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Abstract 1 

Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife 2 

species, including long distance migrants. Inadequately treated wastes from humans 3 

and livestock dosed with antimicrobial drugs are often assumed to be the main 4 

sources of AMR to wildlife. While wildlife populations closely associated with human 5 

populations are more likely to harbour clinically important AMR related to that 6 

found in local humans and livestock, AMR is still common in remote wildlife 7 

populations with little direct human influence. Most reports of AMR in wildlife are 8 

survey based and/or small scale, so researchers can only speculate on possible 9 

sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This 10 

lack of quantitative data on the flow of antimicrobial resistance genes and AMR 11 

bacteria across the natural environment could reflect the numerous AMR sources 12 

and amplifiers in the populated world. Ecosystems with relatively simple and well 13 

characterised potential inputs of AMR can provide tractable, but realistic, systems 14 

for studying AMR in the natural environment. New tools, such as animal tracking 15 

technologies and high-throughput sequencing of resistance genes and mobilomes, 16 

should be integrated with existing methodologies to understand how wildlife 17 

maintains and disperses AMR.18 
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Introduction  1 

A growing human population and increasing fragmentation of natural habitats 2 

inevitably forces wildlife into greater contact, both direct and indirect, with humans 3 

and their livestock, thereby increasing the opportunities for transmission of infection 4 

between and within populations [1]. While some progress has been made in 5 

understanding the epidemiology of multi-host infections involving wildlife [2], less 6 

attention has been paid to the role of wild animals in the ecology and evolution of 7 

antimicrobial resistance (AMR) [3, 4].  Although AMR is considered one of the 8 

greatest challenges to global health security [5], to date, most AMR research has 9 

been based in clinical settings [6]. Relatively little is known about the flow and fate of 10 

AMR in the natural environment [7], particularly in highly mobile species that could 11 

act as efficient AMR dispersers [3, 4] (Figure 1). In this review, we discuss the 12 

possible role of wildlife in the dissemination of AMR, specifically how wildlife might 13 

acquire and transport AMR and the potential for them to transmit AMR to humans 14 

and livestock. 15 

 16 

Antimicrobial Resistance 17 

Antimicrobial drugs have saved millions of human lives and improved animal health 18 

and welfare globally [6]. Consequently, the evolution and dispersal of AMR is 19 

considered to be a major problem facing medical science and food security [5].  AMR 20 

is an ancient phenomenon, having evolved in dynamic microbial communities within 21 

which antimicrobials are produced by environmental bacteria and fungi naturally 22 

living in soil, water etc [6]. Such AMR, plus AMR as a side effect of selection of other 23 

properties, including efflux pumps for removing environmental stressors such as 24 
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heavy metals, is often referred to as ‘intrinsic’ AMR. In contrast, ‘acquired’ AMR is 1 

the result of exposure to antimicrobial drugs which promotes resistance by selecting 2 

bacteria within a population with genetic traits conferring resistance. Thus, the 3 

selection of AMR in both pathogens and the normal gut microbiota of livestock and 4 

humans is believed to be largely a consequence of increased selective pressure 5 

provided by clinical antimicrobial use: recent hospitalisation, for example, is a risk 6 

factor for shedding antibiotic resistant E. coli in both horses [8] and humans [9].  In 7 

many parts of the world, antimicrobials are still used, not just in clinical settings, but 8 

as ‘growth promoters’ in food-producing animals, an activity banned in the EU owing 9 

to concerns about the selection of AMR [10]. So, while wildlife could provide a 10 

reservoir of intrinsic genetic determinants for resistance, it has usually been 11 

assumed that AMR detected in wildlife samples is acquired AMR resulting directly or 12 

indirectly from antibiotic-treated humans or livestock [11].  13 

The ecology of AMR is complicated by the horizontal spread of the genes 14 

encoding AMR through communities of different species and even genera of 15 

bacteria, via mobile genetic elements such as plasmids (extra-chromosomal DNA 16 

molecules). These mobile genetic elements often encode multiple genes, providing 17 

resistance to antimicrobials and, indeed, other environmental chemical stressors 18 

including metals and disinfectants. Consequently exposure to one antimicrobial (or 19 

other stressor) can select for all co-encoded genes and thus the rapid emergence of 20 

multi-drug resistance  [6].  Thus, wildlife and other environmental bacteria that have 21 

never been found to infect humans can, through horizontal gene transfer, exchange 22 

resistance mechanisms with human pathogens [11, 12] (but see [13]). 23 

 24 
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 1 

Potential sources of AMR in the environment to wildlife 2 

Following selection of resistance within individuals (human or domesticated animals) 3 

treated with antimicrobials [10], both resistant bacteria and antimicrobials are 4 

subsequently excreted by the patient (Figure 1). These can be dispersed in the 5 

environment, for example in sewage effluent pumped into rivers [14] and spreading 6 

sewage sludge as a fertiliser, or in the faeces of treated livestock and pets [15, 7 

16](Figure 2). Effluent and run-off from fields will often end up flowing into the sea, 8 

resulting in estuaries, coastal waters and beaches polluted by faecal matter 9 

[14](Figure 1). This could be a critical point of contact where humans and marine 10 

animals, as well as waders and seabirds, are exposed to AMR [17]. The rapidly 11 

expanding aquaculture industry is another source of AMR and antimicrobials to the 12 

environment: fish and seafood farmed in some countries where antimicrobial usage 13 

is high and poorly regulated are particularly likely to carry medically significant 14 

resistant pathogens [4, 18]. 15 

Evolution of AMR does not necessarily stop in the gastro-intestinal tract of 16 

animals (including humans) undergoing treatment; many antimicrobials can be 17 

excreted in an active form and persist in the environment [19].  Thus ongoing 18 

exposure to antimicrobial drugs, for example in sewage, might maintain the selective 19 

advantage of AMR and promote the proliferation of resistance determinants and 20 

resistant bacteria in the environment. There is an added risk from sites highly 21 

contaminated with excreta, such as intensive farms and sewage treatment plants.  22 

Places with a high abundance and diversity of bacteria provide a high density of 23 

bacterial hosts and excellent conditions for the horizontal transmission of 24 



6 

 

antimicrobial resistance genes from commensal or environmental to pathogenic 1 

bacteria [20]. It is clear that, particularly in areas with dense human or livestock 2 

populations, there is a myriad of AMR sources and amplifiers. If AMR genes and 3 

bacteria are carried in the gut of wildlife, then coupled with inadequate waste 4 

management and long-range animal movements, there is potential for wildlife to 5 

transport new and emerging antimicrobial resistance genes around the world [14] 6 

(Figure 1).  7 

 8 

Patterns of AMR infection in wildlife  9 

With increasing pressure from expanding human populations, wild animals are 10 

increasingly forced to forage on resources contaminated by human ‘pathogen 11 

pollution’ [2, 14]. So it is not surprising that AMR has often been described in peri-12 

domestic wildlife [11]. AMR has been detected, particularly among commensal gut 13 

bacteria, in wild mammals, birds, reptiles and fish, with the prevalence and 14 

resistance patterns varying across species, locations and possibly time (e.g. [3, 18, 15 

21-25]). Current data on AMR in wildlife largely consist of series of ‘snap shots’ 16 

proving the presence of resistomes (all of the antibiotic resistance genes found in 17 

microbes [13]) in those animals, but little else. However, the few studies that identify 18 

potential sources of AMR and can make comparisons across sites differing in 19 

contamination provide insights into the potential for wildlife to disseminate clinically 20 

relevant AMR. 21 

Studies in South America and Africa, found AMR to be more common in gut 22 

bacteria from non-human primates living close to humans than in those from more 23 

isolated populations [26, 27]. Ugandan gorilla populations, for example, with home 24 
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ranges that overlapped human settlements harboured resistant bacteria that were 1 

genetically similar to E. coli from those people and livestock, compared with apes 2 

more remotely located [26]. In Northern elephant seals, Mirounga angustirostris, the 3 

probability of shedding antimicrobial resistant E. coli was found to be directly 4 

correlated with the size of local human populations [28]. Similarly, in the Galapagos, 5 

molecular markers of AMR were more common in both seawater samples and 6 

marine iguanas close to tourist sites compared with those from more pristine 7 

conservation areas [23]. There are, however, exceptions to the generally positive 8 

relationship between spatial distance to anthropogenic wastes and the detection of 9 

clinically important resistance genes. For example, resistance to ciprofloxacin, a 10 

relatively recently developed and completely synthetic antimicrobial, was detected 11 

even in the most remote groups of monkeys in Mexico [27].  This is suggestive of de 12 

novo evolution of resistance, horizontal gene transfer from environmental microbes 13 

and/or greater contact with humans than previously thought. Further molecular and 14 

ecological investigations are clearly required. In general, however, study sites with 15 

relatively low or well defined AMR inputs enable us to quantify spatial patterns, 16 

pathways and processes that drive AMR dissemination at different scales.  17 

In heavily populated areas, high background AMR levels often cloud 18 

observations. In the UK, for example, we and others have found that AMR is 19 

frequently found in both wild mammals and birds, although the sources and drivers 20 

of AMR are often unclear [22, 29-31]; see Fig. 2 and Table 1]. We found that the 21 

patterns of AMR in E. coli from the livestock and rodents resident on intensive 22 

livestock farms (Table 1), and the genes encoding that resistance, were often similar. 23 

The E. coli only rarely identified shared genotypes, however, suggesting an important 24 
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role for the mobilome (all mobile genetic elements in a genome, e.g. plasmids) and 1 

horizontal transmission of AMR rather than simple cross-species transmission of 2 

resistant bacteria. In contrast, at less intensively farmed sites, such as dairy farms 3 

with cattle kept outside, no clear relationships between either patterns or the 4 

genetics of AMR were found in livestock and wildlife [31]. As in the African and South 5 

American studies, we also found AMR in wildlife in relatively remote and 6 

uninhabited (by humans) areas (Table 1). Furthermore, sympatric populations of wild 7 

mammals, including different species of rodents sharing the same woodland habitat, 8 

had different patterns of AMR and/or different temporal dynamics [29]. This strongly 9 

suggests that AMR in the bacterial microbiota of wildlife is not simply a matter of 10 

recent anthropogenic contamination or selection.  11 

So while most studies in wildlife have assumed that AMR in wildlife is the 12 

consequence of spill-over of resistant bacteria from domestic animals or people [32, 13 

33], there are several non-exclusive alternative hypotheses that challenge this notion 14 

of recent transmission. For example, following exposure to wastes containing 15 

pharmaceuticals, enteric bacteria present in wildlife evolve resistance through 16 

selection of pre-existing environmental antimicrobial resistance genes. These might 17 

become ‘naturalised’ in the gut microbiota, but also AMR genes (which have been 18 

found in ancient environmental samples [13]) are, and have always been, a normal 19 

finding in commensal gut microbiota. Moreover, distinguishing between AMR 20 

recently acquired from anthropogenic sources, such as a farm or sewage treatment 21 

plants, and ‘intrinsic’ (or at least ‘naturalised’) background AMR will be challenging. 22 

Comparing the similarity of sequences of resistance genes collected from sites 23 
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differing in their connectedness to sources of acquired AMR (e.g. using sequence 1 

similarity network approaches [12]) could provide the evidence required.  2 

A particular concern about AMR dispersal is wildlife species that have the 3 

capacity for long range movements.  Migratory birds arriving from beyond national 4 

boundaries could transfer new or emerging patterns of AMR, but even resident 5 

species have the potential to move AMR from hotspots to vulnerable populations. 6 

The potential of wild animals to disseminate AMR depends on their AMR ‘infection’ 7 

status, their direct and indirect contact with other populations and their movements 8 

within the landscape. In communal corvid roosts in Europe and the USA, 2.5 – 6.0% 9 

of faecal samples contained resistance genes for vancomycin, a antimicrobial ‘of last 10 

resort’ in human medicine [21, 34]. Gulls carrying medically significant AMR, are 11 

capable of long range movements and are increasingly found feeding on 12 

anthropogenic waste and nesting in urban areas [22], [25, 35].  Similarly, in aquatic 13 

ecosystems uneaten food and faeces from human sewage, agriculture and 14 

aquaculture containing antimicrobials and AMR bacteria can be ingested by wild fish 15 

and other organisms, which  can travel enormous distances and in some cases enter 16 

the human food chain [18].  However, most of these studies on globally moving 17 

species are one-off surveys of AMR prevalence with no attempt to identify infection 18 

sources (or sinks) [3], which limits our ability to estimate the risk posed by migratory 19 

species in disseminating AMR. Finally, it remains unknown whether AMR can be or, 20 

more importantly, is transmitted from wildlife to humans or domestic animals, which 21 

is the main concern of clinicians and policy makers. 22 

 23 

Studying AMR dispersal by wildlife 24 
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Given the many knowledge gaps, a range of tools and approaches will be 1 

needed to identify and characterise transmission routes of AMR in wildlife. At a 2 

broad scale, identifying traits that predispose wildlife species or functional groups to 3 

transmit AMR could be determined by integrating ecological, biological and life 4 

history datasets for vertebrate hosts with metagenome sequences embedding 5 

resistance determinants [12]. While this is an efficient and informative approach, 6 

one caveat is that by mining such data, we can only find known resistance 7 

determinants. Some evidence from wildlife studies shows that the  genes 8 

responsible for phenotypic resistance are often not detectable using PCRs targeted 9 

at common clinical AMR genes. This suggests a greater diversity of resistance genes 10 

(many of which will already have been associated with other, non-AMR, functions) in 11 

the environment than found in clinical isolates (Authors’ Unpub. Data). 12 

At a finer scale, study systems are needed in which clear and measurable 13 

transmission routes for AMR exist and the movement of wildlife can be tracked. The 14 

discovery of multidrug resistance in species of high conservation value on oceanic 15 

islands [23] and in samples from isolated, relatively untouched points on continents 16 

[25] provide ‘natural experiments’ that are ideal for studying patterns and processes 17 

in the ecology and evolution of AMR. Monitoring AMR genes within such pristine 18 

ecosystems (e.g. Arctic or nature reserves with tight biosecurity), or at their interface 19 

with human-influenced areas enables us to estimate the frequency with which genes 20 

encoding resistance are exchanged in microbial communities. Such microbial 21 

communities can exist within human, domestic animal and wildlife populations, as 22 

well as the wider environment [25, 36]. 23 
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When working in the more contaminated ‘natural’ environments common to 1 

densely populated areas, distinguishing between AMR acquired from anthropogenic 2 

sources, such as a farm or sewage treatment plant, versus naturally occurring or 3 

naturalised ‘background’ AMR will be more challenging. One approach is to study the 4 

dispersal of relatively rare AMR determinants, currently associated only with human 5 

(or particular livestock) populations, through food chains.  For example, 6 

fluoroquinolone resistance and extended-spectrum beta-lactamases (ESBL) 7 

(conferring resistance to newer antibiotics used in human medicine), are relatively 8 

unusual in livestock and, in our experience, incredibly rare in wildlife. Such resistance 9 

might be tracked through high risk ecosystems, for example from sewage treatment 10 

plants or livestock slurry pits into the surrounding environment, at multiple levels: 11 

phenotypic resistance, bacterial genotype, mobile elements and individual resistance 12 

genes. High-throughput next-generation sequencing, can rapidly provide such 13 

detailed forensic trails [13]. Although targeted at a limited range of AMR, this 14 

approach would provide a good understanding of the ecology of AMR genes and 15 

their ‘resistome’ context. Deeper, meta-genomic sequencing studies through these 16 

and/or less high risk ecosystems will be needed to place such targeted AMR studies 17 

in a broader perspective, through examining a range of AMR genes across taxa of 18 

host bacteria within the same samples. However, metagenomic studies have their 19 

own challenges, not least the volume and complexity of bioinformatic data analysis 20 

and the cost, which  currently limits sample number and interpretation.  21 

Ecological models of AMR transmission involving wildlife need to incorporate 22 

indirect rather than just direct host-to-host transmission. Although AMR can be 23 

transmitted directly between hosts, for example through predation (food-borne in a 24 
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clinical context) or grooming and faeco-oral transmission, there is a huge overlap 1 

between the microbiota of the normal gut and that of the external environment   2 

(e.g. in soil and water) with horizontal transmission of AMR possible in both. Such 3 

models could be based on spatial movements in relation to a common 4 

environmental source of AMR contamination such as a refuse dump [26]. Sewage 5 

treatment plants, for example, are hotspots of AMR,  which can provide valuable 6 

pockets of semi-natural habitat for birds and bats, attracted by the invertebrates 7 

that themselves feed in the sewage  [37]. In fragmented landscapes, birds and bats 8 

often then move between isolated discrete patches of suitable habitat or food 9 

sources [38], such as gardens and farms, enabling the further dispersal of AMR. Ever 10 

more powerful and accurate electronic tracking devices and spatial modelling 11 

approaches provide the potential to map the movements of animals in both space 12 

and time relative to potential sources of AMR pollution and points of contact with 13 

humans and livestock [39]. By combining a range of tools including mark-recapture 14 

methods, epidemiological modelling, molecular sequencing, behavioural 15 

observations and high tech devices such as GPS trackers, we can start to test 16 

empirically hypotheses concerning the dissemination of AMR by wildlife. 17 

 18 

Consequences of AMR for wildlife  19 

The consequences for wildlife of the evolution of AMR in commensal, or even 20 

pathogenic, bacteria are untested [36], but  probably small. Unlike avian influenza 21 

[40], for example, AMR is not a disease and does not appear to reduce the survival or 22 

dispersal capacity of ‘infected’ animals, although this has not been explicitly tested.  23 

The clinical issue with AMR in both human and livestock populations is not that it 24 
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causes disease, but that it threatens the ability to treat infections with 1 

antimicrobials, a practice rare in wild-living populations. AMR could compromise the 2 

treatment of individual wild animals in captivity, e.g. in wildlife hospitals, or of highly 3 

managed populations , especially those immuno-compromised due to low genetic 4 

diversity (e.g. [41]). This might be exacerbated by conservation management 5 

measures such as translocation of rare species that could expedite the spread of 6 

novel microbes or antimicrobial genes between isolated populations [42]. 7 

The biggest issue for wildlife populations is the management response should 8 

they be thought to be significant sources of AMR for humans or livestock (see also 9 

Table 2). The control of wildlife infections transmissible to humans and livestock 10 

relies on three main approaches – separation of, or at least reducing contact with, 11 

the wildlife source, vaccination, and wildlife population control, often by culling. 12 

Vaccination is not possible for AMR control, and the physical separation of wildlife 13 

from livestock is difficult, expensive and, except very locally (e.g. keeping rodents or 14 

birds out of feed stores), impracticable. Protecting the human food chain from AMR 15 

is important but challenging given that wild game, seafood and bushmeat are 16 

important both nutritionally and culturally in many human societies [4]. 17 

Furthermore, control and mitigation measures such as improved hygiene and 18 

restriction on movements cannot be easily implemented, if at all, for free living 19 

animals. For logistical, economic, historical and cultural reasons, culling is often the 20 

approach taken: however, the efficacy and efficiency of culling wildlife in controlling 21 

disease are at best controversial.  22 

 23 

Research and policy priorities 24 
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Wildlife clearly is shedding and therefore able to disseminate AMR [2, 4]. However, 1 

few studies have identified the likely selection factors (including, but not necessarily 2 

limited to, sources of antimicrobial exposure), origins of the resistance genes, or, 3 

importantly, the direction of transmission. Studying infection transmission in wildlife 4 

poses a number of challenges, particularly for a complex issue such as AMR that is 5 

present in, and can move between, multiple bacterial taxa in multiple hosts and the 6 

environment. Approaches used to study and control AMR transmission in the clinical 7 

setting are challenging to apply to wildlife systems. Contact between wildlife and 8 

sources of AMR and/or antimicrobials often cannot be measured directly but need to 9 

be inferred, for example from molecular ‘fingerprints’ of specific contamination. This 10 

can be supplemented with behavioural observations and electronic tracking devices 11 

fitted to wild animals.  12 

Interventions that minimise and mitigate the transmission of AMR from 13 

livestock or human populations to wildlife need researching alongside investigation 14 

of the risk itself, in order to develop both evidence-based and proportionate 15 

protocols and policies (Table 2). Pollution control and sewage treatment are likely 16 

priority areas for such research, particular in countries with few controls on either 17 

antibiotic usage or release of untreated wastes (which includes both developed and 18 

developing countries). Meanwhile ecologists studying wild populations, along with 19 

wildlife hospitals and existing programmes designed to monitor pollution, poisoning 20 

and diseases in wildlife (e.g. WILDCOMS [43]), might be recruited to collect samples 21 

for surveillance.  This last approach might be particularly useful in identifying species, 22 

key individuals within populations or spatial locations that are ‘super spreaders’ of 23 
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AMR transmission and could be targeted for focused surveillance, control or 1 

mitigation measures [39].  2 

It is important to study AMR in wildlife as a potential hazard to human health 3 

and food security, especially given that about 40% of emerging human diseases are 4 

thought to have originated in wildlife [1].  Tropical ecosystems and areas in which 5 

humans live close to both livestock and wildlife are likely to present heightened, but 6 

to date poorly studied, risks for the evolution and transmission of AMR by wildlife 7 

(Table 2). Furthermore, studies of AMR in wildlife can have wider impact than simply 8 

public health risk. First, by stepping outside of the 'blame game' of livestock, 9 

veterinary and medical systems they can elucidate fundamental issues in the 10 

evolution and transmission ecology of antimicrobial resistant bacteria and resistance 11 

determinants that can be applied back into more clinical settings. Second, a better 12 

understanding of the role of wildlife in AMR dissemination should help us decide if 13 

control and mitigation strategies are required and where best to apply them. Finally, 14 

while wildlife might be long distance dispersers of AMR, they can also be sentinels 15 

for the abundance and distribution of pathogen pollution in our environment. 16 
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Figure and Table Captions 1 

Figure 1: Dispersal of AMR across the landscape: between human communities, 2 

hospitals, sewage treatment plants (STPs), farms and the wider environment 3 

including via wildlife (Modified from [6]).  4 

 5 

Figure 2: Antimicrobial resistance in wildlife on dairy farms in Cheshire, UK. The 6 

resistance patterns of E.coli from the faeces of cattle, rodents (mainly Myodes 7 

glaroelus and Apodemus sylvaticus), wild birds (mainly passerines) and other wild 8 

mammals (mainly badgers and foxes) were compared: 1A) Percentage of faecal 9 

samples containing E. coli resistant to at least one antibiotic on five different farms 10 

(A-F). 1B ) Percentage of E. coli isolated from each group of animals resistant to 11 

various antibiotics or multidrug resistant. Resistance to the following antibiotics was 12 

tested: ampicillin (amp), chloramphenicol (chl), tetracycline (tet), trimethoprim (trm) 13 

and nalidixic acid (nal) and also *MDR (multi-drug resistance defined as resistance to 14 

three or more of the antibiotics tested). All susceptibility testing was performed 15 

according to the British Society of Antimicrobial Chemotherapy guidelines [44]. 16 

Figure modified from [31]. 17 

 18 

Table 1: Antimicrobial resistant E. coli in the faeces of wild rodents collected at sites 19 

in the UK varying in predicted exposure to livestock treated with antimicrobial drugs. 20 

Resistance to six antibiotics (ampicillin (amp), apramycin (apr), chloramphenicol 21 

(chl), tetracycline (tet), trimethoprim (trm) and nalidixic acid (nal)) was investigated 22 

[44]. Modified from [31]  23 

 24 
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Table 2: Summary of some of the key outstanding questions, mitigation measures 1 

and research approaches regarding the role of wildlife in the transmission of AMR 2 

based on the literature reviewed. Suggested research approaches draw upon diverse 3 

disciplines including ecology, veterinary science and the social sciences. 4 

  5 
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Figure 1 1 
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Figure 2: 1 
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Table 1 1 

Site type  Predicted 

exposure to 

antimicrobial 

treated 

livestock 

Rodent 

species 

sampled
1 

Prevalence (% samples containing resistant 

E.coli) of antibiotic resistance in faecal 

samples of different rodent populations 

 amp apr chl tet trm nal 

Uninhabited 

island 

None  Water vole
2 

10-85 0 2-65 5-75 5-85 0-35 

Upland forest  Upland sheep Field vole, 

Bank vole & 

Wood mouse 

0-5 0 0-5 0-5 0-5 0 

Lowland 

woodland   

Reared 

gamebirds & 

cattle on 

adjacent 

dairy farms 

Bank vole & 

Wood mouse 

12-22 0-1 4-6 12-18 11-18 0 

Fields on 

dairy farms  

Cattle on 

fields 

Wood mouse 

 

Cattle 

0-27 

 

5-75 

0 

 

0 

0-27 

 

0 

0-30 

 

8-92 

0-42 

 

5-92 

0 

 

0 

Intensive 

poultry farms  

Poultry in 

buildings 

House 

mouse
3 

 

 

Bank vole & 

wood mouse 

 

Poultry 

 

47-55 

 

 

 

0-5 

 

 

5-8 

 

 

0 

 

 

 

0 

 

 

0 

 

 

21-25 

 

 

 

0 

 

 

0 

 

57-75 

 

 

 

0-9 

 

 

15-45 

 

57-68 

 

 

 

0-12 

 

 

3-6 

 

 

0-10 

 

 

 

0 

 

 

0-18 

 
1
Rodent species – Water vole Arvicolis terrestris, Field vole Microtus agrestis; Bank 2 

vole Myodes glareolus; Wood mouse Apodemus sylvaticus; House mouse Mus 3 

musculus.  
2  

Water voles on these islands are fossorial rather than riparian as on the 4 

mainland. 
 3 

captured in and around the buildings housing poultry. 5 

 6 
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Table 2: Summary of some of the key outstanding questions, mitigation measures 1 

and research approaches regarding the role of wildlife in the transmission of AMR 2 

based on the literature reviewed. 3 

Ecology of the 

host 

Biology of the 

host 

Risks to humans 

and livestock 

Mitigation 

measures 

Research 

approaches 

How do species 

and climate 

driven 

differences in 

seasonal 

population 

dynamics affect 

AMR carriage? 

How long and far 

are resistance 

genes carried 

and shed by 

wildlife 

(particularly 

migratory) 

species? 

How can we prove 

the direction of 

AMR transmission 

from humans or 

livestock to/from 

wildlife? 

How can 

anthropogenic 

wastes be 

managed to 

prevent 

transmission of 

AMR to wildlife? 

Spatially explicit 

field studies & 

network 

modelling to 

identify key 

transmission 

locations, species 

& individuals. 

Are carnivores 

and scavengers 

more likely to 

harbour AMR 

than omnivores 

or herbivores? 

Do gut bacteria 

endemic to 

wildlife species 

differ in their 

propensity to 

share resistance 

genes via 

horizontal 

transfer? 

Are wild animals a 

direct (bushmeat) 

or indirect 

(contaminating 

livestock food) 

route by which 

AMR can enter the 

human food chain? 

Can existing 

surveillance and 

monitoring 

schemes (e.g. 

WILDCOMS) be 

used for AMR 

screening of 

wildlife? 

Mine AMR 

metagenome 

sequences in 

public databases 

to test hypotheses 

regarding ecology 

& evolution of 

AMR 

transmission. 

Are group living 

species or 

individuals more 

likely to carry 

AMR than 

solitary ones? 

Are species with 

an aquatic life 

stage or aquatic 

diet most at risk 

of acquiring or 

transmit AMR? 

What is the 

relative 

contribution of 

aquaculture to 

AMR evolution and 

transmission in 

aquatic and marine 

ecosystems? 

Do unmetabolised 

antibiotics from 

wastes select for 

the evolution or 

maintenance of 

AMR in the 

environment? 

Sensor technology 

deployed 

systematically to 

detect AMR 

and/or antibiotics 

in high risk 

ecosystems, 

exposure 

pathways or 

species. 

Are urban 

adaptors or 

exploiters more 

likely to disperse 

AMR than urban 

avoider species? 

Does an 

individual’s 
immune 

function affect 

its propensity to 

be infected by 

AMR microbes? 

Which agricultural, 

religious or cultural 

practices globally 

expose humans to 

wildlife 

disseminated 

AMR? 

What are the 

alternatives to 

culling AMR-

infected wildlife 

that pose a risk to 

humans? 

Deliberative, 

stake-holder 

driven, 

approaches to 

developing 

societal solutions 

to AMR 

transmission in 

the environment. 

 4 

 5 


