
This is a repository copy of XL-STaGe:A Cross-Layer Scalable Tool for Graph Generation,
Evaluation and Implementation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/104509/

Version: Accepted Version

Conference or Workshop Item:
Burmester Campos, Pedro orcid.org/0000-0001-6933-3282, Dahir, Nizar, Bonney, Colin
Andrew et al. (3 more authors) (2017) XL-STaGe:A Cross-Layer Scalable Tool for Graph
Generation, Evaluation and Implementation. In: International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS XVI), 17-20 Jul
2016.

https://doi.org/10.1109/SAMOS.2016.7818372

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/SAMOS.2016.7818372
https://eprints.whiterose.ac.uk/id/eprint/104509/
https://eprints.whiterose.ac.uk/

XL-STaGe: A Cross-Layer Scalable Tool for Graph

Generation, Evaluation and Implementation

Pedro Campos, Nizar Dahir, Colin Bonney, Martin Trefzer, Andy Tyrrell, Gianluca Tempesti

Department of Electronics, University of York, York, UK

Email: {pedro.campos, nizar.dahir, cab523, martin.trefzer, andy.tyrrell, gianluca.tempesti}@york.ac.uk

Abstract—This paper presents XL-STaGe, a cross-layer tool for
traffic-inclusive directed acyclic graph generation and implemen-
tation. In contrast to other graph-generation tools which focus on
high-level DAG models, XL-STaGe consists of a set of processes
that generate the task-graphs as well as a detailed process model
for each node in each graph. The tool is highly customizable,
with many parameters that can be tuned to meet the user’s
requirements to control the topology, connection density, degree
of parallelism and duration the task-graph. Moreover, two use
cases are presented, a high-level one, which illustrate the benefit
of the developed tool in application mapping and a circuit-level
one to verify the accuracy of the XL-STaGe process models when
implemented in hardware.

Index Terms—DAG, task-graph, process model, networks-on-
chip, CAD tools.

I. INTRODUCTION

Research in many-core systems and parallel computing,

with hundreds or thousands of cores, lacks application bench-

marks that are required for design-space exploration of such

systems. These benchmarks should embed various application

characteristics such as the number of tasks, task dependencies

and input/output degrees of the tasks. Many synthetic task-

graph models previously proposed by literature. For example,

the GGen [1] task generator implements a selection of stan-

dard task graph generation algorithms (Erdos-Renyi, Layer-

by-Layer [2], Fan-in / Fan-out [3], [4] and Random Orders)

allowing researchers to choose the generation algorithm that

best suits their expected workload.

The majority of application task-graph models express the

application as a set of nodes (tasks) and arcs (dependencies)

usually in the form of a DAG (directed acyclic graph).

Another characteristic that may be added to these graphs is

the communication requirements among the tasks. However,

these DAG models usually describe the high-level behaviour

of the underlying application and they lack models for the

temporal behaviour of these tasks. In other words, the pro-

cess model or the real-time behaviour of these processes

is lacking. This narrows the use of these models to high-

level design-space exploration such as application mapping

and routing and does not allow lower-level explorations such

as accurate hotspot identification, buffer-level requirements

or identifying the voltage-frequency pair of a node/link in

systems with DVFS support. These low-level design objectives

require detailed process models that can run on real hardware

DAG

Model

of nodes and pr.

distributions of:

- no. of stages

- node connectivity

- node to stage binning

Process

Model

DAG

{.xml, .gv } Traffic

Model

Process

{.xml}

Process C source

{.h, .c}

Pr. distributions of:

- input/output connections

- input volume

- output volume

Fig. 1: Illustration of XL-STaGe models flow, input parameters and
input/output file formats

(or hardware simulation) to test the system in real-time and

evaluate real-time design performance.

In this work we present XL-STaGe, a cross-layer tool for

DAG generation and implementation. It consists of a set of

tools that generate the task-graph as well as the process models

for each node in this graph, as shown in Figure 1. To this end

the main contributions of this paper are:

• We present XL-STaGe, a cross layer application task

graph generation tool.

• The generated graphs embed high-level tasks and traffic

as well as low-level process implementation.

• The tool set is demonstrated through use-cases for both

high-level DAG models and low-level process.

• The tool is freely available online [5].

Section II details the process of generating the directed

acyclic graphs, Section III describes how the process model is

embedded into the generated graph, and Section IV explains

how the edge throughputs are calculated based on the process

model. Section V presents some use-cases for the developed

tool, and a discussion of the contributions of XL-STaGe can

be found in Section VI.

II. GRAPH MODEL

A. DAG Task Graph Model

The task graph model considered in this work is a directed

acyclic graph (DAG), G(V,E) where,

• V: is the set of vertices or nodes,

• E: is the set of arcs or edges.

Multiple input and output edges are allowed and the edges are

identified by the nodes they are connecting. So, each directed

edge εi,j ∈ E connects node i ∈ V to node j ∈ V . Let

S ⊂ V be the set of the nodes with no predecessors (sources)

978-1-5090-3076-7/16/$31.00 ©2016 IEEE

and T ⊂ V be the set of nodes with no successors (sinks).

A path of G is the sequence of edges (i1, i2, ..., ik) such that

every edge (in, in+1) ∈ E. Using this analogy, the nodes in the

generated graph are distributed to processing stages k ∈ K.

Nodes in higher processing stages have their dependencies in

lower stages. The stage of all the sources S is the first stage

(k = 1) while the stage of all sinks T is last stage (max{K}).

B. Parameters and Assumptions

The tool starts by generating the task graph with a set

of nodes representing the processes and then generating an

executable process based on a process model (see Figure 1).

The task graph is modelled as a stochastic graph. In other

words the graph is a random variable in a set of task graphs.

We fix the number of nodes but all other characteristics of the

task graph are randomly generated based on a given probability

distribution. The parameters used to create the task graph are:

1) Number of nodes or processes in the graph - N is

fixed in the current tool setup but can be made random

within a range based on user preference.

2) The number of processing stages - K is a random

variable bounded by values that are computed by estab-

lishing a relationship between K and N to control the

height of the graph (max number of nodes in a stage)

and its length (max path length from a source to sink)

for the same number of nodes. Figure 2a and 2b shows

examples of graphs with different heights and widths.

The height of the graph determines to the number of

parallel processing threads that exist in this graph while

the width determines the length of these threads.

3) Node to rank distribution - or Pr(v = k) ∀v ∈ V ,

∀k ∈ K. This probability follows a normal distribution

with µk and σk set by the user. µk and σk can be

tuned to control the shape of the graph. For example

the graph can be made divergent (less sources than

sinks), convergent (more sources than sinks) as shown

in Figures 2c and 2d, respectively.

4) Connection probability - or Pr(εi,j = 1) ∀i, j ∈ V . A

parameter between 0 and 1, set by the user, represents

the initial value of this probability. It drops by a factor

that is proportional to the difference in processing stages

between the nodes. In other words, connections are more

likely to exist between nodes with closer processing

stages and less likely to exist between nodes with distant

processing stages.

C. Output Products

Following a review of available description languages for

graphs, the DOT Graph Description Language was chosen

for its simplicity and available software [6], [7]. The DOT

language is supported by GraphViz which proved to be able to

provide a clear, uncluttered visual representation of our graphs.

A utility called DOT also provides the means of producing a

pdf, eps or png file of the visual representation of a graph

using standard free tools. Additionally, the DOT language

allows groups of nodes to be defined as having the same rank

(processing stage) and provides functionality for controlling

the size, shape, colour and text of nodes.

The tool uses two formats for the output DAGs (as illus-

trated by Figure 1). The first is DOT format (in the form

of gv file) while the second is xml that which includes tags

describing the nodes, edges and processing stages.

III. PROCESS MODEL

XL-STaGe provides a framework to incorporate low-level

network operational details into a standard directed acyclic

graph (DAG). A DAG will consist of edges and nodes, but

the typical high-level graph representation does not include

the dependencies that exist between inputs and outputs of a

particular node, which will ultimately be used to determine the

throughput between any two nodes. This notion of causality is

a key aspect of the approach undertaken for XL-STaGe. After

a directed acyclic graph is generated as part of the DAG model

process – as described in section II – an additional layer of

information can be added, which describes the behaviour of

the application at the data-flow level.

A. Low-Level Model

A typical software application implemented on a many-core

system will be split into many tasks or processes that can be

mapped to individual cores. These tasks will take in a set of

inputs, process them, and generate data which will either be

directed to another task, or will be part of the application’s

output.

The algorithm behind XL-STaGe makes the following as-

sumptions for the operation of a generic application:

• Data packets – data travels across the application in the

form of packets of a user-specified size.

• Data buffering – the network layer should have the

ability to store unprocessed data at each of its nodes.

• Thread/process flexibility – if all outputs of a single

node depend on all its inputs, the task/process consists of

a single thread; otherwise the task/process can be multi-

threaded.

• Triggering condition – in order to activate the output of a

task/process, a given volume of data from each connected

input must be received.

• Dependency of inputs – different tasks or threads will

require varying volumes of data from each associated

input.

• Output volume – different tasks or threads will generate

varying volumes of data once the triggering condition is

met, and processing is completed.

These assumptions lay the foundation for the cross-layer

approach of XL-STaGe. The process model adds information

to the application layer, or high-level representation, which

can be used to generate traffic at the network layer.

B. I/O Connectivity

The first step of the algorithm used to create the process

model in XL-STaGe consists of establishing connections be-

tween the outputs and inputs of each node (representation

P1

P2

P3

P4

P5

P6

P8

P10

P12

P17

P7

P9

P11

P13

P14

P15

P16

P19

P18

P21

P22

P20

P23

P24

P25

P26

P27

P28

P29

P34

P30

P31

P32

P33

P35

P36

P37

P39

P38

P40

P41

P43

P44

P45

P42

P46

P48

P47

P49

P50

(a)

P1 P2

P3

P4

P5

P6

P8

P7

P9

P14

P10

P11

P12

P15

P13

P20

P16

P17

P18

P19

P21

P22

P23

P24

P25

P29

P26

P27

P28

P31

P32

P30

P39

P33

P35

P36

P34

P37

P38

P43

P40

P41

P42

P44

P45

P46

P47

P48

P49

P50

(b)

P1
P12

P16

P2 P10

P3

P9

P15

P4

P21

P27

P5

P6

P11

P17

P7

P13

P14

P8

P18

P19

P23

P20

P24

P26

P28

P22

P25

P29

P31

P30

P32

P33

P36

P34

P35

P38

P37

P39 P40

P41

P42

P43

P44

P45

P46

 P47

P48

P49

P50

(c)

P1 P2

P3

P4

P5

P6

P7

P8

P10

P11

P14

P9

P17

P22

P12

P13

P15

P16

P21

P23

P18

P19

P20

P24

P26

P25

P27

P30

P31

P28

P29

P32

P37

P33

P34

P36

P38

P35

P40

P49

P39

P41

P48

P50

P42

P45

P46

P43

 P47

P44

(d)

Fig. 2: Various DAG examples, (a) & (b) illustrate high and low number of processing stages, respectively, (c) a convergent graph, and (d)
a divergent graph.

of a task) in the DAG that was generated by the previous

modelling stage. These connections are established based on

a configurable parameter which specifies the probability of a

dependency between any input-output pair of a single node.

For each output of a particular node, the tool establishes a

connection with each of the available inputs based on the

specified probability, p(c). To ensure consistency, all outputs

are connected, any unconnected inputs are then connected to

any of the available outputs, selected at random.

As mentioned in the thread/process flexibility assumption,

a node with fully connected I/Os will represent a single-

threaded task. Otherwise, each output of the modelled task

will represent a single thread.

C. Input Dependencies and Output Volumes

The triggering condition previously described states that for

each output of the task or thread, a given volume of data from

each connected input must be received before data can be

generated. This volume of data, measured in data packets per

output/input pair, is defined as the input dependency. The

amount of data travelling across an output through time is

defined as output volume, and the expression to calculate it

is described in Equation 1, where Vj is the volume of data

generated by the task once a triggering condition is met, di,j
is a flag determining whether or not the condition has been

met for each input i connected to output j, bi(t) is the number

of unprocessed (buffered) data packets from input i of the

node through time, and Di,j is the number of packets from

input i required by output j to trigger processing. Once these

values are established, each node on the graph will have the

information depicted in Figure 3.

X0

X1

X3

Y0

Y2

D00

D02

D10

D31

V0

V2

Y1
V1

D32

X2 D21

Fig. 3: A 4-input, 3-output node after going through the I/O con-
nectivity processing step of XL-STaGe. Inputs x0...4 are connected
to outputs y0...2 according to probability of connection p(c). Depen-
dencies Di,j and output data volumes Vj are added in the next step
of the process.

Oj(t) = Vj

n
∏

i=0

di,j(t), where di,j(t) =

{

1, if bi ≥ Di,j

0, otherwise

(1)

The condition di,j for an input i connected to an output j

of a particular node is met once enough data is received to

allow for processing. As an example, some video streaming

applications require a set amount of frames to be received

before running image manipulating algorithms.

D. Input and Output Products

The process model takes a directed acyclic graph as an

input, in the form of an XML file, along with the specification

of the range of values for data volume V and dependency D,

as well as the value for the probability of connection, p(c).
The output of this process is an XML file with the

values of Vj and Di,j , sampled from normal distributions

centered around a user-specified value, and also with a user-

configurable range. The standard .gv file is also edited to

include the calculated relative throughputs on the graph.

IV. TRAFFIC MODEL

The process model creates the input dependencies and

output volumes for each node on the task graph. The next

step in the XL-STaGe algorithm is to extrapolate the resulting

throughput across each edge on the graph, based on the Di,j

and Vj values. This is a crucial aspect of the XL-STaGe

framework, as the output of this step is a task-graph complete

with calculated edge throughputs that have a foundation on

a detailed process model. This foundation is critical for the

layer-crossing reach of XL-STaGe, as it allows for the seam-

less implementation of a user-generated traffic model from the

application layer onto a multi-node platform which can make

up a network layer.

A. Throughput Calculation

Based on the values of Di,j and Vj , it is possible to calculate

the relative throughputs across each edge of the task graph,

with respect to the throughput of the data source. For example,

a task with one input x0 and one output y0, with a D00 of

2 data packets and an output volume V0 of one data packet,

will generate data at half the rate of its input, and therefore its

relative throughput would be 0.5. A more complex example

could involve a node with two inputs x0 and x1 and one

output y0, with D00 = 2, D10 = 4 and V0 = 3. If both

inputs receive data at the same rate (i.e. they share the same

input throughput), then it would take twice as long to receive

enough packets to satisfy both d00 and d10, and therefore the

throughput at output Y0 would be 3

4
of the input throughput.

The relative throughput ξj for an output j of a given node

can then be calculated through the expression described in

Equation 2, where the relative throughput ξi of each input i

connected to node output j is divided by the dependency Di,j

and multiplied by the data volume Vj .

ξj = Vj min
ξi

Di,j

, subject to Di,j ≥ 0 (2)

Based on this concept, it becomes possible to perform the

same calculation for all edges in the graph, allowing for an

analytical estimation of the throughputs across the graph all the

way to the sink nodes. Figure 4 illustrates an example of a 9-

node graph, which incorporates information from the process

model in order to calculate the edge’s relative throughputs.

Conceptual source- and sink-nodes are added to illustrate the

rate at which data is introduced into the graph and extracted

from it, respectively.

B. Input and Output Products

The traffic model takes a directed acyclic graph with the

values of Vj and Di,j as an input, in the form of an XML

file, and generates a header file with the process model

information, written in C, along with the source code that can

be incorporated into a template to run on a standard processor.

P0

P1

2.0

P2
0.25

P4

0.333

P5

0.5

P62.0

P3
2.0

0.5

1.0

0.25

0.375

0.5

P7

5.0

0.25

1.0

P8

0.188

1.33

0.25

Sink

1.0

0.0938

Source
1.0

P5

X0

X1

X2

Y0

Y1

D00

D01

D10

D21

V0

V1

Fig. 4: Example of a 9-node graph, with the additional conceptual
source- and sink-nodes also represented. The numbers associated with
the edges represent the throughput ratios of node-to-node connections
with respect to the source throughput. A zoomed-in representation of
node P5 illustrates the meaning of both the input dependencies Di,j

and the output volumes Vj , with inputs ranging from 0-2 and outputs
from 0-1.

At this point, information regarding which processing node

will run which task can also be generated (task mapping),

allowing for quick platform evaluations.

V. USE CASES

A DAG whose structure is described in the process and traf-

fic models can be implemented either virtually or physically

on a hardware platform. In the use cases that follow, the virtual

implementation assumes an array of homogeneous processing

nodes, and the physical implementation, described later in

the text, uses an array of Zynq System-on-Chip, but other

hardware implementations are also possible. This approach

allows the user to experiment with different task mapping

approaches and evaluate their performance.

A. System Level

At the system level, the low-level implementation details

are discarded, and only the calculated throughputs between

nodes are used to provide estimates of traffic load across a

virtual network. This section describes the functionality of XL-

STaGe for the virtual implementation case, where an array of

processing nodes of a user-defined size is populated with nodes

from the traffic model previously developed.

1) Mapping: Depending on which processing nodes the

traffic nodes are mapped to, the chosen routing strategy, and

the network topology, the load will be distributed differently

across the virtual array. As an example, Figure 5 shows a

comparison between two different task mappings of the graph

illustrated in Figure 4.

2) Evaluation: By providing XL-STaGe with a task map-

ping associating with the tasks with processing nodes, a

topology definition of the virtual node array, and an optional

P0 P1 P2

P3 P4 P5

P6 P7 P8

(a)

P0 P7 P1

P3 P8 P5

P6 P2 P4

(b)

Fig. 5: An example of two different task mappings (a) & (b) for the
same XL-STaGe generated task graph on a 9-node virtual array with
3 rows and 3 columns, using deterministic x-y routing and a Von
Neumann neighbourhood for the physical links between nodes. A
lighter colour denotes a lower throughput, and darker areas represent
virtual links or nodes of higher traffic load.

set of physical constraints – such as maximum node or link

throughput – the performance of a particular mapping can

be evaluated in terms of load distribution, number of path

alternatives, or any other metric that the user may consider

relevant.

In order to minimise the workload on the network for a

particular task mapping of an XL-STaGe generated graph, a

typical approach is to minimise the Hamming distance – or

|Xs −Xd| and |Ys − Yd|, the distances in the x- and y- axis

respectively – between any two source (s) and destination (d)

nodes running tasks that are connected at the task-graph level.

An optimisation goal would then be to explore task mappings

which minimise the sum of the Hamming distances for all

connected nodes. Inserting the throughputs ξg associated with

each edge g into the sum and minimising it will result in

task mappings which bring nodes with large edge throughputs

together, therefore minimising the volume of data circulating

across the network, or the network energy (φG). Equation 3

represents the expression describing φG for a given graph, G,

after mapping M is applied.

φG(M) =

N
∑

g=0

ξg(|Xs −Xd|+ |Ys − Yd|) (3)

As an example, the expression for φG for the mapping

illustrated in Figure 5b is roughly 20% higher than that of

the mapping illustrated in Figure 5a, since the former uses up

fewer communication channels than the latter.

This kind of system level metrics are embedded in XL-

STaGe and could be exploited to find an optimal task mapping

for a task-graph/virtual platform pair, or to evaluate a task

mapping technique or algorithm.

B. Circuit-Level

The previous section presented a use-case for high-level

analysis of the graph. This section presents the results of

experiments for low-level verification of the process model

used in the tool. This is done to verify the assumptions

T0 N0

175
51°
100
100

T1 N1

193
51°
100
100

T2 N2

195
49°
100
100

T3 N3

179
48°
100
100

T4 N4

191
53°
100
100

T5 N5

180
48°
100
100

T6 N6

156
46°
100
100

T7 N7

186
51°
100
100

T8 N8

192
49°
100
100

Local Local Local

Local Local Local

Local Local Local

empty normal full

Relevant Stats

Traffic
Busiest node: 3
Max node rate: 9730561
Busiest link:
Node 7, Local
Max link rate: 7762078

Power
Total power: : 1647 mW
Max power: 195 mW @ Node 2
Min power: 156 mW @ Node 6

Temperature
Max temperature: 53° @ Node 4
Min temperature: 46° @ Node 6

Legend

Power
Temperature
PL Frequency
AXI Frequency

Buffer status

Fig. 6: The traffic distribution and other real-time parameter, includ-
ing power, temperature, and NoC buffer (fifo) level status, that result
from running the task-graph on the hardware platform. The frame is
generated by a real-time visualiser that we developed form monitoring
of the hardware platform. The parameters are updated every 1 sec.

made when developing the process model. Namely, that the

input-output dependency process model results in a stable

traffic distribution when the processes are distributed and run

independently across a many-core system. This is achieved

through a physical implementation on a dedicated hardware

system, which also allows to verify that the resulting traffic

distribution should match the calculated one.

We start by mapping the task graph to a previously custom

9-node hardware platform and running the processes on the

cores of this platform. The resulting data throughputs are

then compared with the expected throughputs computed by

analysing the DAG as described in Section IV-A.

1) Architecture Summary: To run our circuit-level exper-

iments, we use a previously developed hardware platform

consisting of 9 Xilinx Zynq development boards, based on

Zynq-7000 System-on-Chip devices. These boards contain

a processing system (PS), that includes a dual-core ARM

Cortex-A9 processor, plus programmable logic. Custom con-

nection boards were designed to implement the interconnec-

tion network (NoC). The routing logic is implemented on

the programmable logic of the Zynq chip. The topology is

a 2D mesh with 4 bi-directional channels per node plus the

local channel to/from the PS. The platform supports both

adaptive and deterministic routing but, in this experiment, we

use the deterministic XY routing. Round-robin is used for

arbitration if more than one input channel requires access to

an output channel at the same time. This resulting architecture

of distributed may-core system is shown in Figure 7.

2) Process Model Verification: Here we present an eval-

uation for the process model through the verification of the

accuracy of the XL-STaGe model by comparing the throughput

measured for the DAG shown in Figure 4 and when imple-

mented on the physical platform architecture and applying a

throughput of 1,024,000 flit/sec at the source. This throughput

is bellow the the platform saturation throughput which is

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

Text

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

RX

TX

TX

RX

TXRX

TX
R
X

RXTX

Processing

system

(PS)

R R R

R R R

R R R
Fig. 7: Illustration of the experimental system platform architecture.

found to be ∼ 2, 000, 000 flit/sec. While data packets can

have multiple flits, in this experiment, data packet size is set

to one flit. Table I compares the measured communication

throughputs in each NoC link, including sinks throughputs,

with the calculated one. It can be seen that the difference

between the calculated throughputs and the measured ones

is negligible, which verifies the accuracy of the developed

traffic and process models as well as the functionality of the

hardware platform. This also verifies the assumptions made

when developing the process model.

VI. DISCUSSION & CONCLUSIONS

This paper presents XL-STaGe, a cross layer tool for task-

graph generation and implementation. The major contribution

of XL-STaGe compared to previous works is the inclusion of a

detailed process model. As a result traffic pattern results from

the dependencies between inputs and outputs in the process

and is not completely random. This makes XL-STaGe suitable

for low-level evaluation of hardware platforms. Moreover,

users can make partial use of the tool flow. For example, if

a user provides XL-STaGe with a process model of their real

application graph, they can make use of the model generation

and evaluation methods described in this paper.

Two use-cases of the tool are presented. A system-level one

which shows the benefits of the tool in comparing different

application mappings in terms of workload distribution. The

second use-case is circuit-level where a task-graph generated

by the tool is implemented on a hardware platform. The

accuracy of the traffic model is verified by comparing the

measured throughputs with the ones calculated using the traffic

model where good match is found with error of 0.082%.

The results of the circuit-level use-case also verifies the

correct functionality of the hardware platform and is used to

evaluate the platform throughput capacity as well as power

consumption and temperature. These circuit-level parameters

highlight the advantages of the detailed implementable process

and traffic models that XL-STaGe generates. Other uses of

TABLE I: Calculated and measured throughputs for the DAG shown
in Figure 4 implemented on a 9 board system and assuming a
source throughput of 1,024,000 flit/sec. . The links are denoted as
< start node >→< end node >. Nodes are denoted as 0 (top
left) to 8 (bottom right) and (S) is the sink.

Link Measured Calculated Error

(flit/sec) (flit/sec) (%)

0→1 3159676 3157333 0.074
1→2 1792058 1792000 0.003
3→4 5107595 5105008 0.051
4→5 0 0 0
6→7 1615872 1621333 0.337
7→8 255588 256000 0.161
1→0 2552247 2560000 0.303
2→1 765774 768000 0.290
4→3 0 0 0
5→4 1024035 1024000 0.003
7→6 0 0 0
8→7 0 0 0
0→3 4600027 4608000 0.173
1→4 1108393 1109333 0.085
2→5 1918079 1920000 0.100
3→6 2558243 2560000 0.069
4→7 6400017 6400000 0.001
5→8 191214 192000 0.409
3→0 0 0 0
4→1 0 0 0
5→2 0 0 0
6→3 0 0 0
7→4 0 0 0
8→5 0 0 0

7→(S) 1023500 1024000 0.048
8→(S) 95976 96000 0.025

Mean Error 0.082

these models include evaluating hardware designs in terms of

other parameters. For example throughput capacity (QoS) and

power consumption can be evaluated against frequency and

voltage in systems with DVFS.

ACKNOWLEDGEMENTS

The authors would like to thank EPSRC for their support

through the Graceful project grant (EP/L000563/1) of which

this work is part of, as well as the Bio-inspired Adaptive

Architectures and Systems project grant (EP/K040820/1).

REFERENCES

[1] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
Proceedings of the 3rd International ICST Conference on Simulation

Tools and Techniques. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010, p. 60.

[2] T. Tobita and H. Kasahara, “A standard task graph set for
fair evaluation of multiprocessor scheduling algorithms,” Journal of

Scheduling, vol. 5, no. 5, pp. 379–394, sep 2002. [Online]. Available:
http://doi.wiley.com/10.1002/jos.116

[3] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”
in Proceedings of the 6th international workshop on Hardware/software

codesign. IEEE Computer Society, 1998, pp. 97–101.
[4] K. Vallerio, “Task graphs for free (tgff v3. 0),” Official version released

in April, vol. 15, 2008.
[5] N. Dahir, P. Campos, and C. Bonney, “XL-STaGe,”

https://github.com/nizarsd/xl-stage, 2016.
[6] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,

“Graphviz and dynagraphstatic and dynamic graph drawing tools,” in
Graph drawing software. Springer, 2004, pp. 127–148.

[7] E. R. Gansner and S. C. North, “An open graph visualization system and
its applications to software engineering,” Softw. Pract. Exper., vol. 30,
no. 11, pp. 1203–1233, Sep. 2000.

