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Summary

o Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and
plants, and play a role in peroxisome morphology and regulation of peroxisome division. The
moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to
those found in monocots and dicots.

e We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the
morphological and cellular phenotypes of the wild-type and mutant strains.

e The mutant grew more slowly and the development of gametophores was retarded.
Mutant chloronemal filaments contained large cellular structures which excluded all other cel-
lular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain
had greatly enlarged peroxisomes up to 10 um in diameter. Expression of a vacuolar mem-
brane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes
sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome
membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxi-
some membrane.

e Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the
mutant phenotype is more extreme and environmentally determined, making P. patens a

powerful system in which to address mechanisms of peroxisome proliferation and division.

Introduction

Peroxisomes are organelles found in all eukaryotic cells from uni-
cellular eukaryotes such as algae and baker’s yeast to complex
multicellular organisms such as humans and flowering plants.
Peroxisomes can be derived from the endoplasmic reticulum
(ER) but can grow by post-translational import of membrane
and matrix proteins, divide and segregate into daughter cells
(Fagarasanu ez al., 2007) However, the relative importance of de
novo biogenesis versus organelle division remains hotly debated
(Hettema ez al., 2014) and it should be noted that in plants no
direct evidence for ER luminal connections has been found (Bar-
ton eral., 2013). Peroxisomes are also capable of proliferation
under appropriate environmental conditions. In fungi, peroxi-
somes are induced to proliferate by nutritional cues, for example
methanol in the case of methylotrophic fungi such as Hansenula
polymorpha (van der Klei ez al., 2006) or oleate in Saccharomyces
cerevisiae (Gurvitz & Rottensteiner, 2006), and peroxisomes play
essential roles in metabolism of these substrates. Peroxisomes are
important sites of cellular defence against oxidative stress and sev-
eral studies have reported peroxisome proliferation in response to
stress conditions such as high light (Ferreira ez al., 1989; Desai &
Hu, 2008), salt (Palma ez al., 1987; Mitsuya etal., 2010), heavy
metals (Palma eral, 1987) and hydrogen peroxide (Lopez-
Huertas et al., 2000). Division and proliferation share common

576  New Phytologist (2016) 209: 576-589
www.newphytologist.com

steps. Morphologically, peroxisomes first tubulate or elongate,
followed by constriction, often giving a ‘beads-on-a string’
appearance, and finally divide (Thoms & Erdmann, 2005; Kaur
& Hu, 2009).

In recent years, much has been learned about the molecular
machinery of peroxisome proliferation and division (Schrader
eral., 2012). The first identified component was S. cerevisiae
peroxisomal biogenesis factor 11 (PEX11). Mutants disrupted in
the PEX1I gene have greatly enlarged peroxisomes, while cells
overexpressing PEX1I have large numbers of small peroxisomes
(Erdmann & Blobel, 1995; Marshall ez 4/, 1995). ScPEX11 is a
peroxisome membrane protein the expression of which is strongly
induced by oleate (Gurvitz eral., 2001), and the homologous
protein from the fungus Penicillium chrysogenum has recently
been shown to induce membrane curvature and tubulation of
lipid vesicles 77 vitro (Opalinski ez al., 2011). Fungal PEX11 has
homologues in mammals and plants. In mammals there are three
isoforms termed PEX11a, B and y (Schrader eral, 1998; Li
eral., 2002a). Pex1la is thought to have a role in peroxisome
proliferation in response to external stimuli such as hypolipo-
daemic drugs and peroxisome proliferators, whereas Pex11 plays
a role in constitutive proliferation/division (Schrader ez 4l., 1998;
Li etal, 2002b). The N-terminal 40 amino acids of Pex11,
which include the second amphipathic helix, are also important
for membrane tubulation iz wvivo (Bonekamp eral, 2013).
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Recently, the first patient with a mutation in Pex11f was
described, who had enlarged and elongated peroxisomes and clin-
ical symptoms similar to those of other patients with mild peroxi-
some disorders (Ebberink ez al., 2012).

Plants have a still larger PEX11 family, with five genes in Ara-
bidopsis (Lingard & Trelease, 2006) and rice (Oryza sativa
Nayidu ezal., 2008) which fall into two clades, one containing
Arabidopsis isoforms ¢, d and e and rice isoforms 1 and 2 and the
other containing Arabidopsis isoforms a and b and rice isoforms
3,4 and 5 (Orth ez al., 2007). Phylogenetic analysis indicates that
PEXI1 genes have a monophyletic origin and have evolved inde-
pendently in the different kingdoms (Orth ezal, 2007) (Chang
et al., 2015) Evidence for (some) conservation of function comes
from the ability of one Arabidopsis isoform (PEX11e) to partially
complement the S. cerevisiae pexI] mutant (Orth eral, 2007)
and from the finding that human, yeast and plant PEX11 pro-
teins have similar effects on peroxisome proliferation when
expressed ectopically in human cells (Koch ezal, 2010). Ara-
bidopsis PEX11 b—e are proposed to span the membrane twice
with both termini in the cytsol (Lingard & Trelease, 2006), and
a similar topology was reported for mammalian Pex11f
(Bonekamp eral., 2013).

Peroxisome division is achieved by a machinery that has shared
components with mitochondria (Table 1) (Mano ezal, 2004;
Schrader, 2006; Zhang & Hu, 2008, 2009), and in plants with
chloroplasts (Zhang & Hu, 2010). In current models, tail-
anchored proteins of the Fissionl (Fisl) family are targeted to
peroxisomes as well as mitochondria and play a role in the
recruitment of dynamin-related proteins which sever the tubu-
lated peroxisomes that result from binding of PEX11. PEX11 is
the only peroxisome-specific component of this machinery iden-
tified to date. Arabidopsis PEX11 proteins have been shown to
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both homo- and hetero-oligomerize (Rahim ez al., 2009) as well
as interact with Fis1b (Lingard ez al, 2008). In mammalian cells,
homo-oligomerization of PEX11f was observed, and a ternary
complex containing Pex11p, Fisl and dynamin like protein 1
could be identified (Kobayashi ez al., 2007). In yeast, Pex11p also
dimerizes in a redox-sensitive manner (Marshall ezal, 1996).
ScPEX11 has been shown to be phosphorylated and activated by
Pho85 kinase on Ser 165 and 167, phosphorylation promoting
peroxisome association and proliferation (Knoblach & Rachu-
binski, 2010). In Pichia pastoris, phosphorylation of PEX11 Ser
173 promotes interaction with Fislp and hyper-divided peroxi-
somes but does not affect transit from the ER to peroxisomes
(Joshi et al., 2012). Thus, PEX11 controls peroxisome prolifera-
tion in yeast through transcriptional (Gurvitz eral., 2001) and
post-transcriptional (Knoblach & Rachubinski, 2010) (Joshi
etal., 2012) means. Other roles for PEX11 have been described.
In S. cerevisiae, PEX11 plays a role in medium-chain fatty acid
oxidation (van Roermund ezal., 2000) and has also been impli-
cated in mitochondrial-peroxisome contact sites (Mattiazzi Usaj
etal., 2015). In Yarrowia lipolytica, pex1] mutants showed a per-
oxisome biogenesis defect; they lacked peroxisomes and mislocal-
ized matrix proteins to the cytosol (Chang ez al., 2015).
Physcomitrella patens is an excellent model for comparative
plant cell biology. It belongs to the bryophytes, the first group to
diverge from the plant lineage following the conquest of land,
and was the first nonflowering plant to have its genome
sequenced, facilitating comparative genetic analysis (Rensing
etal., 2008). Unlike flowering plants, P. patens exhibits somatic
homologous recombination at high frequency, facilitating the
production of knockout mutant lines where the precise site of
transgene integration can be controlled (Schaefer & Zryd, 1997).
Although P. patens has been reported to contain peroxisomes of

Table 1 Peroxisome division components in humans, yeast, Arabidopsis and moss

Homo sapiens

Saccharomyces cerevisiae

Arabidopsis thaliana Physcomitrella patens

Peroxisome tubulation PEX110 PEX11
PEX11pB PEX25
PEX11y PEX27
DRP tether hFIS1 Fis1p
Mff?
Soluble adaptors Cafdp
Mdv1p
Dynamin-like/related proteins (fission) DRP1 Dmn1p
Vpsip

PEX11a Phypa_439417 (Phypa_PEX11-5)
PEX11b Phypa_447344 (Phypa_PEX11-3)
Phypa_428462*
(Phypa_PEX11-6)
Phypa_426510 (Phypa_PEX11-4)
Phypa_422942*
PEX11c (Phypa_PEX11-2)
PEX11d Phypa_460481 (Phypa_PEX11-1)
PEX11e
FISTA Phypa_433535
FIS1B?
Phypa_436928 (annotated as
mt fission factors)
DRP3A Phypa_433610
DRP3B Phypa_449578
Phypa_452114
Phypa_4389781
DRP5B Phypa_431552

Phypa_456622
Phypa_454673

*V1.6 gene models are incorrect.
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the glyoxysome type (Huang ezal, 2009) and the distribution
and quantification of peroxisomes have been reported (Furt ez al.,
2012), no further cellular or molecular characterization of moss
peroxisomes has been described. Here, we describe the PEX11
family in P. patens and the phenotype of a knockout mutant in
one member of the gene family which results in the formation of
giant peroxisomes.

Materials and Methods

Identification of Phypa_PEX11 genes

Database searching with the Arabidopsis PEXIIe gene identified
the cDNA clone PPN181002 (Accession BI436924) as a poten-
tial Physcomitrella PEX1I orthologue. Within the P. patens
genome assembly, version 1.1, this corresponds to Protein ID
Phypal_1:200510. Additional P. patens gene models encoding
PEX11 homologues were identified by BLASTP search using
Phypal_1:200510 and the Arabidopsis PEX11 polypeptide
sequences. One further gene model was identified with high simi-
larity to Phypal_1:200510 and the AtPEX11c and A(PEX11d
sequences, and four further models with similarity to the
AtPEX11a and AtPEX11b sequences (Table 1; Supporting Infor-
mation Table S1).

Plant material

The ‘Gransden’ strain of Physcomitrella patens (Hedw.) B.S.G.
was propagated as a protonemal culture on BCD agar medium
containing 1mM CaCl, and 5mM ammonium tartrate
(BCDAT), overlaid with cellophane, and as individual plants
(‘spot inocula’) on the same medium without cellophane overlay.
Protonemal tissue was vegetatively propagated by homogeniza-
tion and subcultured every 7 d (Knight ez al,, 2002). For growth
testing, small protonemal explants were inoculated onto BCD or
BCDAT agar and plant growth was monitored during a 31-d
period following inoculation. The extent of plant growth was
estimated following digital photography of the plates (Kamisugi
etal, 2012). The image analysis software IMAGE] (Abramoff
etal., 2004) was used to convert the digital images to binary for-
mat and determine the colony area based on counting the num-
ber of pixels corresponding to each colony. Colony area
determinations based on different photographs were normalized
for each colony using the estimated area of the plate.

RNA isolation and cDNA sequence analysis

A polysomal fraction was isolated from 7-d-old chloronemal tis-
sue. Chloronemata were harvested from cellophane overlays,
residual liquid was squeezed out between two sheets of filter
paper and ¢. 0.3 g was ground to a powder then homogenized in
25 ml of 200 mM sucrose, 50 mM Tris-Cl, pH8.5, 60 mM KCl,
30 mM MgCl, and 1% (v/v) Triton X-100. Following centrifu-
gation at 25 000 g for 20 min, the supernatant was layered over a
5-ml sucrose cushion (1M sucrose, 40 mM Tris-Cl, pHS.5,
20 mM KCI and 10 mM MgCl,) and centrifuged at 141 000 g
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for 3 h. The supernatant was aspirated and the pellet drained, for
RNA extraction with 0.5 ml of extraction buffer (Knight ezal,
2002). For re-PCR, RNA (c. 100 pg) was digested with 1 unit of
RQ1 DNase (Promega) for 10 min at room temperature and
purified by phenol-chloroform extraction and ethanol precipita-
tion. Complementary DNA was synthesized from 1 pug of RNA
using the Promega Reverse Transcription System. The reaction
mixture was diluted 5-fold with water, and 2-pl aliquots were
used for PCR amplification. Primers used are listed in Table S2.
The PCR products were cloned into pBluescript II KS™ and
sequenced using T7/T3 universal primers.

Plasmid constructions

Construction of the knock out vector pJHB1 The cDNA clone
PPN181002 was wused to identify a BAC clone
(pPMOKM102M14) by screening a Physcomitrella BAC library. A
4.7-kb EcoRI fragment containing the 3'-terminal region of the
Phypa_PEX11 gene (containing the last five exons in the coding
sequence) was subcloned and a 3.65-kb fragment amplified by
PCR using primers P22 and P21 (Fig. 1; Table S2) and sub-
cloned into pDONR 201 to make the plasmid pJOB1. This plas-
mid was digested with Sa/l and Sphl and re-ligated with the Sphl/
Xhol excised nptll cassette (p35S-nptI-CaMV gbter) from the
plasmid pMBL5 (Knight eral, 2002; Accession D(Q228130)
replacing the three C-terminal protein-coding exons. The result-
ing plasmid was recombined with pMBL6attR (Kamisugi ez /.
2005) (Accession DQ228132), to generate the gene disruption
construct pJHB1 (Fig. Sla). A markerless PEX11 deletion con-
struct was created by digesting pJHB1 with Neol and Bsp1201 to
remove the selection cassette and re-ligating the plasmid.

Construction of GFP and RFP reporters GFP and RFP
reporter constructs targeted to peroxisomes by C-terminal addi-
tion of the peroxisome targeting signal 1 tripeptide ‘SKL” (GFP
and CFP (Sparkes ez al., 2005)) or ‘SRL’ (RFP) were used to visu-
alize gene expression in regenerated moss protonemata, for stable
(RFP), unstable (GFP) and transient (CFP) expression. The plas-
mid pAmRFP-SRL-H108 was created by inserting a rice actinl
promoter from pAct-p and the mRFP-SRL-35Ster fragments
from p35S:mRFP-SRL (Pracharoenwattana ez al., 2005) into the
Acc65] site of pMBLH108 (Fig. S1b) to allow targeting of the
reporter gene to the neutral ‘A108” locus (Schaefer & Zryd,
1997) To generate PEXII overexpression lines, cDNA of
PhypaPEX11-1 was amplified with a pair of gene-specific
GATEWAY primers (Table S2) and cloned into pDONR 201 to
create the entry vector pcPex11GW. The PEX11 fragment was
subsequently recombined into a A108-targeting GFP-fusion des-
tination vector, pS65T-GW-H108, to create the overexpression
reporter plasmid, pS65T-Pex1 IGW (Fig. Slc).

Moss transformations and molecular characterization

Gene disruption lines  Moss disruption lines for Phypa_PEX11-1
were generated by gene targeting, using a PCR-amplified
sequence from pJHBI1. Primers Phypa PEX11KOF and
© 2015 The Authors
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Fig. 1 Targeted knockout of the Physcomitrella patens Phypa_PEX11-1 gene (PEX11: peroxisomal biogenesis factor 11). (a) Structure of the
Phypa_PEX11-1 gene and design of the targeting construct. Exons are denoted by boxes (grey, untranslated region (UTR); black, protein-coding region).
The gene targeting construct comprised 505-bp and 880-bp 5'- and 3’-targeting sequences amplified from the Phypa_PEX11-1 gene, and interrupted by
replacing the sequences between the Sphl and Sall sites with the nptl/ selection cassette. Dashed lines indicate the relationship of PCR primer pairs p2 and
p3, p22 and p5, p6 and p4 and p22 to the sequence, and the fragments amplified from targeted transgenic strains using these primer combinations are
indicated. (b) Identification of targeted strains by PCR. Targeting by the 5’ end of the targeting construct is indicated by the amplification of a 677-bp
fragment with primers p22 and p5 (top panel); targeting by the 3’ end of the construct by amplification of a 1374-bp fragment using primers p4 and p6
(middle panel). Strains in which targeting at both ends has occurred are indicated by a black dot above the cognate tracks. The bottom panel identifies
strains in which targeted replacement of the native locus with a single copy of the targeting construct has occurred, by amplification of a 3777-bp fragment
with primers p22 and p4. Track ‘c’ shows the amplification of the expected fragment in a control amplification of the disrupted, cloned gene from plasmid
DNA. ‘wt’ indicates amplification of the native gene (2.9 kb) in a wild-type (WT) strain. Lines indicated by upward arrowheads have undergone single-copy
targeted gene replacement. Lines indicated by downward arrowheads contain a multicopy replacement of the endogenous gene (too large for
amplification by external primers) and lines indicated by open circles contain multicopy replacements of the endogenous locus but also a wild-type copy of
the native gene: these lines are polyploids formed by protoplast fusion during PEG-mediated transformation. (c) Identification of strains lacking adventitious
transgene insertion by Southern blot hybridization using the selection cassette sequence as a probe. Lines 2-13 and 3-8 are lines in which multiple copies of
the transforming DNA have inserted at nontargeted sites within the genome. Line 2-12 appears to contain a single off-target insertion in addition to a
correctly targeted locus and lines 3-1, 3-18 and 3-27 contain only a single copy of the targeting cassette correctly targeted to the Phypa_PEX11-1 locus. (d)
Western blot of wild-type and three targeted mutants. Upper panel, probed with anti-PEX11 antibody; lower panel, the same samples probed with anti-
ATPB as a loading control. Samples 1 and 2 derive from targeted replacement lines. Sample 3 derives from a line containing a targeted insertion at the
PEX11-1 locus, but retains a wild-type copy of the gene. The intense band at c. 17 kDa in the upper panel is an unrelated cross-reactive protein.

Phypa_PEX11KOR (Table S2; primers ‘p2’ and ‘p3’ in Fig. 1a)
amplified a fragment of 3390 bp, comprising the p35S-nptli-
CaMV goter cassette flanked by 505 bp of the Phypa_PEX11 gene
immediately 5’ to the Sa/l site and 880 bp immediately 3’ to the
Sphl site. Protoplasts were transformed using 15 pg of PCR frag-
ment, and stable transformants were regenerated by three succes-
sive cycles of subculture on selective (containing G418 at
30 ug ml™! (Melford Laboratories, Suffolk, UK)) and nonselec-
tive media as described previously (Knight ez /., 2002; Kamisugi
etal., 2005). Stable transformants were analysed by PCR to iden-
tify lines containing single-copy targeted gene replacements, using
external gene-specific primers in conjunction with selection-
cassette-specific primers as described by (Kamisugi ez 4/, 2006) to
identify targeting at the 5 (primer pair p22 and p5 in Fig. 1a,b)
and 3’ ends (primer pair p4 and p6 in Fig. 1a,b), and the external
primers (p22 and p4) to distinguish between transformants in
which the Phypa_PEX11-1 gene was disrupted by a single or mul-
tiple copies of the replacement cassette. Southern blotting was
undertaken to identify plants in which no transforming DNA had

© 2015 The Authors
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adventitiously inserted at ectopic sites (Fig. 1¢). Eight transgenic
lines containing a targeted gene replacement, with no adventitious
transgene copies, were obtained.

Transgenic reporter lines Protoplasts were transformed with
reporter constructs and transformants were regenerated, selected
and maintained on medium containing 50 pug ml~" hygromycin,
as described above. To generate Phypa_pex11-1-KO mutants in a
transgenic moss strain (G418®) expressing a GFP-AtVam3
(Arabidopsis homologue of S. cerevisiae VAM3) fusion protein
(Oda et al., 2009), this strain was transformed with a DNA frag-
ment produced by PCR (using primers p2 and p3) from a deriva-
tive of pJHBI from which the antibiotic selection cassette had
been deleted. This PEX11-1 markerless fragment was co-
delivered to the GFP-AtVam3 line with pAmRFP-SRL-H108 by
protoplast-PEG mediated transformation. The transformants
were selected for hygromycin resistance to identify mRFP-
transformed plants and then by inspection for the pex/1-1 knock-
out phenotype described in the Results. Correctly targeted
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deletion of the PEXII-1 gene in phenotypically identified
mutants was confirmed by PCR using the external gene-specific
primers p22 and p4. To generate pexl1-GFP overexpression
lines, 15 pg of pS65T-Pex11GW linearized with Swal was used
to transform protoplasts as described above.

Transient expression by microprojectile bombardment For
bimolecular fluorescence complementation (BiFC) experiments,
cDNA of Phypa PEX11-1 and PhypaFisla/b was amplified by
PCR (primers listed in Table S2) and cloned into plasmids con-
taining the N- and C-terminal halves of YFP (pYFPn-GS and
pYFPc-GS, respectively) to create pYFPn-PEX11-1 (Fig. S1d)
and pYFPc-Fisla/b (Fig. Sle).

Equal quantities of each pair of YFP constructs and a transfor-
mation marker construct (pCFP-SKL) were mixed and delivered
to both wild-type and mutant protonemal tissue by microprojec-
tile bombardment, using a PDS1000 Biolistic system (Bio-Rad,
Hemel Hempstead, UK). Plasmid DNA (0.7-1 pg per shot) was
bound to tungsten microprojectiles (M17; Bio-Rad) (Sanford
etal., 1993) for delivery using a 900-psi rupture disc and a dis-
tance of 6cm from the stopping screen. Following bombard-
ment, plant tissue was incubated for 24-48 h at 25°C, before
microscopic examination.

Antibodies and western blotting

A polyclonal antiserum was raised in rabbit to the peptide
VLYLNKAEARDKICRAIQYGSKFLSC  corresponding  to
amino acids 15-40 of Arabidopsis PEX11e and affinity purified
(Mitsuya ez al., 2010). This sequence is specific to the PEX11¢/d/
e/clade (Figs S2, S3). Moss filaments were scraped from the cello-
phane-overlaid agar plates after squeezing out residual liquid, and
ground to a fine powder in liquid nitrogen in a mortar and pestle.
Homogenization buffer (50 mM Tris HCl, pH8.2, 2mM
EDTA, 20% w/v glycerol, 1 mM PMSEF, 2% complete protease
inhibitor cocktail (Roche) and 0.5 mM DTT) was added at a
ratio of 1 mlg™" fresh weight of sample and ground to a fine
slurry. The homogenate was centrifuged at 800 g for 10 min at
4°C and the supernatant was centrifuged at 164 000 g for 30 min
at 6°C. The supernatant was removed and the pellet (crude mem-
branes) was resuspended in 30 pl of homogenization buffer plus
5 ul of 10% w/v SDS. The protein concentration was measured
using the BCA assay (Pierce, https://www.thermofisher.com/
order/catalog/product/23225). Western blotting was as described
previously (Mitsuya ez al., 2010).

Fluorescence microscopy

Microscopic imaging of moss cells was undertaken using a Zeiss
Axiolmager M2 microscope with Nomarski optics and an
HXP120C light source for fluorescence imaging. Zeiss filter
cubes with Semrock narrow-band pass filters were used for CFP
(CFP-2432C), YFP (46 HE) GFP (38 HE) and RFP (TRITC-B)
detection. Images were captured with an Axiocam MRM camera
and processed using AXIOVISION software. An LSM510 META
confocal microscope (Carl Zeiss Ltd, Hertfordshire, UK) with
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x40 Plan Neofluar (oil-immersion; N.A.=1.3) objective was
used for confocal imaging. Argon laser excitation (wavelength:
488 nm) was used to excite GFP-SKL. The fluorescent signal was
detected though a 500-550-nm band pass filter using the single
track function (Sparkes ez al., 2005). For co-expression imaging
of GFP and RFP, argon (488 nm) and neon (543 nm) lasers,
respectively, were used for excitation with alternate line switching
of multitrack function. The fluorescent signal was detected
through a 500-530-nm band pass filter for GFP and a 565-615-
nm band-pass filter for RFP following the 545-nm dichroic beam
splitter.

Results

The Physcomitrella patens PEX11 gene family

A search of the ‘version 1’ P. patens genome assembly identified
six potential Phypa_PEXI1 gene sequences, which we designated
Phypa_PEX11-1 to Phypa_PEX11-6. The two sequences most
similar to the AtPEXIIcde clade comprised Phypa_PEXI11-1 and
Phypa_PEX11-2, and the four most similar to the 26 clade were
designated Phypa_PEXI11-3, 4, 5 and 6, respectively (Table 1).
Close inspection of V1.1 ‘filtered models’ suggested that the pre-
dicted polypeptide sequences of these were incorrect, but that
other models were well supported by cDNA evidence. Subse-
quent versions of the genome assembly and annotations have cor-
rected these models. A summary of gene identifiers in successive
genome annotations is provided in Table S1, while Table 1
includes the gene and protein IDs according to the current V1.6
annotation. The model for Phypa_PEX11-2 lacked cDNA sup-
port, but sequence similarity between Pp-PEX1I-1 and
Phypa_PEX11-2 suggested that the exon 2/intron 3 splice
junction was mis-specified in the latter, and that the C-terminal
sequence was incorrect because of the mis-specification of exon 6,
and a failure to identify a seventh exon. Of the four polypep-
tides similar to AtPEX11la and AtPEX11b (Phypal_1:80254/
Pp1s84_2898V6,  Phypal_1:62335/Ppls16_338V6,  Phy-
pal_1:63102/Pp1s159_21V6 and Phypal_1:118714/Ppl1s25_
244V6), the first three were supported by cDNA sequences. The
fourth lacked experimental support (Table 1).

In order to resolve the two unsupported models, rt-PCR was
conducted using primers specific for the hypothetical 5" and 3’
untranslated region (UTR) sequences of Phypa PEX11-2 and
Phypa_PEX11-6 to amplify the corresponding sequences from
mRNA obtained from a polyribosomal fraction (in order to
avoid the amplification of possible splicing intermediates). In
each case a transcript was amplified, and sequence analysis of
these enabled the correct structure of the two genes to be con-
firmed. For the Phypa PEXII-2 gene, splicing of intron 3
makes use of a 5'-GC splice junction. While noncanonical, such
splice junctions are not unusual, and have been observed for
other P. patens genes. The sequence analysis additionally con-
firmed the exon 6-intron 6—exon 7 structure predicted by
sequence homology. This sequence was deposited in GenBank
as accession JQQ026023, and the model has only recently been
correctly assigned in the most recent annotation of the P. patens

© 2015 The Authors
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genome (as Pp3cl18_11990V1 in the ‘version 3.1' genome
assembly prerelease  (https://www.cosmoss.org/fgh2/gbrowse/
V3.1/)). For Phypa_PEX11-6, cDNA sequencing confirmed the
accuracy of the models in the two V3 assemblies. We con-
structed a multiple sequence alignment of PEX11 sequences
identified in a range of plant genomes. All show extensive
homology throughout the conserved PEX11 domain
(pfam05648) (Figs S2, S3) especially in the N-terminal third of
the protein which includes the amphipathic helix implicated in
membrane tubulation (Fig. S4; Opalinski ez al., 2011).

Phypa_PEX11-1 knockout mutants show developmental
delay

The relative abundance of expressed sequence tags within the
P. patens sequence database indicates the most highly expressed
member of the gene family to be the PEX11cde member that we
designated Phypa_PEXII-1. Additionally, results of a digital gene
expression (RNA-seq) analysis of the chloronemal transcriptome
indicate this gene to be expressed at a level ¢. 4000-fold higher
than Phypa_PEX11-2 and between 11 and 500 times higher than
the Phypa_PEXI lab-class transcripts (Table S3; Whitaker ez al.,
2010). The Phypa_PEXII-1 gene was disrupted by the targeted
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replacement of its last three exons by an np#I/ selection cassette
(Fig. 1a). Lines containing single-copy disruption alleles were
identified by PCR amplification of the targeted locus (Fig. 1b),
and the absence of adventitious genomic incorporation of the tar-
geting construct was verified by Southern blot hybridization
(Fig 1¢). Eight genetically identical ‘clean’ disruption lines were
identified. Western blot analysis with an antibody specific for the
PEX11cde clade of two lines confirmed as containing a disrupted
Phypa_PEX11-1 gene demonstrated the lack of accumulation of a
PEX11 polypeptide in these knockout lines: a third line identi-
fied as retaining a wild-type copy, and derived from a targeted
insertion event (Kamisugi eral, 2006) rather than a targeted
replacement, showed normal accumulation of PEX11 (Fig. 1d).
Subsequent characterization was performed on line 3-18
(Fig. 1c). As P. patens performs high-efficiency homologous
recombination, all lines shown by PCR and Southern blot to be
correctly targeted and to contain only a single copy of the trans-
gene are genetically identical: this line is representative of all such
lines.

The growth parameters of the Phypa PEXII-1 mutant
strains were compared with those of the wild-type. The growth
of mutant plants was significantly slower than that of the wild-
type strain, as determined by growth rate measurements.
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Fig. 2 Growth of wild-type (WT) and pex77-7 mutants. (a) Appearance of wild-type (upper 7) Physcomitrella patens plants and Phypa_pex11-1-KO
(lower 7) plants grown on BCD agar medium for 31 d following inoculation with protonemal explants. A dark-green central zone (principally
chloronemata) is surrounded by a pale-green diffuse network of caulonemal filaments, from which gametophores can be seen developing in profusion in
the wild-type strain. Gametophore differentiation is comparatively retarded in the pex77KO mutant. (b) Appearance of wild-type (upper 12) plants and
Phypa_pex11-1-KO (lower 12) plants grown on BCD containing 1 mM CaCl, and 5 mM ammonium tartrate (BCDAT) for 31 d following inoculation with
protonemal explants. Supplementation with ammonium tartrate favours chloronemal development. While the wild-type plants have developed a large
number of gametophores, the mutant plants remain entirely protonemal in character on BCDAT medium. (c) Growth rate of wild-type (solid line) and
mutant (dashed line) plants on BCD agar medium. Growth is measured by determining the surface area of each plant (mean = SD). (d) Growth rate of
wild-type (solid line) and mutant (dashed line) plants on BCDAT agar medium. Growth is measured by determining the surface area of each plant

(mean =+ SD) (arbitrary units).
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Additionally, the developmental transition from a primary fila-
mentous stage (‘juvenile’) to the development of gametophores
(‘adult’) was retarded in the mutant lines (Fig. 2). We ascribe
these differences to reduced cellular elongation, and a retarded
transition between chloronemal and caulonemal development
in the pexlI-I mutant. First, the size of plants developing from
small tissue explants on agar medium (‘spot inocula’) was sig-
nificantly reduced both on medium containing nitrate as the
sole nitrogen source (Fig.2a,c) and on medium supplemented
with ammonium tartrate, which favours chloronemal growth
over caulonemal growth (Fig.2b,d). The reduced differentia-
tion of gametophores is particularly apparent in the mutant
plants growing on nitrate medium (Fig. 2a). The parameters of
cell elongation were determined by preparing homogenates of
the wild-type and mutant plants, in order to initiate tissue
regeneration from small fragments of chloronemal tissue dis-
persed on cellophane-overlaid agar medium. The terminal
intact cell in each such fragment becomes re-programmed as
an apical stem cell. This cell undergoes repeated mitosis and
cell elongation, to extend the length of the filament. Although
the subapical cell will undergo mitosis to generate side-
branches, it does not elongate further. Thus, the lengths of the
subapical cells provide a measure of the extent of cell elonga-
tion in each filament. When the lengths of the subapical cells
of multicellular filaments were measured over a period of 1 wk
following fragmentation, it was clear that the subapical cell
length was significantly greater in the wild-type filaments
(Fig. 3). Additionally, caulonemal development could be identi-
fied in regenerating wild-type tissue fragments at an earlier
time than in the mutant (Fig. 3a). We also sometimes observed
a rather swollen cell morphology in the regenerating mutants
(Fig. 3b). When gametophores eventually developed, their
appearance was phenotypically indistinguishable from that of
gametophores borne by the wild-type strain. Sporophyte devel-
opment also appeared normal, and the spores produced were
viable and germinated at a rate comparable to that of wild-type
spores (data not shown).

Enlarged peroxisomes in the Phypa_pex11-1-KO mutant

Inspection of protonemal filaments in the knockout lines
revealed unusual structures. The cellular contents were dis-
torted by the presence of very large, apparently empty globular
structures (Fig. 4b,d) which were not present in the wild-type
(Fig. 4a,c). Mutation of the AtPEXII genes results in aberrant
peroxisome division, and the formation of larger peroxisomes
(Lingard & Trelease, 2006; Orth eral, 2007), but these do
not approach the size of those we observed in P. patens. To
determine whether these unusual structures in the moss
mutants might correspond to massively enlarged peroxisomes
or were simply vacuolar compartments, we investigated the
localization of vacuolar and peroxisomal reporters. First, tran-
sient expression of a GFP reporter containing a peroxisomal
targeting sequence (GFP-SKL) in transgenic plants with either
a wild-type or a Phypa_pex11-1 KO background supported this

observation, with the mutant strain accumulating fewer, larger
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Fig. 3 Reduced growth of the mutant is attributable to reduced cell
elongation. (a) Regenerating protonemata of wild-type Physcomitrella
patens 4 d following fragmentation. The subapical cells measured in the
determination of cell growth are indicated by the arrowed lines. While the
branch to the left is chloronemal in nature, the main filament has already
commenced differentiation into a caulonema, as evidenced by the oblique
cross-wall between the apical and subapical cells (arrowhead), the more
sharply pointed apical dome, and the reduced number of chloroplasts. (b)
Regenerating protonemata of the pex77 mutant, 4 d following
fragmentation. The subapical cells measured in the determination of cell
growth are indicated by the arrowed lines. Large intracellular globular
structures are evident in these cells (arrowheads). (c) Subapical cell lengths
of regenerating protonemata measured at 2-7 d following fragmentation.
Between 25 and 35 cells were measured at each time-point. Average
subapical cell length (arbitrary units) were measured in the wild type varies
from 240% greater (2 d) to 128% greater (7 d) than in the pex77 mutant.
Error bars represent = SD (n = 12-24).

GFP-labelled organelles (Fig. 4e,f). Next, in order to distin-
guish between peroxisomal membranes and vacuolar mem-
branes, we additionally generated Phypa_pex11-KO lines in a
transgenic strain of P. patens containing an AtVAM3-GFP
reporter, previously shown to reveal tonoplast membranes in
protonemata (Oda etal, 2009). These lines were generated
using a markerless Phypa_PEXII-1 deletion construct co-
transformed with a plasmid containing a hygromycin resistance
gene and an mRFP-SRL reporter construct, so that the peroxi-
somes could be distinguished from the vacuoles. Peroxisomes
and vacuoles were clearly distinguished in the wild type
(Fig. 5a—d). Phypa_pexI11-1A lines were identified by their
characteristic phenotype and those strains retaining a copy of
the mRFP-SRL reporter gene were used for analysis. In these
transformants, the globular bodies containing the mRFP-SRL
reporter protein were clearly distinct from normal vacuoles,

© 2015 The Authors
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Fig.4 Physcomitrella patens pex11-1-KO
mutants accumulate giant peroxisomes. (a—
d) Bright-field images of wild-type (a, c) and
Phypa_pex11-1-KO (b, d) protonemal cells
visualized using standard (a, b) and Nomarski
(c, d) optics. Giant peroxisomes are indicated
by arrows in (b) and (d). (e, f) Confocal
imaging of accumulation of the peroxisomal
marker GFP-SKL in wild-type and mutant
protonemata. (e) Wild type; (f)
Phypa_pex11-1-KO mutant.

accumulated the peroxisomal mRFP marker and distorted the

GFP-labelled tonoplast membrane (Fig. 5e,f,i). This phenotype

Phypa_PEX11-1 accumulates in the peroxisomal

membrane
was not confined to the protonemal stage of development.
Giant peroxisomes accumulated also in the cells of the game- ~ PEXI1 is a peroxisomal membrane protein that coordinates the
tophore leaves of the mutant compared with the wild type  assembly and division of the peroxisomes through interactions
(Fig. 5g—i). with members of the Fisl family to recruit dynamin to mediate
© 2015 The Authors New Phytologist (2016) 209: 576-589
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Fig. 5 The giant organelles are peroxisomes
not vacuoles. (a-d) Confocal images of
vacuoles and peroxisomes in wild-type
protonemata of Physcomitrella patens
transformed with the vacuolar reporter
Arabidopsis homologue of S. cerevisiae
VAM3 (AtVAM3)-GFP and the peroxisome
marker mRFP-SRL. (a) Bright-field image; (b)
GFP fluorescence; (c) RFP fluorescence; (d)
merged image. (e, f) Confocal images of
vacuoles and peroxisomes in protonemata of
the Phypa_pex11-1-KO mutant. (e) AtVAM-
GFP decorates the vacuolar membrane; (f)
merged image for AtVAM-GFP and mRFP-
SRL shows the peroxisomal marker filling
large structures that distort the vacuolar
membrane around them. (g, h)
Epifluorescence microscopic images of
vacuoles and peroxisomes in gametophore
tissue of wild type (g) and pex77 mutant (h)
transformed with the vacuolar reporter
AtVAM3-GFP and the peroxisome marker
mRFP-SRL: merged fluorescent and bright-
field images. (i) Confocal z stack image
showing giant peroxisomes (red) and
vacuolar membrane (green) in gametophore
cells of the Phypa_pex11-1-KO mutant
transformed with the vacuolar reporter
AtVAM3-GFP and the peroxisome marker
mRFP-SRL: merged GFP and RFP images.

the fission of peroxisomal tubules into smaller bodies. Transient ~ procedure generates cells expressing the transgene to different
expression of GFP-PEX11-1 in cells of the Phypa_pex11-1-KO extents. The localization of the GFP-tagged PEX11-1 to the per-
mutant line complemented the mutant phenotype and reduced ~ oxisomal membrane could be observed through the identification
the size of the peroxisomes in the transformed cells (Figs 6, S5). of ‘doughnut’-like structures (Fig. 6a) in some cells, while in
Variability inherent in the microprojectile bombardment many cells, transient over-expression of the PEX11 fusion protein
New Phytologist (2016) 209: 576-589 © 2015 The Authors
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Fig. 6 Phypa_PEX11-1islocated in the
peroxisome membrane and overexpression
causes tabulation. (a) Merged bright-field
and GFP image of Physcomitrella patens
gametophore cells showing GFP-PEX11
localization to the membranes of
peroxisomes greatly reduced in size.
Peroxisomes showing this particularly clearly
are arrowed. (b—d) Tubulation can be seen in
GFP (b) and merged (c, d) images of
gametophore (c) and chloronemal (d) cells
overexpressing the GFP-Phypa_PEX11-1
gene.

resulted in a characteristic PEX11 overexpression phenotype,
with extensively tubulated structures accumulating (Fig 6b—d).
Co-transformation of P. patens protoplasts with GFP-PEX11 and
mRFP-SRL confirmed faithful targeting of GFP-PEX11 to per-
oxisome membranes (Fig. S5).

We were also able to demonstrate an interaction between
Phypa_PEX11-1 and the fission factors Phypa_FislIA and
Phypa_FisIB in wivo, by BiFC. A stably transformed
Phypa_pex11-1-KO line expressing a CFP-SKL fusion as a peroxi-
some marker was transiently transformed by particle co-
bombardment, with constructs expressing the N-terminal
sequence of YFP (YFPy) and the C-terminal sequence of YFP
(YFP() fused with Phypa_PEX11-1and PpFISIAand PpFISIBin
various Fig. 7(a—) illustrates how co-
transformation with a Phypa PEX11-YFPx construct and a
PpFIS1A-YFP construct enabled the visualization of YFP fluores-
cence decorating the perimeters of the CFP-loaded peroxisomes.

combinations.

By contrast, in control experiments (in which the YFPy sequence
was not fused to the Phypa PEX11-1 sequence), no YFP co-
localization with peroxisomes was observed, although nonspecific
aggregates occasionally occurred (Fig. 7d). When Phypa_PEX11-
1-YFPy was expressed with unfused YFPc, no fluorescence was
seen (Fig.7¢). Similar results were obtained for interactions
between Phypa_PEX11-1 and Phypa_Fis1B (Figs 6, S6).

Formation of giant peroxisomes appears growth-related

During the course of our investigation, we made an interesting
observation. Routine maintenance of P. patens strains involves
incubation at low temperature (7°C) and low light (2 h of illu-
mination every 24 h) for the medium- to long-term storage of
cultures. We noticed that, after prolonged storage under these
conditions, protonemal homogenate cultures of Phypa_pex11-1-

© 2015 The Authors
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KO mutant strains no longer contained giant organelles within
their cells. However, upon subculture and growth under stan-
dard conditions (25°C; continuous illumination), the giant
organelle phenotype was rapidly re-established. This could be
clearly seen when protonemal tissue recovered from long-term
low-temperature storage was homogenized and propagated on
cellophane overlays. Using the transgenic strain expressing the
AtVAM3 and GFP-SKL markers, we were able to observe a
steady increase in the size of the peroxisomes within protone-
mata during the first few days of subculture (Fig.8). The
increase in peroxisome size occurred in newly formed cells.
Observations of cells along the length of each filament showed
that the oldest cells (at the base of each filament, and probably
corresponding to cells that had been maintained in storage at
low temperature) contained relatively small peroxisomes,
whereas the younger cells (the apical and subapical cells in the
4-d-old tissue shown in Fig. 8¢,d) would have been generated by
successive mitosis of the apical cell of each filament following
transfer to standard growth conditions, and these contained sig-
nificantly larger peroxisomes. The filament in Fig. 8(d) con-
tained three new cells, with the apical cell starting to
differentiate into a caulonemal cell initial (indicated by the
oblique angle of the cell wall separating it from the subapical
cell). As the cell cycle progression of chloronemal apical cells is
relatively slow (c. 24 h), the production of three new cells, con-
taining greatly enlarged peroxisomes, in the first 4 d following
return to standard growth conditions suggests a link between
growth rate and the demand for peroxisomal biogenesis.

Discussion

The PEX11 family in P. patens, as in other plant species, is com-
prised of a number of paralogues, four of which fall into the same

New Phytologist (2016) 209: 576-589
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Fig.7 Physcomitrella patens PEX11-1 interacts with fission factors. (a—c)
Protonemal tissue of the Phypa_pex11-1-KO mutant expressing a CFP-
SKL transgene was co-bombarded with a Phypa_PEX11-YFPy fusion
construct and a PpFISTA-YFP fusion construct. YFP fluorescence detected
by epifluorescence microscopy is clearly visible around the periphery of the
CFP-marked peroxisomes, indicating an interaction between the Pex11
and Fission 1A (Fis1A) proteins at the peroxisome membrane. (d) Control
experiment in which the CFP-SKL expressing strain was co-bombarded
with an unfused YFPy, construct and a PpFISTA-YFPc construct. (e)
Control experiment in which the CFP-SKL expressing strain was co-
bombarded with an unfused YFP construct and a Phypa_PEX11-1-YFPy
fusion construct. Each panel in this figure shows the merged YFP and CFP
fluorescence signal.

clade as Arabidopsis PEX11a and b and two of which fall into the
same clade as AtPEX11c, d and e. One gene (Phypa_PEX11-1) is
expressed at a level >4000 times higher than that of the other
member of the PEX11cde clade (Phypa_PEXI1-2) and also more
than an order of magnitude higher than those of the four genes
of the PEX11 a/b clade (Phypa_PEX11-3-4-5-6).

The presence of paralogous genes with at least partially redun-
dant function has hindered the analysis of plant PEX11 function

New Phytologist (2016) 209: 576-589
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through the analysis of knockout mutants. Two groups have pro-
duced transgenic Arabidopsis plants where pex/la and 4 on the
one hand or pexIlc, d or ¢ on the other have been down-
regulated by RNA interference (RNAi). (Nito eral, 2007)
reported a modest increase in peroxisome size; the peroxisomes in
the pex11a/bilines had an average diameter of 1.5 pm while those
in the pexIIc/d/e in lines had an average diameter of 2.36 pm.
Orth etal. (2007) reported that in their RNAI lines there was a
strong reduction of peroxisome number (<75% compared with
control plants), but either no change or a reduction in peroxi-
some size. The RNAI lines did not show any alteration in growth
or peroxisome function. However, it should be noted that in both
studies there was still detectable transcript for all isoforms. By
contrast, the Phypa_pex11-1KO mutant in which only a single
gene was disrupted grew more slowly than wild type as a result of
reduced cell elongation (Fig. 3) and the developmental transition
from a primary filamentous stage (‘juvenile’) to the development
of gametophores (‘adult’) was retarded (Fig.2). This may be
because the mutant line did not produce any PEX11 immunore-
active protein (Fig. 1d) and may be closer to a true knockout of
the PEXIIcde clade than the Arabidopsis RNAI lines.

These mutants produced giant peroxisomes of up to 10 pm in
diameter which were readily visible in the light microscope as
apparently ‘empty’ regions of the cells (Fig. 4). These structures
were confirmed as peroxisomes as they imported the peroxisomal
matrix proteins GFP-SKL and mRFP-SRL and their membranes
were decorated with a GFP-Phypa PEX11-1 fusion protein
(Figs 4-6, S5). Transient overexpression of GEP-Phypa_PEX11-1
reverted the giant peroxisome phenotype and resulted in the for-
mation of elongated peroxisomes, as has been reported for over-
expression of PEX11 from other organisms.

Comparison of the sequences of the moss PEX11 family with
other homologues shows strong conservation of the amphipathic
helical structure found in the N terminus of PEX11 in other
species (Figs S2—-S4), which has been shown to insert into mem-
branes 7 vitro and cause tubulation (Opalinski ezal., 2011). A
recent publication reported that this region of Hansenula
polymorpha Pex11 interacts directly with Dmnlp (equivalent of
Drp in yeasts and DLP in humans) and acts as a GTPase activat-
ing protein (GAP) to promote severing of tubulated peroxisomes.
HsPex11B also had GAP activity but this was restricted to the
first 12 amino acids (helix 1) rather than the amphipathic helix
(Williams eral., 2015). Comparison of sequence alignments
between Phypa PEX11-1, HsPEX11fB, A¢PEX11d and
HpPEX11 showed that the region from 55 to 67 within
HpPEXI11 that is critical for GAP activity is absent in the plant
homologues but that the character and spacing of amino acids in
the helix 1 motif are conserved, raising the possibility that this
region could also have similar activity in plants. Thus, it seems
likely that PEX11 functions similarly in peroxisome proliferation
and division across kingdoms.

The enlarged peroxisome phenotype seen in the P. patens
knockout is more reminiscent of that seen in the S. cerevisiae
pex1IA mutant (Erdmann & Blobel, 1995) than that in Ara-
bidopsis. Saccharomyces cerevisiae has only one PEXII gene
(although distinct but related genes PEX25 and PEX27 also play

© 2015 The Authors
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Fig. 8 Recovery from low temperature. Protonemata of the Physcomitrella patens pex11-1-KO line expressing the mRFP-SRL and AtVam3-GFP reporters
that had been archived at low temperature for over 6 months were homogenized and the homogenate fragments subcultured on cellophane-overlaid agar
medium for regeneration under standard growth conditions. Merged bright-field, GFP and RFP epifluorescence images of protonemata regenerated for 1
(a), 2 (b) and 4 (c, d) d are shown. The cell walls dividing the filament are indicated by arrows in (c) and (d). The image in (c) contains two complete cells
and a part of a third (the antepenultimate cell for the filament), while (d) contains four cells and part of a fifth. The cell wall between the apical and
subapical cell in this filament is slightly oblique, indicating that the apical cell is commencing differentiation into a caulonemal initial. Note also the smaller

peroxisomes in the older cells of each filament.

a role in peroxisome proliferation (Rottensteiner ezal., 2003;
Vizeacoumar ez al., 2003)) so this similarity may reflect a more
complete knock-out of PEX11 function in the moss compared
with the Arabidopsis RNAI lines. Alternatively, it could suggest a
greater functional specialization of PEX11 family members in P.
patens, such that the remaining isoforms cannot rescue the phe-
notype to the same extent.

A search of the P. patens genome sequence also identified
homologues of Fisla and b (Zhang & Hu, 2008) and dynamin-
related proteins (DRPs) 3A (Mano et al., 2004) and 3B and 5B
(Zhang & Hu, 2010), which are involved in peroxisome division
in other organisms. A recent publication has demonstrated the
redundant role of members of the DRP5B family in chloroplast
division in P. patens (Sakaguchi ez al., 2011) but peroxisome phe-
notypes were not investigated. To bring about peroxisome divi-
sion, PEX11 proteins interact with Fis1, which is dual targeted to
peroxisomes and mitochondria and recruits the DRPs for
organelle division. The interaction between Fisl and Pex11 is
also conserved in P. patens, as shown by BiFC (Fig. 7).

Intriguingly, the ‘giant peroxisome’ phenotype is environmen-
tally determined. Upon storage at low temperature with very
short day length, the peroxisomes in the Phypa_pexii-1 KO
reverted to a more normal size but rapidly increased again in
rapidly growing cells upon transfer to longer day length and
warmer temperatures (Fig. 8). It is noteworthy that in Arabidop-
sis light, via PEX11b, brings about peroxisome proliferation (Hu
& Desai, 2008). It will be interesting to determine whether one
of the six PEX11a/b homologues is required for light-dependent
increases in peroxisomes in P. patens, although evidently none of
the other PEXT1 genes can substitute for the role in division.

© 2015 The Authors
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The conservation of matrix and membrane protein import
pathways, the ease with which P. patens can be used to generate
gene disruptions or allele replacements and the uncoupling of
peroxisome growth and division in the Phypa_pexlI-1 mutant
make this a powerful system in which to explore mechanisms of
peroxisome biogenesis and the study of peroxisome biology more
generally in photosynthetic organisms.
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