)-style
algorithms with a muchmore complex mutation operator or, perhaps more adequately,
by exactly the same kind of Markov chain as that of a (1+1)-style algorithm, i. e., by
a Markov chain of the same size 2n × 2n . Algorithms where this is true include the
(1+λ) EA (see, e.g., [13]) that creates λ offspring bymeans of mutation, independently
and identically distributed, and a best one replaces the current population if its fitness
is not worse. In this sense the framework can deal with population-based heuristics
(given that the population is restricted to a larger offspring population, not a larger
parent population). It can also be applied beyondmutation-based algorithms to genetic
algorithms with crossover if the restriction of a population of size only 1 is met. An
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example for such an algorithm is the so-called (1+(λ, λ)) GA [7], the first realistic
evolutionary algorithm to provably beat theΩ (n log n) lower bound onOneMax. We
see that the framework ismuchmore general and useful than itmay appear at first sight.

We have already mentioned that we consider functions where an algorithm does
not have finite expected optimisation time to be harder than those with finite expected
optimisation times. It is well known that CHM (Algorithm 3) can be trapped in local
optima when the parameter r is set to r = 1 [2] (see [17, p. 521] for a concrete
example demonstrating this effect). Setting r = 1, however, reveals properties of the
hypermutation operator in the clearest way and this is the reason we stick to this
choice (compare [17]). This implies that analysing hardest functions for (1+1) CHM
does not make much sense because it is easy to find functions where there is a positive
probability that the algorithm gets stuck in a local optimum so that, consequently,
the expected optimisation time is not finite. One could consider different measures
of hardness for this situation, e. g., considering the conditional expected optimisation
time given that a global optimum is found or, alternatively, considering the probability
not to find a global optimum. This, however, is beyond the scope of this article.

4 Contiguous Hypermutations on an Easiest Function with a Unique
Global Optimum

We are now ready to derive an easiest function with a unique global optimum for
contiguous hypermutations and analyse the performance of the (1+1) CHM on this
function.

4.1 Notation and Definition

We use x = x[0]x[1] · · · x[n − 1] ∈ {0, 1}n as notation for bit strings of length n. For
a, b ∈ {0, 1, . . . , n − 1} we denote by x[a . . . b] the concatenation of x[a], x[(a +
1) mod n], x[(a + 2) mod n], …, x[(a + i) mod n] where i is the smallest number
from {0, 1, . . . , n − 1} with (a + i) mod n = b. We denote by |x[a . . . b]| the number
of bits in x[a . . . b], i. e., its length. We say that x ∈ {0, 1}n contains a 1-block from
a to b if x[a . . . b] = 1|x[a...b]| and x[(a − 1) mod n] = x[(b + 1) mod n] = 0 hold.
Analogouslywemay speakof a 0-block froma tob.Note that bit strings need to contain
at least one 0-bit and at least one 1-bit to contain a 0-block or a 1-block. It is easy to see
that each x ∈ {0, 1}n \ {0n, 1n} contains an equal number of 0-blocks and 1-blocks.

Definition 6 Wedefine an easiest functionwith unique global optimum for contiguous
hypermutations by defining a partition L0 ∪̇ L1 ∪̇ L2 ∪̇ · · · ∪̇ Ll = {0, 1}n and
assigning fitness values accordingly. We call the function MinBlocks and define
MinBlocks(x) = l− i for x ∈ Li . We define l = �n/2
+1 and level sets L0 = {1n},
L1 = {0n} and Li = {x ∈ {0, 1}n | x contains i − 1 different 1-blocks} for each
i ∈ {2, 3, . . . , l}.

The function has a unique global optimum 1n with function value l = �n/2
 + 1.
The second best bit string is 0n with function value l − 1. All other bit strings contain
an equal number of 0-blocks and 1-blocks. A bit string with j 1-blocks is in level set
L j+1 and thus, its function value equals l − ( j + 1) = l − j − 1.
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We defer the proof that MinBlocks is indeed an easiest function for (1+1) CHM
to the next section (Theorem 8) in order to make use of arguments from the analysis
of the expected optimisation time performed there.

4.2 Expected Optimisation Time

We analyse the expected optimisation time of the (1+1) CHM on MinBlocks, i. e.,
the expected number of function evaluations executed until the global optimum is
reached [12]. To facilitate our analysis, we start with an analysis of the expected
optimisation time starting from a bit string from a particular level set which will in
turn allow us to prove thatMinBlocks is an easiest function for (1+1) CHM.We will
then continue with the overall upper and lower bounds for the optimisation time.

Lemma 7 We consider (1+1) CHMwith strict or non-strict selection onMinBlocks
as defined in Definition 6. For i ∈ {0, 1, . . . , l} (where l + 1 is the number of sets in
the partition from Definition 6) let Ti denote the random number of steps needed to
reach the unique global optimum 1n when started in a bit string from Li . The expected
numbers of steps are E (T0) = 0, E (T1) = n + 1, E (T2) = (n + 1)2/2 and

E (Ti ) = n(n + 1)

(2i − 2)(2i − 3)
+ E (Ti−1)

for all i ∈ {3, 4, . . . , l}.
Proof The statement about E (T0) is trivial. For E (T1) it suffices to observe that any
hypermutation which chooses as mutation length n leads from 0n to the unique global
optimum 1n . Such a mutation has probability 1/(n+1)which implies E (T1) = n+1.
For E (T2) we observe that for each x ∈ L2 there are two mutations which lead to
L0∪L1, one leading to L0 and the other leading to L1. Since L0 and L1 are reachedwith
equal probability 1/2we haveE (T2) = n(n+1)/2+E (T1)/2 = (n+1)2/2. For E (Ti )
with i > 2 we observe that only mutations that reduce the number of 1-blocks can lead
to some L j with j < i . It is easy to see that, the number of 1-blocks can only be reduced
by 1 in one contiguous hypermutation. In order to achieve that a mutation must start
at the first bit of a block (either a 0-block or a 1-block) and end at the last bit of a block
(either a 0-block or a 1-block) but this block cannot be the one just before the block
containing the first flipped bit (otherwise the length of the mutation is n, the bit string
is inverted and the number of 1-blocks remains unchanged). Thus, if there are j blocks
in the bit string, the number of such mutations equals j ( j −1). For x ∈ Li the number
of 1-blocks equals i −1 and therefore the number of blocks equals 2i −2 so that there
are (2i − 2)(2i − 3) such mutations. Thus, the expected time to leave Li equals n(n+
1)/((2i − 2)(2i − 3)) and E (Ti ) = n(n+ 1)/((2i − 2)(2i − 3))+E (Ti−1) follows. 	


The expected runtimes provided inLemma7allowus to verifywhetherMinBlocks
satisfies the criteria set by Lemma 4. The following theorem establishesMinBlocks
as an easiest function for (1+1) CHM.

Theorem 8 MinBlocks is an easiest function for the (1+1) CHM with strict or non-
strict selection among all functions with a unique optimum.
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Proof The theorem follows from Lemma 7, the definition of MinBlocks, and
Lemma 4. According to Definition 6, for all i ∈ {1, 2, . . . , �n/2
} the fitness value
of solutions in subset Li is strictly less than the fitness value of solutions in Li−1.
Therefore, a solution x has a better MinBlocks value than a solution y, if and
only if x and y belong to two distinct subsets Li and L j respectively such that
i < j . Note that in Lemma 7 the expected runtime of the (1+1) CHM initialised
with a solution from Li , E (Ti ), satisfies E (Ti ) > E (Ti−1) for all i and thus i < j
implies E (Ti ) < E

(
Tj

)
. Therefore, MinBlocks(x) > MinBlocks(y) if and only

if the expected runtimes of (1+1) CHM starting from solutions x and y satisfy
T (A, f, x) = E (Ti ) < E

(
Tj

) = T (A, f, y). According to Lemma 4, the above
two way implication makes MinBlocks an easiest function for the (1+1) CHM.

We continue our analysis of the expected optimisation time. Note that the following
bound asymptotically matches the lower bound of Ω

(
n2

)
for contiguous hypermuta-

tions and functions with a unique global optimum proven by Jansen and Zarges [17].

Theorem 9 Let T denote the expected optimisation time of the (1+1) CHMwith strict
or non-strict selection on MinBlocks. E (T ) = ln(2)n2 ± O (n) holds.

Proof Consider x ∈ {0, 1}n selected uniformly at random. For each i∈{0, 1, . . . , n−1}
we have that a block ends at x[i] if x[i] �= x[(i+1) mod n] holds. Thus, x[i] is the end
of a block with probability 1/2 and we see that the expected number of blocks equals
n/2. Let I denote the number of blocks. An application of Chernoff bounds yields
that for any constant ε with 0 < ε < 1 we have Pr (I ≥ (1 − ε)n/2) = 1 − e−Ω(n).

We know that E (T | I = 2(i − 1)) = E (Ti ) holds and have

E (Ti ) = n(n + 1)

(2i − 2)(2i − 3)
+ E (Ti−1)

= n(n + 1)

(2i − 2)(2i − 3)
+ n(n + 1)

(2(i − 1) − 2)(2(i − 1) − 3)
+ E (Ti−2)

= · · · = E (T2) + n(n + 1)
i−3∑

j=0

[
1

(2(i − j) − 2)(2(i − j) − 3)

]

= E (T2) + n(n + 1)
i−3∑

j=0

[
1

2 j + 3
+ 1

2 j + 4
− 1

j + 2

]

= E (T2) + n(n + 1)

⎛

⎝

⎛

⎝
2i−2∑

j=3

1

j

⎞

⎠ −
⎛

⎝
i−1∑

j=2

1

j

⎞

⎠

⎞

⎠

= E (T2) + n(n + 1)

(

H2i−2 − Hi−1 − 1

2

)

where Hj denotes the j th harmonic number. Using Hj = ln( j)+γ +1/(2 j)−o (1/j)
(γ = 0.57721 . . . the Euler-Mascheroni constant) we obtain
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E (T | I = 2(i − 1)) = (n + 1)2

2
+ n(n + 1)

(

ln(2) − 1

2

)

− O
(
n2/ i

)

= ln(2)n2 + O (n) − O
(
n2/ i

)
.

For the lower bound on E (T ) we use i = (n/8) + 1 (and have Pr (I ≥ n/4) =
1 − e−Ω(n), of course) and obtain

E (T ) ≥ Pr (I ≥ n/4) · E (T | I ≥ n/4)

=
(
1 − e−Ω(n)

)
·
(
ln(2)n2 + O (n) − O (n)

)
= ln(2)n2 ± O (n)

as claimed.
For the upper bound on E (T ) we have

E (T ) ≤ E
(
Tn/2

) = ln(2)n2 + O (n) − O (n) = ln(2)n2 ± O (n)

as claimed. 	


4.3 Fixed Budget Analysis

It has been pointed out that the notion of optimisation time does not always capture the
nature of how randomised search heuristics are applied in practice. As a result, fixed
budget analysis has been introduced as an alternative theoretical perspective [19,20].
Let xt denote the current population after t rounds of contiguous hypermutation and
selection. In fixed budget analysis we want to analyse E ( f (xt )) for all t ≤ E (T )

where E (T ) is the expected optimisation time. We do this here for MinBlocks to
give a more complete picture about the performance of the (1+1) CHM. Note that a
comparison of the (1+1) EA and the (1+1) CHM under the fixed budget perspective
has previously been performed for some example functions [21].

We begin with a statement about the expected function value of a uniform random
solution, reflecting the way (1+1) A algorithms are initialised, and prove that it is
roughly (n − 2)/4 ± 1/2.

Theorem 10 Let x0 ∈ {0, 1}n be selected uniformly at random and f := MinBlocks
from Definition 6. For the initial function value E ( f (x0)) = �n/2
 − (n/4) + 2−n

holds.

Proof We know from the analysis of the expected optimisation time in Sect. 4.2 that
the expected number of blocks in x0 equals n/2. Let z(x0) denote the number of 0-
blocks in x0 and remember that the number of 0-blocks is half the number of blocks.
This implies E (z(x0)) = n/4.

Let l = �n/2
 + 1 (the value defined in Definition 6). Remember that z(1n) =
z(10) = 0 according to our definition of a 0-block (see the definition of the notation
at the beginning of Sect. 4.1). For x0 /∈ {0n, 1n} we have f (x0) = l − 1 − z(x).
Furthermore, we have f (1n) = l and f (0n) = l − 1 = l − 1− z(0n). Thus, f (x0) =
l − 1 − z(x) holds always except for the case x0 = 1n .
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We have

E ( f (x0)) =
∑

x∈{0,1}n
f (x)

2n
=

∑

x∈{0,1}n\{1n}

[
l − 1 − z(x)

2n

]

+ l

2n

=
∑

x∈{0,1}n\{1n}

[
l − 1 − z(x)

2n

]

+ l

2n
+ l − 1 − z(1n)

2n
− l − 1 − z(1n)

2n

=
∑

x∈{0,1}n

[
l − 1 − z(x)

2n

]

+ l

2n
− l − 1 − z(1n)

2n

=
∑

x∈{0,1}n

[
l − 1 − z(x)

2n

]

+ 1

2n
= E (l − 1 − z(x0)) + 1

2n

= l − 1 − E (z(x0)) + 2−n = l − 1 − (n/4) + 2−n

and obtain the claimed bound by remembering that l = �n/2
 + 1 holds. 	

Wenowgive upper and lower bounds on the expected functionvalue after t iterations

of the (1+1) CHM.

Theorem 11 Let xt ∈ {0, 1}n denote the current search point after random initiali-
sation and t rounds of contiguous hypermutation and strict or non-strict selection on
f := MinBlocks. The following bounds hold for the expected function value after t
steps E ( f (xt )).

lower bound E ( f (x0)) +
(⌊n

2

⌋
+ 1 − E ( f (x0))

) (

1 −
(

1 − 2

n(n + 1)

)t)

≤
⌊n

2

⌋
+ 1 −

(⌊n

2

⌋
+ 1 − E ( f (x0))

)
·
(

1 − 3

n(n + 1)

)t

≤ E ( f (xt ))

upper bound E ( f (xt ))

≤
n/2∑

z=1

[(
n/2

z

)

2−n/2 ·
((n

2
− z

)
+ 1 −

(

1 − 1

n + 1

)t

+
z+1∑

d=2

[

1 −
(

1 − (2d − 2)(2d − 3)

n(n + 1)

)t])]

+ n · 2−n+1

Proof The function value can increase at most �n/2
 + 1− z times if the initial func-
tion value is z since the maximal function value is �n/2
 + 1. For an upper bound
we consider the actual probabilities for increasing the function value which equal
(2d −2)(2d −3)/(n(n+1)) if the current number of 0-blocks is d and it is 1/(n + 1)
for 0n . For each of these events we add the expected contribution after t steps. This
contribution equals the probability to have at least one such increasing step in t steps
which equals 1 − (1 − p)t if p denotes the probability for an increasing step. Adding
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these yields an upper bound since it pretends that for each level t steps are available to
create an increasing step whereas in reality decreasing the number of 0-blocks from d
to d−1 is only possible after it has been decreased to d from d+1 before. Since initial-
isation in 0n or 1n has probability 2−n+1 the contribution of these cases is O (n/2n).
Let Z denote the random number of 0-blocks in the initial bit string. We obtain

E ( f (xt )) ≤
n/2∑

z=1

[

Pr (Z = z) ·
(

(l − (z + 1))

+ 1 −
(

1 − 1

n + 1

)t

+
z+1∑

d=2

[

1 −
(

1 − (2d − 2)(2d − 3)

n(n + 1)

)t] )]

+ l · 2−n+1

using the law of total probability.We obtain an upper bound by noting that Z is binomi-
ally distributed with parameters n/2 and 1/2, and by remembering that l = �n/2
+1
holds.

For the smaller of the two lower bounds we replace the actual probabilities by the
smallest probability for an increase in function value which equals 2/(n(n + 1)). We
can improve on this weak lower bound slightly by using a technique called multi-
plicative fixed budget drift as recently introduced by Lengler and Spooner [26]. For
a lower bound we need a lower bound on the expected change in function value
in one generation given the current function value. If the current bit string contains
i bits, we know that the expected change equals (2i − 2)(3i − 2)/(n(n + 1)) >

3i2/(n(n + 1)) > 3i/(n(n + 1)) where the last inequality is made because Theo-
rem 1 in [26] requires a statement about this drift that is linear. Using this we obtain
�n/2
 + 1 − (�n/2
 + 1 − E ( f (x0))) · (1 − 3/(n(n + 1)))t as lower bound on the
expected function value after t steps.

To obtain actual lower and upper bounds we use the lower and upper bounds for the
initial expected function value from Theorem 10. While the bounds from Theorem 11
are not simple and in particular the upper bound is not even a closed form, we can
easily evaluate them numerically for reasonable values of n. In Fig. 1 we display
them for n = 100 together with the maximal function value 51 and empirical results
averaged over 100 runs. We see that while the upper bound yields reasonable results
both lower bounds are rather weak.

5 Hybridising Operators

A popular approach in areas such as memetic algorithms [27] or hyper-heuristics [30]
is to combine several operators in one algorithm. There are many ways of hybridising
algorithms – here, we consider four different schemes of hybridisation that combine k
operators.Given several (1+1) As, A1, · · · , Ak , the different hybridisations considered
are:

(1+1) HA: executing one operator chosen probabilistically according to a given prob-
ability distribution p = (p1, . . . , pk) (Algorithm 4),
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Fig. 1 Average function values for the (1+1) CHM on an easiest function for the (1+1) CHM with unique
global optimum for n = 100 after a given number of function evaluations, averaged over 100 runs, together
with the theoretical bounds from Theorem 11. The empirical data was produced with a (1+1) CHM with
strict selection

(1+1) HA-chained: executing a chain of operators, where operators are applied prob-
abilistically according to a given probability vector p = (p1, . . . , pk) (Algorithm5,
note that p does not have to be a probability distribution),

(1+k) HA: executing all operators in parallel and picking the best among the resulting
solutions (Algorithm 6), and

k × (1+1) HA: executing all operators sequentially, resulting in a chained sequence
of operations, with selection after each operator (Algorithm 7).

The (1+1) HA-chained is probably themost commonly usedmethod in hybrid algo-
rithms. For instance, most Genetic Algorithms fall into this category since they use a
probability pc that crossover is applied before mutation. The (1+1) HA is commonly
used in memetic algorithms and hyper-heuristics when at each step a variation opera-
tor is chosen with some probability; this strategy was called “SimpleRandom” in [5].
Theoretical work on simple hyper-heuristics that fall into this framework have pre-
viously been accomplished [24]. We also introduce two other hybridisation schemes
for which the results presented in this section also hold. These are simplified ver-
sions of schemes that are applied in widely used hybrid algorithms. The (1+k) HA
algorithm creates offspring by using different operators. This is a common strategy
in multi-meme memetic algorithms, where multiple memes refer to multiple local
improvement heuristics. The idea was called “Greedy approach” in [5]. The same
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idea also appears in simple island models with heterogeneous islands, that is, each
island consists of one individual and uses a different variation operator. A real-world
example of where such a strategy is used (albeit with populations and added complex-
ity) is theWegener system, a popular and effective algorithm in search-based software
testing, where different islands use standard bit mutations with different mutation
rates [36]. The k×(1+1) HA is interesting as it has some resemblance to the recently
introduced (1+(λ,λ)) GA, since both use selection between the application of the oper-
ators. However, the (1+(λ,λ)) GAdoes not fall exactlywithin the k×(1+1)HA scheme.
In the former, if the final solution is worse than the initial one in the sequence, then the
initial solution is accepted for the next generation. On the other hand, the k×(1+1) HA
always accepts the last improving solution in the sequence.

Note that (1+1)HA-chained and k×(1+1)HAdiffer in the use of selection: the latter
applies selection after each operator, whereas the former only applies selection at the
end of the generation. One generation of (1+k) HAmay be regarded as a derandomised
version of (1+1) HA(1/k, . . . , 1/k) run for k generations. In the former all operators
are executed once, whereas in the latter algorithm all operators are executed once in
expectation. The latter also admits non-uniform probabilities.

Algorithm 4 Hybrid algorithm (1+1) HA( p) (probabilistic choice of operator)
1: input: fitness function f ;
2: generate a solution x ;
3: while the maximum value of f is not found do
4: choose Ai with probability pi ;
5: apply one iteration (mutation and selection) of Ai to generate y;
6: update x with y if f (y) > f (x);
7: end while
8: output: the maximal value of f .

Algorithm 5 Hybrid algorithm (1+1) HA-chained( p) (probabilistic chain)
1: input: fitness function f ;
2: generate a solution x ;
3: while the maximum value of f is not found do
4: let y := x ;
5: for i = 1, . . . , k do
6: with probability pi update y by applying one iteration of Ai without selection;
7: end for
8: update x with y if f (y) > f (x);
9: end while
10: output: the maximal value of f .

Algorithm 6 Hybrid algorithm (1+k) HA (parallel operations)
1: input: fitness function f ;
2: generate a solution x ;
3: while the maximum value of f is not found do
4: for i = 1, . . . , k do
5: apply one iteration (mutation and selection) of Ai to generate yi ;
6: end for
7: update x with a best search point from {y1, . . . , yk } if its fitness is larger than f (x);
8: end while
9: output: the maximal value of f .
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Algorithm 7 Hybrid algorithm k×(1+1) HA (sequential operations)
1: input: fitness function f ;
2: generate a solution x ;
3: while the maximum value of f is not found do
4: for i = 1, . . . , k do
5: apply one iteration (mutation and selection) of Ai to generate y;
6: update x with y if f (y) > f (x);
7: end for
8: end while
9: output: the maximal value of f .

The B-cell algorithm (BCA) [23] is an example of an algorithm that uses both SBM
and CHM considered in this paper. More specifically, it uses a population of search
points and creates λ clones for each of them. It then applies standard bit mutation to a
randomly selected clone for each parent search point and subsequently applies CHM
to all clones. This way one offspring of each parent is subject to a sequence of two
mutations, first standard bit mutation and afterwards CHM. Jansen et al. [14] proposed
a variant of the BCA that only uses CHM with constant probability 0 < p < 1
(instead of p = 1) and were able to show significantly improved upper bounds on
the optimisation time for this algorithm on instances of the vertex cover problem.
Considering the individuals that undergo both kinds of mutation (or a (1+1)-style
BCA), both these variants fit within the (1+1) HA-chained model of hybridisation
(Algorithm 5). More precisely, for p = (p1, p2) with p1 the probability to execute
SBM and p2 the probability to execute CHM, we have p1 = p2 = 1 for the original
BCA and constant p1 = 1 and 0 < p2 < 1 for the modified BCA in [14]. We remark
that the improved results in [14] in fact hold as long as p1 = Ω (1).

In the following subsection we will first consider the general hybrid algorithmic
framework and then specialise the results to the combination of CHM and SBM.

5.1 The Advantage of Hybridisation

The easiest functions for SBM and CHM areOneMax andMinBlocks, respectively.
Before analysing hybrid algorithms using both operators, it is natural to consider the
effect of one operator on the easiest function for the other operator. It is well known
that the (1+1) CHM needs 	(n2 log n) expected time on OneMax [17,21].

Here we consider the expected optimisation time of the (1+1) EA on MinBlocks
and show that it is very inefficient.

Theorem 12 The expected optimisation time of the (1+1) EA with strict or non-strict
selection on MinBlocks is at least nn/2.

Proof The function MinBlocks has the following property: for all search points
except for 0n and 1n , the number of 0-blocks equals the number of 1-blocks. Notice
that inverting all bits in a bit string turns all 0-blocks into 1-blocks and vice versa.
Hence for all x /∈ {0n, 1n} we have MinBlocks(x) = MinBlocks(x).

Let x0, x1, . . . be the trajectory of the (1+1) EA and T ∈ N0 be the first hitting
time of a search point in {0n, 1n}. Since x0, x1, . . . , xT has the same probability as

123



Algorithmica

x0, x1, . . . , xT and xT ∈ {0n, 1n}, we have Pr (xT = 0n) = 1/2. In this case the only
accepted search point is the global optimum 1n , for which all bits have to be flipped
in one mutation. This has probability n−n and expected waiting time nn . Combined
with the probability of reaching this state, the expected optimisation time is at least
T + nn/2 ≥ nn/2. 	


Note that the expected optimisation time of the (1+1) EA on MinBlocks is only
by a factor of at most 2 smaller than the expected optimisation time of the (1+1) EA
on its hardest function, Trap, which is almost nn [9].

Using multiple operators, the hope is that the advantages of each operator are com-
bined. However, this is not always true: new operators can make a hybrid algorithm
follow an entirely different search trajectory and lead to drastically increased optimi-
sation times. This behaviour was demonstrated for memetic algorithms [31] as well
as for standard bit mutations cycling between different mutation rates [15] and for
population based EAs where the mutation rate of each individual depends on its rank
in the population [28].

We show that such effects cannot occur when dealing with easiest functions. If f
is an easiest function for A which is a (1+1) A, then Theorem 13 stated below allows
to transfer an upper bound on the expected optimisation time of A to the four hybrid
algorithms.

Theorem 13 If A1, . . . , Ak are (1+1) A’s with strict or non-strict selection, starting
in x0, and f is an easiest function for Ai , then the expected hitting time of (1+1) HA( p)
on f , for a probability distribution p = (p1, . . . , pk), is bounded from above by

1

pi
· T (Ai , f, x0).

For any probability vector p = (p1, . . . , pk) with pi > 0 and p j < 1 for all j �= i ,
the expected hitting time of (1+1) HA-chained( p) on f is bounded from above by

1

pi · ∏
j �=i (1 − p j )

· T (Ai , f, x0).

Moreover, the expected hitting time of (1+k) HA and k×(1+1) HA is bounded from
above by

k · T (Ai , f, x0).

Proof We follow the analysis in [10, Section III] and perform a drift analysis, choosing
the runtime T (Ai , f, x) as the drift function:

d(x) = T (Ai , f, x).

Define ΔA j (x) = E ((d(x) − d(y))) as the drift of Algorithm A j , given that y was
created by applying A j to x . The drift of the hybrid algorithm (1+1) HA( p) is
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Δ(1+1) H A(x) =
k∑

i=1

piΔAi (x).

We apply Lemma 3 in [10] to estimate ΔAi . For any non-optimal point x , let y be its
child, then the drift of algorithm Ai satisfies

ΔAi (x) = E(d(x) − d(y)) = 1 (3)

following from the definition of d(x) = T (Ai , f, x). We further claim that no operator
induces a negative drift. Given any two non-optimal points x and y, then when using
strict selection, according to the monotonically decreasing condition d(x) < d(y)
implies f (x) > f (y). By contraposition, we get

f (y) ≥ f (x) ⇒ d(y) ≤ d(x). (4)

When using non-strict selection, the strictly monotonically decreasing condition
implies f (y) ≥ f (x) ⇔ d(y) ≤ d(x), which implies (4) as well. Since all algo-
rithms A1, . . . , Ak adopt elitist selection, the distance cannot increase, regardless of
which operator is chosen. Hence ΔA j (x) ≥ 0 for all j and

Δ(1+1) H A(x) ≥ piΔAi (x) = pi .

Using the additive drift theorem, Theorem 2, the expected hitting time of (1+1) HA( p)
on f is at most

d(x0)

pi
= T (Ai , f, x0)

pi
.

For (1+1) HA-chained we observe that the algorithm executes only Ai and none of
the other operators with probability pi · ∏ j �=i (1− p j ). In all other cases the distance
cannot increase (by (4)). Hence by the same arguments as above, the expected hitting
time is bounded by

1

pi · ∏
j �=i (1 − p j )

· T (Ai , f, x0).

The statement on (1 + k) HA follows from similar arguments. Let x1, . . . , xk be the
search points created using A1, . . . , Ak , respectively. Let x∗ be the best amongst these,
selected for survival. Then f (x∗) ≥ f (xi ), and by (4), d(x∗) ≤ d(xi ). Hence for all
non-optimal x ,

Δ(1+k) H A(x) ≥ ΔAi (x) = 1.

Additive drift from Theorem 2 then yields an upper bound on the expected time of
(1+k) HA of k ·T (Ai , f, x0), the factor k accounting for executing k operations in one
generation.
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Finally, for k×(1+1) HA, let x1, . . . , xk be the offspring created in the sequence of
operations and note that xk is taken over for the next generation. We have f (xi−1) ≥
· · · ≥ f (x1) ≥ f (x) and thus d(xi−1) ≤ d(x) by (4). Along with ΔAi (x) = 1 for all
non-optimal x and f (xk) ≥ f (xi ) implying d(xk) ≤ d(xi ), we get

Δk×(1+1) H A(x) ≥ ΔAi (x) = 1

and an upper bound of k · T (Ai , f, x0) as for (1+k) HA. 	

Using Theorem 13 as well as Theorem 9, we get the following corollary concerning

the SBM and CHM operators.

Corollary 14 Consider thehybrid algorithms (1+1)HA( p)and (1+1)HA-chained( p)
for p = (p1, p2) with constant p1, p2 > 0, (1+2) HA, and 2×(1+1) HA, all based on
a (1+1) algorithm A1 using SBM and another (1+1) algorithm A2 using CHM; A1
and A2 both using strict or non-strict selection. Then the expected optimisation time of
all these hybrids onOneMax andMinBlocks is O(n log n) and O(n2), respectively.

All hybrid algorithms are hence able to combine the advantages of both operators on
the two easiest functions for its two operators. This is particularly true for the modified
(1+1)-style BCA [14] with constant 0 < p1, p2 < 1 discussed at the beginning of
Sect. 5.

5.2 Weighted Combinations of OneMax and MINBLOCKS

In the previous subsection it was proven that the four different hybrid schemes
(1+1) HA( p) for p = (p1, p2) with constant p1, p2 > 0, (1+1) HA-chained,
(1+2) HA, and 2×(1+1) HA, using SBM and CHM as operators are all efficient
for OneMax and MinBlocks. In particular, even though SBMs alone exhibit very
poor performance onMinBlocks, hybrid algorithms using CHMwith arbitrarily low
constant probability along with SBM are efficient. In this subsection we investigate
the performance of the two operators on “hybrid” functions where the fitness depends
on both the number of ones and the number of blocks.

To this end, we perform experiments concentrating on different instantiations of
Algorithm (1+1)HA( p) for p = (p, 1−p)with various values of p and strict selection
and investigate its performance on a function consisting of weighted combinations of
OneMax and MinBlocks. To be more precise we consider the function

fw(x) = w · OneMax(x) + (1 − w) · MinBlocks(x)

with w ∈ {0, 0.1, 0.2, . . . , 1.0} ∪ {1/n, 1/n2} and the (1+1) HA(p, 1− p) where we
execute CHM with probability p and standard bit mutations with probability 1 − p
with p ∈ {0, 0.1, 0.2, . . . , 1.0} ∪ {1/n, 1/n2}. Note, that for p = 0 and w = 0 we
only use standard bit mutations on pure MinBlocks and thus, the optimisation time
is exponential (Theorem 12). Similarly, we have an optimisation time of 	(n log n)

for p = 0 and w = 1 (standard bit mutations on pure OneMax [9]), 	
(
n2 log n

)
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for p = 1 and w = 1 (CHM on pure OneMax [17]) and 	
(
n2

)
for p = 1 and

w = 0 (CHM on pure MinBlocks, Theorem 9). We are particularly interested in
intermediate values of p and w and their influence on the optimisation time.

We perform 10,000 runs for each of the above pairs of settings for n = 100 and
depict the average optimisation times in Fig. 2. Figure 2a shows a comparison of the
optimisation times of different resulting algorithms (1+1) HA(p, 1 − p) depending
on w while Fig. 2b depicts the results for different functions over the parameter p of
the hybrid algorithm. Note, that for the sake of recognisability we only depict a subset
of the curves in both figures while on each curve we present all available data points.
We additionally perform Wilcoxon signed rank tests to assess whether the observed
differences in the optimisation times are statistically significant. Fixing a value for w

(Fig. 2a) we perform tests for all pairs of algorithms and the 10,000 optimisation times
measured for each setting. Similarly, fixing a value for p (Fig. 2b) we perform tests
for all pairs of functions. We perform Holm-Bonferroni correction to account for the
large number of tests we execute.

We observe that for allw > 0, the runtime gets smaller as p decreases (Fig. 2a). All
differences are statistically significant at confidence level 0.05 with the exception of
p = 0 and p = 1/n2 for all values of w and p = 0, p = 1/n2, p = 1/n and p = 0.1
for most w ∈ {0.1, 0.2, 0.3, 0.4}. From Fig. 2b we can also see that the (1+1) HA( p)
with constant p < 0.7 appears to be faster on functions fw with constant w > 0 (i. e.,
with constant OneMax fraction) while using a larger p (i. e., performing CHM more
often) pays off for w = o (1). Differences are statistically significant at confidence
level 0.05 with the exception of most results for p = 0.7 and p = 0.8, w = 1/n and
w = 1/n2 for all p ≤ 0.8, w ≥ 0.6 for all p, w ≥ 0.3 for all p ≥ 0.5, and w ≤ 0.2
for w = 0, w = 1/n2 and w = 1/n.

We can see from the experiments in Fig. 2 that the case w = 0 is very different
from runs with w > 0. Recall that w = 0 means that the algorithm is confronted
with MinBlocks and that w > 0 implies that we add w · OneMax to the function
value (while, at the same time, reducing the function value by w · MinBlocks). The
addition ofw ·OneMaxwith an arbitrarily smallw > 0 introduces a ‘search gradient’
in the fitness landscape: the algorithm is encouraged to increase the number of 1-bits
by a small increase in fitness (at least as long as this trend is not counteracted by an
increase in the number of blocks). The effect is most pronounced for p = 0, i. e., for
the (1+1) EA where the expected optimisation time is exponential for MinBlocks
and becomes manageable as soon as the OneMax-component introduces a ‘search
gradient’. In a different context, the same effect has been discussed and analysed using
different example functions [16].

5.3 On the Easiest Function for Hybrid Algorithms

In the previous subsection itwas shownexperimentally that as soon as a smallOneMax
component comes into play, the function fw becomes easy for the (1+1) HA(p,1− p)
usingSBMandCHMindependent of the value of p. Nevertheless, in this subsectionwe
show that fw, for any value ofw, is not an easiest function for the (1+1) HA(p,1− p).
In particular, we will set p = 1/2 and show that the easiest function for the hybrid
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Fig. 2 Results of the experiments: Average optimisation times over 10,000 independent runs for each pair
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a Results for different algorithms (1+1) HA(p, 1 − p) over values for w. b Results for different functions
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algorithm (1+1) HA(1/2,1/2) using SBM and CHM, and strict selection, is more
complex than a mere weighted combination fw of the two easiest functions for both
operators.

He et al. [10] explain how an easiest function can be computed. We construct
EasiestHybridp, an easiest fitness function for the hybrid algorithm (1+1) HA(p,1−
p) from Corollary 14 by implementing their construction procedure and performing
the necessary computations numerically. Clearly, this is computationally feasible only
for small values of n. Using the unique global optimum as a starting point and level
L0 we can compute the next level of search points with next best and equal fitness by
computing for each search point which does not yet have a level the expected time
needed to reach L0 either directly or via a mutation to a search point that already has a
level. Search points with minimal time in this round make up the next level. Note that
this is actually Dijkstra’s algorithm for computing shortest paths (see, e. g., [3]). Also
note that the numerical computation of the actual expected waiting times is easy since
the exact transition probabilities for mutations leading from one bit string to another
are all known and waiting times are all simply geometrically distributed.

The easiest function for the (1+1) CHM is composed of �n/2
 + 2 different fitness
levels, L0, . . . , L�n/2
+1, defined by a number of 1-blocks (i. e., L0 = {1n}, L1 = {0n},
Li = {x ∈ {0, 1}n | x contains i − 1 different 1-blocks} for each i ∈ {2, . . . , �n/2
 +
1}). On the other hand, the fitness level set of the easiest function for the (1+1) EA (i. e.,
OneMax) has n + 1 different levels defined by a number of 1-bits (i. e., Li = {x ∈
{0, 1}n | x contains n − i 1-bits} for each i ∈ {0, . . . , n}). If EasiestHybridp was a
mere weighted combination of OneMax and MinBlocks, its fitness levels would be
defined by a combination of a number of 1-blocks and a number of 1-bits. This would
happen because individuals that have the same number of 1-bits and the same number
of 1-blocks would have exactly the same fitness. Also, the product between the number
of levels of the easiest functions for each operator, (�n/2
 + 2) · (n + 1), would be
an upper bound on the number of levels for EasiestHybridp. In the following we
show that neither of these two considerations are true and that the fitness levels of
the easiest function for the hybrid algorithm are more complicated. In particular, bit
strings having in common the same number of 1-blocks and the same number of 1-bits
can belong to different fitness levels of EasiestHybridp. Rather, the length of the
blocks comes into play to define the fitness levels even though such a feature does not
define the levels of either OneMax or MinBlocks.

We consider Algorithm (1+1) HA(p,1 − p) which at each step executes either
an SBM or a CHM with probability p = 1/2 and report in Table 1 the different
fitness levels L0, . . . , L12 of EasiestHybrid1/2 when n = 6. From the table it can
be noticed that both levels L7 and L8 contain bit strings with two 1-blocks and four
1-bits. However, the lengths of the two 1-blocks are different (i. e., three and one for L7
and two and two for L8). The reason why levels L7 and L8 are distinct is highlighted
in the last two columns of Table 1, which report the probabilities of reaching levels of
higher fitness, respectively from levels L7 and L8. For any point of the search space
belonging to level L7 there are three different CHMs leading to points in L2 and L3
while there are only two CHMs from points in L8. These extra CHMs lead to higher
transition probabilities, hence lower runtimes, to reach levels L2 and L3 from L7,
compared to L8. Also the probability of reaching level L6 is higher from L7, mainly
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because the level may be reached by flipping only one bit while at least three bits need
to be flipped for bit strings in L8. Since the transition probabilities to the remaining
levels of higher fitness are the same, the expected runtime from L7 is lower than that
from L8, explaining why the two levels are distinct (recall that, by construction, the
levels are ordered according to increasing expected runtimes).

Concerning the number of different fitness levels, these increase as the problem
size n increases. Already for n = 10 EasiestHybrid1/2 has 78 different levels, more
than the product of the number of OneMax and MinBlocks levels for n = 10 (i. e.
66). It is indeed the increase in number of fitness levels as n grows that makes it hard
to give a precise definition of the EasiestHybrid1/2 function. We leave this as an
open problem for future work.

6 Conclusions

We have extended the analysis of easiest function classes from standard bit mutations
to the contiguous somatic hypermutation (CHM) operator used in artificial immune
systems. Albeit the recent advances in their theoretical foundations [21,29,35] no such
results were available concerning artificial immune system operators. With the run-
time and fixed budget analyses of the (1+1) CHM onMinBlocks, the corresponding
easiest function, we established a lower bound on the (1+1) CHM’s performance on
any function. We also showed that MinBlocks is exponentially hard for the standard
(1+1) EA, complementing the known result that the (1+1) CHM performs asymptoti-
cally worse by a factor of	(n) compared to the (1+1) EA onOneMax. Furthermore,
we proved that several hybrid algorithms combining the (1+1) CHM and the (1+1) EA
solve both MinBlocks and OneMax only at a constant factor slower than the pure
algorithms.

Experimental work revealed that a fitness function consisting of a weighted com-
bination of MinBlocks and OneMax is easy to optimise for both pure operators
and hybrid variants even when the OneMax weight component is very small. Nev-
ertheless, after providing the exact fitness landscape of the easiest function for the
(1+1) HA(1/2,1/2), EasiestHybrid1/2 for small instance sizes, we observed that
its structure is more complex than a simple weighted combination of OneMax and
MinBlocks.We leave constructing and analysing easiest functions for other operators
that fit the (1+1) A scheme for future work. Similarly, the question about the easiest
functions for different schemes of hybridisation remains open.
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