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Abstract The sense of touch comprises multiple sensory channels that each conveys

characteristic signals during interactions with objects. These neural signals must then be integrated

in such a way that behaviorally relevant information about the objects is preserved. To understand

the process of integration, we implement a simple computational model that describes how the

responses of neurons in somatosensory cortex—recorded from awake, behaving monkeys—are

shaped by the peripheral input, reconstructed using simulations of neuronal populations that

reproduce natural spiking responses in the nerve with millisecond precision. First, we find that the

strength of cortical responses is driven by one population of nerve fibers (rapidly adapting)

whereas the timing of cortical responses is shaped by the other (Pacinian). Second, we show that

input from these sensory channels is integrated in an optimal fashion that exploits the disparate

response behaviors of different fiber types.

DOI: 10.7554/eLife.10450.001

Introduction
Perception reflects the seamless integration of signals from a variety of sensory receptors that

respond preferentially to different aspects of the environment. The classic example of such integra-

tion is color vision, where input from different cone receptors is integrated to extract a specific fea-

ture of objects, approximately corresponding to their absorption spectrum (Gegenfurtner, 2003).

Signals are also combined across different sensory modalities, and this integration process is often

optimized to extract stimulus information (Ernst and Banks, 2002). Given that different sensory

channels encode different stimulus features and exhibit different response properties, the central

nervous system is faced with the challenge of how to integrate such disparate input signals.

The sense of touch is mediated by at least three main classes of mechanoreceptive afferents,

each of which responds to different aspects of skin deformation (Johnson, 2001): slowly-adapting

type I (SA1) afferents are most sensitive at low frequencies (<10 Hz), rapidly adapting (RA) afferents

at intermediate frequencies (in the so-called flutter range, from 10 to 50 Hz), and Pacinian (PC) affer-

ents at high-frequencies (peaking in sensitivity at around 250 Hz). However, the frequency sensitivi-

ties of the different afferent classes overlap considerably (Figure 1A), and natural stimuli typically

engage more than one class (Saal and Bensmaia, 2014). Not surprisingly, then, information about

most tactile events is carried by signals from several afferent classes (Saal and Bensmaia, 2014;

Johansson and Flanagan, 2009; Abraira and Ginty, 2013), and this input is integrated across sub-

modalities even at the first stage of cortical processing, namely primary somatosensory cortex

(S1) (Pei et al., 2009; Carter et al., 2014). Importantly, S1 neurons convey information about con-

tacted objects not only in the strength of their responses but also in their timing (Harvey et al.,

2013; Zuo et al., 2015). For example, the amplitude of skin oscillations—such as those elicited dur-

ing the exploration of textured surfaces—is encoded in the strength of the cortical response whereas
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their frequency is encoded in its timing. To achieve such multiplexing requires that afferent signals

be integrated in a principled way.

Here, we measure the responses of S1 neurons to a wide variety of simple and complex vibrotac-

tile stimuli and reconstruct the responses of afferent populations to these same stimuli. We then

implement a simple model that allows us to examine how responses of the different afferent popula-

tions combine to drive responses in cortex. First, we find that most S1 neurons integrate information

from multiple afferent classes. Second, signals from the different classes drive cortical responses in

very different ways: RA afferent input exerts an excitatory influence on S1 responses and is the pri-

mary determinant of their firing rates; in contrast, PC input exerts a balanced excitatory and inhibi-

tory influence which sharpens the timing of cortical responses without having a major impact on the

rates. Finally, we show that the process of integration maximizes information transmission across the

range of stimulation conditions that might be encountered during everyday interactions with

objects.

Results
We recorded the responses of 18 peripheral tactile afferents (14 RA and 4 PC) and 118 cortical neu-

rons in areas 3b (49) and 1 (69) of S1 to a variety of vibrotactile stimuli, ranging from simple sinusoids

to complex bandpass noise with frequencies between 50 and 800 Hz and amplitudes ranging from

sub-micrometer to more than 500 mm. Stimulation conditions spanned those that might be experi-

enced when we scan a textured surface (Bensmaı̈a and Hollins, 2003; Bensmaı̈a and Hollins, 2005;

Weber et al., 2013; Manfredi et al., 2014). As these stimuli drove RA and PC to the exclusion of

SA1 afferents (Muniak et al., 2007), we focused the analysis on these two afferent populations. The

goal was to quantitatively predict S1 responses based on afferent responses. Because the stimuli

used in the peripheral experiments were analogous but not identical to those used in the cortical

experiments, we used simple but precise models of afferent responses (derived from recorded

responses, Figure 1—figure supplement 1) to reconstruct RA and PC population responses to the

stimuli used in the cortical experiments (Figure 1C,D). To examine how input from these different

populations is integrated in cortex, we describe the transformation from the periphery to cortex as a

linear filter over the RA and PC population responses whose output is subsequently rectified (based

on the linear-nonlinear-Poisson framework (LNP), Figure 1B). This approach allows us to examine

the filters estimated for each cortical neuron to assess the contribution (if any) of each afferent popu-

lation to that neuron’s response and to characterize the dynamics of this integration. To the extent

eLife digest Our sense of touch depends upon receptors in our skin that send signals to the

brain about the objects with which we interact. Different types of touch receptors respond in

different ways when we grasp and manipulate objects; for example, by altering the strength of their

response or its timing.

Saal et al. have now investigated how neurons in a part of the brain called the somatosensory

cortex, which processes touch signals from the hand, respond to the information from the different

receptor types. First, recordings were made of the electrical activity of the touch receptors and the

neurons in the brain of monkeys. Using this data, Saal et al. built computer models that allow the

response of neurons in the brain to be predicted from the responses of the touch receptors.

The models showed that signals from different types of touch receptors shape the response of

neurons in the brain in different ways. One receptor type controls how strong a neuron’s response

will be, while another one controls the precise timing of the response. Further investigation revealed

that this way of combining the signals from the different receptors preserves as much information as

possible about objects and thereby helps the brain to process information acquired by touch quickly

and efficiently.

Future experiments will examine how touch is represented in two structures that lie between the

receptors and the somatosensory cortex: one in the brainstem, the other in a brain region called the

thalamus.

DOI: 10.7554/eLife.10450.002
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Figure 1. Characterizing the transformation between peripheral and cortical responses. (A) Frequency–amplitude

pairs that elicit responses in rapidly adapting (RA) and Pacinian (PC) afferents. Light blue and orange lines indicate

absolute response thresholds for RA and PC afferents (as determined by the peripheral model), respectively, while

the dark blue and orange lines denote tuning thresholds (i.e., eliciting one spike on each stimulus cycle). The black

line corresponds to the highest amplitude the stimulator could deliver at a given frequency and likely exceeds the

maximum amplitude that one is liable to encounter during every day tactile experience. While RA and PC afferents

are maximally sensitive at different frequencies, most frequency–amplitude pairs elicit responses from both

afferent classes (indicated by the shaded region). (B) Illustration of the model that describes the transformation

from peripheral to cortical responses. A broadband noise stimulus activates both RA and PC afferents. RA and PC

population responses are each convolved with a temporal filter, then summed and rectified to culminate in the

responses of individual S1 neurons. (C) Two examples of vibratory stimuli. (D) Simulated RA (blue) and PC (orange)

population firing rates along with spike trains of a subset of neurons in the population. See Figure 1—figure

supplement 1 for details on how the peripheral population models were validated. (E) Recorded spikes (black

Figure 1 continued on next page
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that this simple model captures different response properties of cortical neurons, the respective fil-

ters for these neurons will be different (Figure 1E).

To test the model’s performance, we compared predicted and recorded cortical responses at dif-

ferent timescales. We performed this analysis on a separate data set (consisting of sinusoidal stimuli),

to estimate how well the model would generalize to stimuli that differed considerably from the noise

traces used to fit the model. We found that the model captures the cortical responses well on both

coarse and fine timescales as assessed by calculating the correlation coefficients between the pre-

dicted and recorded responses. Indeed, across neurons, the model captured 67% ( ± 2% standard

error of the mean) of the predictable variance (Ramirez et al., 2014) for 1 s bins, and 35% ( ± 2%)

for 5 ms bins. In other words, the model was able to predict neuronal responses with considerable

accuracy given their inherent variability.

RA and PC input is integrated differently
We found that most cortical neurons in areas 3b and 1 receive input from both RA and PC afferents,

as evidenced by the significant contribution of both to the overall prediction (Figure 2A).

Figure 1 continued

ticks) over five stimulus repeats and model predictions (green traces) for two cortical neurons, whose RA and PC

filters (plotting filter magnitude over time) are shown on the left. Cortical neurons differ in their response

properties, such as burstiness and temporal precision, and the model captures these broad differences with

different RA and PC filters. See Figure 1—figure supplement 2 for assessment of the general predictive power of

our model.

DOI: 10.7554/eLife.10450.003

The following figure supplements are available for figure 1:

Figure supplement 1. Simulation of populations of RA and PC afferents.

DOI: 10.7554/eLife.10450.004

Figure supplement 2. Prediction accuracy of fitted LNP model.

DOI: 10.7554/eLife.10450.005

Figure 2. Rapidly adapting (RA) and Pacinian (PC) input is integrated differently. (A) Fraction of neurons in areas 3b and 1 that receive input from both

RA and PC populations (grey bar) or from only the RA population (blue) as assessed by whether input from the respective class is weighted more highly

than might be expected by chance. Most S1 neurons receive input from both RA and PC afferents. (B) Mean RA and PC filters (solid lines) and the 5th

and 95th percentile of filter values across all S1 neurons indicated by the light-shaded regions. RA and PC filters are systematically different. (C) Ratios

of RA and PC filter magnitudes for neurons integrating information from both afferent classes. RA input tends to be weighted more strongly. (D) Width

of RA and PC filters. RA input tends to be integrated over longer timescales than does PC input. Insets show example filters that are close to the

population average (over 100 ms). (E) Excitation indices for all RA and PC filters, where 1 denotes purely excitatory input, 0 balanced input, and -1

purely suppressive input. RA filters almost always lead to a net positive excitation of the cortical neurons, while the PC filters are more diverse, on

average balanced, and often suppress cortical response. Insets show example filters that are close to the population average (over 100 ms). See

Figure 2—figure supplement 1 for validation of the analysis.

DOI: 10.7554/eLife.10450.006

The following figure supplement is available for figure 2:

Figure supplement 1. Accuracy of linear filter estimation.

DOI: 10.7554/eLife.10450.007

Saal et al. eLife 2015;4:e10450. DOI: 10.7554/eLife.10450 4 of 16

Research article Computational and systems biology Neuroscience

http://dx.doi.org/10.7554/eLife.10450.003
http://dx.doi.org/10.7554/eLife.10450.004
http://dx.doi.org/10.7554/eLife.10450.005
http://dx.doi.org/10.7554/eLife.10450.006
http://dx.doi.org/10.7554/eLife.10450.007
http://dx.doi.org/10.7554/eLife.10450


Furthermore, the linear filters obtained for each afferent population, while similar across cortical neu-

rons, were consistently different from each other (Figure 2B): First, while the magnitude of the PC

filters was correlated with that of the RA filters (r = 0.41), PC filters were consistently of lower magni-

tude (Figure 2C, t(70) = 6.4, p < 0.01, paired t-test), with the RA contribution on average about

three times stronger than the PC one. Second, RA filters were much more extended in time (with a

mean above 30 ms) than were PC filters (with a mean below 20 ms) (Figure 2D, t(188) = 9.6, p <

0.01, two-sample t-test). Third, while the net contribution of the RA input to the cortical response

was positive, PC input was on average balanced; that is, excitatory and suppressive components of

the PC filters were of equal magnitude. In fact, for about half of cortical neurons, the PC contribution

was net suppressive (Figure 2E); the difference in the net contribution of RA and PC input was sig-

nificant (t(188) = 16.1, p < 0.01, two-sample t-test). PC filters were also much more diverse and

spanned the range of this metric (from -1 to +1), in contrast to RA filters, which, as mentioned

above, tended to be net excitatory (>0).

RA input drives cortical firing rates
The different filter shapes for RA and PC input reflect profound differences in the way the two affer-

ent populations shape cortical responses. Indeed, the firing rates of individual S1 neurons are almost

entirely determined by RA input as evidenced by the fact that a model based on RA input alone can

predict S1 firing rates—averaged over 1 s long periods—almost as well as RA and PC responses

combined; this was true for responses to both noise and sinusoids (Figure 3). PC input alone, on the

other hand, cannot account for the observed cortical firing rates. Indeed, these would be much

more frequency-dependent if driven by this population of nerve fibers.

PC input determines precise spike timing
We have previously shown that the responses of mechanoreceptive afferents are highly precise and

repeatable, and their timing conveys information about the frequency composition of skin vibrations

(Mackevicius et al., 2012) and about the identity of textures scanned across the skin (Weber et al.,

2013) at resolutions on the order of milliseconds. Similarly, the temporal patterning of responses in

somatosensory cortex is precise and informative down to a millisecond timescale (Harvey et al.,

2013). RA and PC input are thus integrated in such a way to culminate in temporally patterned corti-

cal responses. One might expect that the shorter integration window of the PC filters combined

Figure 3. Rapidly adapting (RA) input determines cortical firing rates. Reconstruction accuracy of the full model

compared to one that includes only RA or Pacinian (PC) input as measured by correlation between actual and

predicted firing rates (measured over the duration of the trial, namely 1 s). Error bars denote the standard error of

the mean across neurons. Firing rates elicited by both noise and sinusoidal stimuli are well predicted by the full

model. While the performance of RA-only filters is almost as good as the full model, reconstruction accuracy drops

dramatically if only PC input is included.

DOI: 10.7554/eLife.10450.008
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with their strong suppressive components would result in this sensory channel driving more precise

spike timing than does its RA counterpart. Indeed, when removing the PC contribution from the

model, predictions of spike timing in the cortex became less temporally precise (Figure 4A). We

quantified this effect in two ways. First, we filtered the recorded and predicted time-varying firing

rates to noise stimuli at different temporal resolutions and examined how much of the variance in

the responses could be accounted for based on RA input or PC input alone (Figure 4B). We found

that only PC input can account for high frequency fluctuations in the cortical responses of many neu-

rons, while RA input is sufficient at coarser temporal resolutions for almost all cortical neurons

(Figure 4C). In fact, the more precise the responses of a cortical neuron were, the more of its

response variance was explained by PC input (Figure 4—figure supplement 1). Second, we tested

how well the model could account for the well-documented patterning in cortical responses to sinu-

soidal vibrations: over a wide range of frequencies, cortical neurons produce entrained responses to

sinusoidal stimulation of the skin (Harvey et al., 2013; Salinas et al., 2000; Mountcastle et al.,

1969). That is, they produce one spike or burst of spikes within a very restricted phase of each stim-

ulus cycle. We examined, then, whether we could predict the degree of entrainment of cortical neu-

rons to sinusoidal stimuli from the RA and PC input. We found that the strength of phase-locking to

sinusoids ranging in frequency from 50 to 300 Hz was well captured by the model (yielding a correla-

tion between predicted and measured phase-locking of 0.78). Importantly, while RA input was domi-

nant at the low frequencies, only the PC input could account for the observed phase-locking at 200

Hz and above (Figure 4D).

RA and PC input is integrated optimally to process natural tactile
scenes
Having established how input from different sensory channels is integrated in somatosensory cortex,

we sought to understand why the two channels drive cortical neurons in different ways. We reasoned

that the process of integration should reflect differences in the response properties of the input

channels. Specifically, PC responses to skin vibrations and scanned textures have been consistently

shown to be more temporally precise than their RA counterparts (Weber et al., 2013;

Mackevicius et al., 2012). Furthermore, the two afferent classes differ in their frequency sensitivity

profile: PC afferents are considerably more sensitive than RA afferents at frequencies above about

150 Hz (see Figure 1A). Finally, we surmised that the process of integration would also reflect the

statistics of the stimuli experienced during interactions with objects, as is the case in other sensory

modalities (van Hateren, 1992; Field, 1987; Smith and Lewicki, 2006).

We focused on natural textures, which are ideally suited to address this question. When running

our finger across a textured surface, high-frequency oscillations are elicited in the skin

(BensmaÏa and Hollins, 2003; 2005; Manfredi et al., 2014), which in turn elicit highly temporally

patterned and repeatable responses in both RA and PC afferents (Weber et al., 2013). In cortex,

neurons respond to skin oscillations with precisely timed spikes that encode the skin deflections with

millisecond precision (Harvey et al., 2013). In light of this, how should RA and PC responses to natu-

ral tactile stimuli be integrated to be maximally informative about texture-elicited skin oscillations at

a fine temporal resolution? To address this question, we simulated RA and PC responses to different

textures scanned across the skin and optimized cortical RA and PC filters for information transmis-

sion about skin oscillations.

We found that the filters optimized to convey information about texture closely matched the fil-

ters derived from measured S1 responses: RA filters were mostly excitatory and temporally broad;

PC filters were narrower and comprised distinct suppressive components (Figure 5A). The similari-

ties between the recorded and optimized filters also held up quantitatively. First, we found that

most (71%) optimized filters comprised contribution from both RA and PC fibers, while the rest

relied on RA input alone, similar to what we found in our cortical data set. Second, we found that

the optimal filters typically weighted the RA input more strongly than the PC input, as did the filters

derived from cortical responses (Figure 5B). Third, the optimal RA filter widths were wider than PC

filter widths and largely overlapped the range of the actual filter widths (Figure 5C). Finally, we

found that the excitation/suppression indices of the optimized filters approximated those derived

from our cortical data set in that RA input was always net excitatory, while PC input spanned the

range between highly suppressive, balanced, and excitatory (Figure 5D).
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Figure 4. Precise spike timing of S1 neurons is driven by Pacinian (PC) input. (A) Responses to noise stimuli from two example neurons with particularly

precise responses. Spiking probabilities derived from the full model (green traces) are much more temporally precise than are those derived from a

rapidly adapting (RA)-only model (blue traces), reflecting the importance of PC input in shaping the response at fine timescales. Five repetitions of the

recorded cortical spike trains are shown below the model traces in black. (B) Fraction of the explained variance (R2) by either the RA (blue) or PC

(orange) model relative to the full model across different temporal resolutions for the two neurons shown in A. PC input is important to explain

responses on fine timescales. (C) Fraction of explained variance (R2 fraction) relative to the full model by RA and PC input for all neurons at two

different temporal resolutions. While RA input can explain most of the observed variance at coarse temporal resolutions (left panel), PC input is needed

to explain the timing of cortical responses at fine temporal resolutions (right panel). See Figure 4—figure supplement 1 for further analysis. (D) Vector

strengths predicted by RA (blue) and PC (orange) models relative to their measured counterparts at different frequencies across all neurons. RA input

accounts for entrainment to sinusoidal stimuli at low frequencies, while PC input is needed at higher frequencies.

DOI: 10.7554/eLife.10450.009

The following figure supplement is available for figure 4:

Figure supplement 1. Fraction of variance explained as a function of timing precision of cortical neurons.

DOI: 10.7554/eLife.10450.010
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To test whether our fitted and optimized filters might be an artifact of our approach rather than

reflect the integration properties of S1 neurons, we also optimized filters on a distorted data set.

During natural interaction with surfaces, the amplitude of elicited vibrations decreases as their fre-

quency increases, leading to roughly a power–law relationship (Manfredi et al., 2014;

Wiertlewski et al., 2011; Delhaye et al., 2012). When we re-optimized the filters to stimuli with a

distorted frequency composition, we found that the resulting filters did not match the ones observed

in cortex (green bars in Figure 5B–D): The PC signal was weighted more heavily, was integrated

over longer timescales, and was mostly excitatory, in contrast to what we observed in both the corti-

cal filters and the ones optimized on our natural texture data set. We conclude that RA and PC inte-

gration in S1 is optimized to encode stimuli that are commonly encountered during interactions with

objects.

Discussion
We set out to examine how input from different mechanoreceptive afferent classes is integrated in

the responses of individual cortical neurons. To this end, we simulated the responses of populations

of RA and PC tactile afferents and examined how these are combined to drive S1 responses. This

modeling effort yielded several important conclusions. First, the vast majority of cortical neurons

receive (indirect) input from both RA and PC afferents. Second, RA and PC afferents drive S1 neu-

rons in fundamentally different ways: RA input determines the rate of the response whereas the prin-

cipal contribution of PC input is to sharpen the temporal precision of the response. Third, the

integration of afferent input is consistent with a process that maximizes the information conveyed in

the cortical responses by exploiting the different response properties of RA and PC afferents.

Input from different sensory channels is integrated in the responses of
individual S1 neurons
Our results unequivocally show that RA and PC input are integrated in the responses of individual S1

neurons. That is, the responses of S1 neurons cannot be explained from the responses of RA or PC

neurons alone. While it has traditionally been assumed that the different tactile submodalities are

segregated at least through primary somatosensory cortex (Sur et al., 1981; Sur et al., 1984;

Chen et al., 2001; Friedman et al., 2004) (although cortical PC neurons have generally proven elu-

sive, see below), recent evidence suggests that input from different classes of somatosensory affer-

ents is indeed integrated between periphery and cortex (Saal and Bensmaia, 2014; Pei et al.,

Figure 5. Rapidly adapting (RA) and Pacinian (PC) input is integrated optimally. (A) Three examples RA and PC

filters, each optimized for a different natural texture (colored traces) and paired with a filter from a cortical neuron

that most closely matches it (gray traces). (B–D) Comparison of filter statistics for actual (black) and optimized

(lavender), and distorted (green) filters for the RA/PC magnitude ratio (B), filter width (C), and excitation/

suppression index (D). For the optimized filters, bars denote the range covered by the filters optimized for

different textures. For the actual filters, bars indicate the range between the 10th and the 90th percentile.

DOI: 10.7554/eLife.10450.011
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2009; Carter et al., 2014; Prescott et al., 2014). In this study, stimuli fell in the range of frequen-

cies that excites RA and PC fibers at the exclusion of SA1 fibers, which only respond to low-fre-

quency stimulation. However, SA1 and RA input have been shown to be integrated in the responses

of S1 neurons when these were studied with ramp-and-hold skin indentations (Pei et al., 2009) so

the convergence of submodality-specific input onto individual S1 neurons seems to be a general

phenomenon. However, it is still an open question whether the integration of input from different

mechanoreceptors takes place only at the cortical level, or whether they appear already at the sub-

cortical level in either the cuneate nucleus or the thalamus. Convergence of somatosensory submo-

dalities has been observed in the brainstem of rats (Sakurai et al., 2013) and the same is likely true

in primates.

The effect of PC input on S1 responses
Our results reconcile some seemingly contradictory findings regarding the contribution of PC affer-

ents to cortical responses. First, vibrotactile coding in general and the role of PC input specifically

have been probed almost exclusively with high-frequency sinusoidal stimuli. These stimuli have been

shown to evoke only a short transient response in S1, which then quickly decays back to baseline, a

phenomenon that can be accounted for by the balance of excitation and suppression in the PC

drive. That PC-elicited responses are short and weak might explain why PC-driven cortical neurons

are thought to be extremely rare in S1 (Lebedev and Nelson, 1996; Mountcastle et al., 1990). Sec-

ond, the main effect of PC input is to shape the timing of cortical spikes, which could account for

the extremely precise timing of S1 responses at high frequencies (Harvey et al., 2013) that has

been shown to contribute to tactile perception (Zuo et al., 2015). Third, the balanced drive of PC

afferents explains why the firing rates of S1 neurons are not dependent on stimulus frequency even

though PC rates are (Harvey et al., 2013). Finally, the PC input has been found to inhibit cortical

responses (Tommerdahl et al., 2005; Tommerdahl et al., 2010), consistent with our finding that PC

filters are often net suppressive.

Efficient coding and the integration of sensory channels
Sensory cortex is tuned to the statistics of the natural environment, as has been demonstrated most

notably in vision (van Hateren, 1992; Field, 1987) and audition (Smith and Lewicki, 2006), by

invoking the efficient coding principle (Barlow et al., 1961). Generally, it has been assumed that the

peripheral input stems from a single homogeneous population of neurons (e.g. retinal ganglion

cells). However, this is often not the case: in touch, information is carried by multiple separate popu-

lations of neurons, each with different sensitivities and response properties. To encode information

efficiently, then, the disparate response properties of these different channels need to be taken into

account. While both RA and PC afferents respond to most high-frequency skin vibrations, such as

those elicited during texture scanning, both afferent classes do so in different ways. First, RA affer-

ents increase their firing rate with increasing stimulus amplitudes (Arabzadeh et al., 2014), and do

so in a manner that is relatively independent of stimulus frequency, while PC responses saturate at

low stimulus amplitudes and are highly frequency-dependent (Muniak et al., 2007). RA firing rates

therefore convey a much more informative signal about the amplitude of tactile stimuli than do PC

firing rates. That S1 firing rates depend mostly on RA input exploits the fact that these afferents con-

vey unambiguous information about stimulus amplitude. Second, PC afferents exhibit much higher

temporal precision in their spiking patterns than do RA afferents (Mackevicius et al., 2012), espe-

cially for high-frequency skin vibrations such as those elicited when we run our fingers across a tex-

ture (Weber et al., 2013), and this precise spike timing conveys information about tactile events and

shapes perception (Mackevicius et al., 2012). That the timing of S1 responses is driven primarily by

the PC input exploits the highly informative nature of the PC timing signal.

Separate sensory channels that convey complementary but overlapping information are common-

place in sensory systems and not limited to the sense of touch; the visual (Field and Chichilnisky,

2007), auditory (Cant and Benson, 2003), gustatory (Zhang et al., 2003), olfactory (Uchida et al.,

2014), and vestibular (Goldberg, 2000; Sadeghi et al., 2007) systems all involve many types of

afferents. Distributing sensory information across channels has distinct advantages such as parsing

the behaviorally relevant range (Dominy and Lucas, 2001), keeping energy expenditure low

(Gjorgjieva et al., 2014), and optimizing information transmission in the presence of noise
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(Kastner et al., 2015). To the extent that these parallel input channels represent information in dis-

parate ways (differing in response latency, adaptation properties, or spiking precision, among

others), their integration should reflect and exploit such differences, a process that can be described

using the type of model introduced here.

Materials and methods

Stimuli
The vibrotactile stimuli have been described previously, for both the peripheral (Muniak et al.,

2007) and the cortical (Harvey et al., 2013) experiments. In short, tactile stimuli were delivered to

the distal pads of the digits using a stainless steel probe diameter driven by a shaker motor. The

shaker motor was calibrated before each experimental run such that stimuli were highly accurate

and repeatable. We delivered three types of stimuli that varied in spectral complexity, including sim-

ple sinusoids, diharmonic stimuli (only used for the peripheral model fitting), and bandpass noise.

The ranges of frequencies and amplitudes spanned the range experienced in everyday tactile experi-

ence. While the exact frequencies and amplitudes differed somewhat between the peripheral and

cortical data sets, the two stimulus sets were largely overlapping. We were thus able to develop

peripheral spiking models that simulated the peripheral responses to the stimuli used in the cortical

data set (see below). Individual stimuli in this data set were 1 s long and were repeated five times

(frozen noise), yielding a total of about 22 minutes (16 for noise and 6 for the sinusoids) of data from

each neuron.

Electrophysiology
Cortical experiments
Experimental procedures have been previously described (Harvey et al., 2013) and are only summa-

rized here. All procedures were in accordance with the rules and regulations of the University of Chi-

cago Animal Care and Use Committee. Extracellular recordings were made in the postcentral gyri in

four hemispheres of two awake, behaving Rhesus macaques (Macaca mulatta). Recordings were

obtained from neurons in areas 3b and 1 that met the following criteria: (1) action potentials were well

isolated from the background noise, (2) the RF of the neuron was on the glabrous skin, and (3) the neu-

ron was clearly driven by light cutaneous stimulation. In total, recordings were obtained from 49 area

3b and 69 area 1 neurons. Some of these data have been previously published (Harvey et al., 2013).

Peripheral experiments
Experimental procedures have been previously described (Muniak et al., 2007). All experimental

protocols complied with the guidelines of the Johns Hopkins University Animal Care and Use Com-

mittee and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Sin-

gle unit recordings were made from the ulnar and median nerves of two anesthetized Rhesus

macaques using standard methods (Talbot et al., 1968). Recordings were obtained from 14 RA and

4 PC afferents. This data set has been previously used to develop peripheral spiking models

(Kim et al., 2010; Dong et al., 2013).

Peripheral model
We fit integrate-and-fire (IF) models to the measured responses of individual afferents. Our IF model

is similar to an earlier one (Kim et al., 2010), with two main differences. First, we did not employ

complex temporal filters with a large number of weights, but instead restricted the model input to

six dimensions (positive and negative rectified stimulus positions, velocities and accelerations) plus a

delay parameter, as this parameterization has been shown to be sufficient to reproduce afferent

responses (Dong et al., 2013). Second, we included an additional parameter, namely a smoothing

factor that controls the width of a Gaussian window that is convolved with the stimulus trace initially.

Using this parameter allows us to model the fact that the PC afferents’ sensitivity decreases for fre-

quencies higher than ~300 Hz (Muniak et al., 2007; Mountcastle et al., 1972).

For model fitting, we used the van Rossum spike distance (van Rossum, 2001) between the

recorded and model-predicted responses as a cost function and then optimized the model parame-

ters using the patternsearch function in Matlab (The Mathworks, Inc., Natick, MA) using different
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starting positions. We optimized the model on the noise stimuli first and then alternated between

the sinusoidal and diharmonic stimulus sets while decreasing the cost function time constant until

the fits did not improve further. In total, we fit single afferent models to 14 RA and 4 PC afferents.

RA and PC population responses were generated by averaging over the responses of all RA and PC

individual models, respectively. The models have been extensively validated, as detailed in previous

studies (Kim et al., 2010; Dong et al., 2013), and captured both the strength and timing of periph-

eral afferents (Figure 1—figure supplement 1).

One potential concern is that the reconstructed RA and PC population activity might not accu-

rately reflect the peripheral input on which a given cortical neuron’s response relies. While individual

peripheral responses are very stereotyped and therefore simple to model, individual afferents still

differ in terms of sensitivity, and these differences might be reflected in the cortical responses. To

address this issue, we generated different RA and PC populations, using different peripheral models,

and also varied the size of the peripheral population used to drive the cortical responses. We found

that the recovered filters were robust to these changes.

Modeling the transformation between periphery and cortex
We modeled the transformation between the peripheral RA and PC population responses and single

unit S1 responses using the LNP framework (Schwartz et al., 2006). LNP models have long been

fruitfully used for modeling the responses of cortical neurons across several synapses, often even

including the sensory receptors. The model describes the process of integration as follows: First, the

peripheral RA and PC population responses are each convolved with a linear filter. Second, the

resulting responses are summed and rectified to yield time-varying spiking probabilities. Third, spike

trains are generated according to the spiking probability in each time bin. The full model (see also

Figure 1B) can thus be expressed as follows:

pðstÞ ¼ rðkRA�sRA;tþkPC�sPC;tÞ (1)

where p(st) denotes the probability of a cortical spike at time t, kRA and kPC are vectors containing

the RA and PC filters, sRA,t and sPC,t are vectors containing the binned RA and PC population

responses within a time window 100 ms prior to time t, and r() denotes the rectifying nonlinearity.

To estimate the linear filters kRA and kPC, we used reverse correlation of the cortical responses

onto the RA and PC z-scored population responses covering a time window of 100 ms preceding

the cortical response with a bin width of 1 ms. For this procedure, we exclusively used the data from

the bandpass noise stimuli as this method can only recover unbiased filters if the RA and PC popula-

tion responses are uncorrelated with each other over time. Even though our original vibrotactile

stimuli exhibited little autocorrelation, the evoked RA and PC population responses were weakly cor-

related both across time and with each other, which could affect the filter estimation. We addressed

this problem using a two-pronged approach. First, we verified that across our entire data set, tem-

poral and population correlations were low (see below). Second, to minimize the impact of any

remaining correlations, we calculated the autocorrelation matrix of the RA and PC population input

and used its regularized inverse to correct the obtained filters (ridge regression):

kRA;PC ¼ ½STRA;PC;T �SRA;PC;T þa � I��1 �S
T
RA;PC;T � sC; (2)

where kRA,PC,T is a vector containing both the RA and PC filters, SRA,PC,T is a matrix where each row

corresponds to a time t and contains the peripheral population responses sRA and sPC for the 100

ms preceding t, a is the regularization parameter, I is the identity matrix, sC is a binary vector con-

taining the responses of a cortical neuron (0 for no spike, 1 for spike) for all times t, and []-1 denotes

the pseudoinverse.

We varied the regularization parameter a and also tried other correction methods, such as

decomposing the autocorrelation matrix using singular-value-decomposition and only preserving

strong components (Sripati et al., 2006); we obtained essentially the same results, and thus con-

clude that the approach is robust and the recovered linear filters accurate (see further analysis

below).

The nonlinearity was a piecewise linear function, chosen over a smoother sigmoidal function,

because the firing rates of S1 neurons increase steeply as soon as their respective response thresh-

old is crossed (Harvey et al., 2013):
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rðxÞ¼b1; if x< 0; rðxÞ ¼ b1 þ b2�x; if x> 0 and b1þ b2�x< 1; and rðxÞ ¼ 1; otherwise: (3)

To estimate the parameters b1 and b2, we used an optimization algorithm (lsqcurvefit in Matlab)

to fit the time-varying spiking probabilities p(st) such that they matched the observed spiking proba-

bilities to the extent possible.

Analysis of linear filters
To measure the magnitude of a filter, we summed its absolute value over time. To determine the

temporal width of a filter, we first determined a noise threshold, set to three times the standard

deviation of the filter values 80–100 ms before the cortical response; we then counted the total time

that each filter’s absolute value was above that threshold. Finally, to measure excitation/suppression

indices, we divided the sum of the positive and negative components of a filter by its overall magni-

tude. When analyzing the impact of removing input from one fiber class, we refitted the filters and

nonlinearity using only input from the remaining class.

Testing the robustness and accuracy of filter estimation
Recovering linear filters accurately from data that exhibit correlations is notoriously difficult and error

prone. In our case, one of the main concerns is whether cross-correlations between RA and PC

responses might introduce biases in the recovered filters that would lead us to conclude that both

populations contribute input, when in reality only one does. Additionally, the RA and PC responses

are autocorrelated, which might bias our estimates of the filter width, or their net excitation or sup-

pression, and thereby erroneously yield different filters for the two populations (see Figure 2—fig-

ure supplement 1A for the RA/PC covariance matrix). To test whether our method is prone to such

biases, we simulated a population of 243 neurons with a variety of different linear filters that differed

in width, magnitude, excitation/suppression, temporal offset, and received RA input, PC input, or

both. We then used these filters to generate simulated spiking data from the noise vibrations. We

set the firing rates to span the range encountered in the measured cortical responses. We then

tested whether we could accurately recover the linear filters from the simulated responses and

whether there were any biases in the measures we used to quantify these filters. First, we found that

the recovered filters matched the filters used to generate the simulated data well (Figure 2—figure

supplement 1B,C). Second, we verified that our procedure for determining whether neurons

received RA input, PC input, or both, worked correctly in the vast majority of cases: 90% of the simu-

lated neurons that received input from both RA and PC populations were identified as such. Impor-

tantly, only 3% of simulated neurons that received input from only one of the peripheral populations

were misclassified as receiving input from both (Figure 2—figure supplement 1D). Finally, we also

checked whether there might be biases when estimating filter metrics such as overall magnitude, fil-

ter width, and excitation/suppression indices in RA as compared to PC filters that might explain the

observed differences. We found that these biases were generally very small and in no case could

account for the effect sizes observed in the cortical data set (see comparison in Figure 2—figure

supplement 1E). In summary, our procedure recovers most filter shapes accurately and the small

biases that remain cannot account for the observed effect sizes.

Timing analysis
To assess the contribution of RA and PC input at different timescales, we bandpass-filtered the mea-

sured and predicted cortical responses to four different frequency ranges, corresponding to differ-

ent temporal resolutions (3, 5, 13, and 66 ms) and then calculated the correlation coefficients for

each neuron. To assess spike timing for the sinusoidal data set, we calculated the vector strength

(Goldberg and Brown, 1969) (a measure of how precisely a neuron’s response is aligned with a

sinusoidal stimulus) of the recorded and predicted cortical responses.

Optimizing filters by maximizing information
We first simulated the responses of populations of RA and PC fibers to 55 natural textures

(Manfredi et al., 2014). In brief, textured surfaces were scanned over the fingertip of human sub-

jects at different scanning speeds, while elicited vibrations were recorded using a Laser Doppler

vibrometer (Polytec OFV-3001 with OFV 311 sensor head, Polytec, Inc., Irvine, CA). For each texture,
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we collected 240 (8 subjects � 3 speeds � 10 repetitions) 500-ms long vibration traces. The

recorded traces were bandpass-filtered to between 50 and 800 Hz and then served as input to the

peripheral RA and PC spiking models. To adjust for the distance-dependent decay of the vibrations

and the size of the contact location, we added a global scaling factor for each the RA and PC traces

which was set to ensure that the mean simulated RA and PC firing rates matched those recorded

using the same set of textures (Weber et al., 2013). Indeed, across textures the recorded and simu-

lated firing rates matched well (r = 0.83 for RA and r = 0.92 for PC responses), indicating that our

simulated responses capture actual texture-elicited responses well. Some textures, mainly coarser

one, elicit responses not only in RA and PC afferents, but also in SA1 afferents; we excluded textures

with an average SA1 contribution >10 Hz from further analysis. Since we were interested in tactile

environments that cause both RA and PC afferents to respond, we also excluded textures where the

RA or PC average firing rate was below 20 Hz. In total, this left 25 textures, whose elicited vibrations

where in the high-frequency range and excited RA and PC but not SA1 afferents.

Next, we optimized linear filters for each texture individually by maximizing the mutual informa-

tion I(S,V) between the responses of our model (S) and the texture-elicited vibration traces (V):

IðS;V Þ ¼
X

S

X
V
pðs;vÞ log ½pðs;vÞ=pðsÞpðvÞ� (4)

The probability of a spike in an S1 neuron, p(s), can be calculated from the LNP model described

above. To estimate p(v), that is, the distribution of stimulus values, we divided the stimulus trace into

1 ms long bins and calculated the absolute value of the deflection amplitude at each time point. The

resulting values were divided into 50 bins and p(v) was set to the relative frequencies with which

each of the 50 values appeared. We introduced a delay of 15 ms to mimic the response delays

observed in cortical responses. For optimization, we calculated the gradient of the mutual

information I(S,V) analytically and then used a standard constrained optimization method (fmincon in

Matlab). We restricted the average firing probability, St p(st)/T, of the optimized neurons to values

observed in our recorded data set to prevent neurons from responding at unnaturally high rates

(Tkacik et al., 2010). We found that filters optimized for different firing rates differed in a scale fac-

tor, but were otherwise identical. We also used a constant set of parameters for the static nonlinear-

ity; again, we found that these did not affect the shape of the optimized filters but rather changed

their scale.

Finally, we ran our procedure for filter optimization on a distorted data set. Specifically, we

numerically computed the second derivative (accelerations) of the original texture traces described

above and re-normalized them to the magnitude of the original traces before simulating peripheral

responses to these stimuli and then optimizing the filters. The differentiated traces contain the same

frequencies as the original traces, but the higher frequencies are weighted more strongly.
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