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Abstract—Mutation testing is a well-known method for mea-
suring a test suite’s quality. However, due to its computational
expense and intrinsic difficulties (e.g., detecting equivalent mu-
tants and potentially checking a mutant’s status for each test),
mutation testing is often challenging to practically use. To control
the computational cost of mutation testing, many reduction
strategies have been proposed (e.g., uniform random sampling
over mutants). Yet, a stand-alone tool to compare the efficiency
and effectiveness of these methods is heretofore unavailable. Since
existing mutation testing tools are often complex and language-
dependent, this paper presents a tool, called mrstudyr, that enables
the “retrospective” study of mutant reduction methods using the
data collected from a prior analysis of all mutants. Focusing
on the mutation operators and the mutants that they produce,
the presented tool allows developers to prototype and evaluate
mutant reducers without being burdened by the implementation
details of mutation testing tools. Along with describing mrstudyr’s
design and overviewing the experimental results from using it,
this paper inaugurates the public release of this open-source tool.

I. INTRODUCTION

Software developers may introduce errors into a program’s

source code that could result in a human fatality [1]. Running a

set of tests, frequently called a test suite, often aids in detecting

the faults that cause a program to function incorrectly [2]. Yet,

simply testing a program is not sufficient. In order for testing to

establish a confidence in the correctness of the program under

test, the test suite needs to be of a high level of quality [3].

Mutation testing is a widely-recognized technique for as-

sessing the quality of a test suite [4]. While there are many

potential faults for a program, mutation testing focuses on

those that are “close” to the correct version, with the expec-

tation that they will be representative of all faults [5]. Of the

methods for evaluating test quality, mutation testing is widely

considered the strongest test criterion in terms of its capability

to necessitate the creation of tests that find many faults [6].

Although mutation testing effectively requires tests to detect

faults, it has significant drawbacks in its computational cost

and the amount of necessary human interaction, often making

it impractical to use [4], [7], [8]. A major computational cost

of mutation testing comes from executing each test case in a

test suite for the many generated mutants [9], [10]. Executing

a small, representative set of mutants against the test suite has

previously been proposed as a technique to reduce the cost

of mutation testing [5], [11], [10]; this reduction strategy is

categorized by Offutt and Untch as a “do fewer” approach [12].

There are several mutant reduction techniques in the “do

fewer” category, with mutant sampling being a simple method

that randomly selects a subset of all mutants [11]. In addition

to being conceptually simple [4], mutant sampling has been

experimentally shown to outperform other more sophisticated

methods [13]. Two sub-techniques within mutant sampling are

called uniform random sampling and sampling over opera-

tors [4], [8], [14]. For both of these sub-techniques, a threshold

for the maximum percentage of selected mutants is set to x,

which is then either applied to the entire set of mutants or to

each set of mutants produced by an operator [4], [8], [14].

Prior work has found the smallest value of x that still

produces a representative set of mutants [5], [15]. Yet, these

efforts normally required the experimenters to integrate a

reduction technique into an existing mutation testing system

before performing a mutation testing experiment [16], [17].

Since mutation testing tools are often complex — according to

the Count Lines of Code (cloc) tool the PIT mutation testing

system contains over 43,000 lines of non-commented Java

code and thousands of lines of build and configuration files

— this approach to studying mutant reduction methods has a

high upfront cost. That is, researchers in this field must grasp

the complexities of a mutation testing tool before they can

experimentally evaluate new techniques for mutant reduction.

As a means for obviating the need for researchers to grasp

a complex mutation testing system, this paper advances the

idea of retrospectively studying mutant reducers. After using

a tool like PIT to collect data about which operators ran and

what mutants they produced, a retrospective analysis applies

strategies like uniform random sampling to the mutant data,

thereby quickly facilitating an understanding of a reduction

method’s trade-offs. Only after researchers comprehend how

the mutant reducers work in the intended domain must they

then grapple with the complexities of the chosen tool.

Since retrospective analysis still requires tool support, this

paper presents mrstudyr, a tool for evaluating mutant reduction

techniques in retrospect. Accepting data in a generalized

format from a single run of a mutation testing system,

mrstudyr applies mutant reduction strategies and calculates

their efficiency and effectiveness. In addition to being capable

of retrospectively analysing mutant reduction techniques from

various domains, mrstudyr is well-documented and has been

released on GitHub under an open-source license [18].

As studying the mutant data retrospectively removes the

need to comprehend the complexities of a target environment,

mutant reduction methods can be extended to new domains

such as that of relational database schemas [19], [20], [21].

Ensuring that a database’s schema has correctly specified

integrity constraints is important because these entities ensure

that only valid data enters the database. Even though there

are 971,373 questions about databases on StackExchange, the
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Fig. 1: The phases of the mutation analysis process.

technical question and answer website [22], little prior work

has focused on testing these integrity constraints [19].

Since it is important to assess the quality of tests for

relational database schemas, recent work has proposed and

evaluated database-aware mutation analysis techniques [19],

[20], [21]. Although the presented method and tool are general,

this paper illustrates the retrospective study of mutant reducers

and the use of mrstudyr in the area of mutation analysis for

database schemas. In addition to describing the implemen-

tation of mrstudyr and overviewing results from applying it

to the retrospective study of database schema mutation, this

paper inaugurates the public release of this analysis tool. In

summary, the key contributions of this paper are as follows:

• A well-documented and easy-to-use tool, mrstudyr, that:

– supports using mutant reduction methods retrospec-

tively as a way to study trade-offs in efficiency

and effectiveness without having to understand the

implementation of a complex mutation testing tool.

– accepts a generalized input format, is extendible to

various domains, and is released as a free and open-

source package in the R programming language.

• Using database schemas taken from real-world database-

centric applications, preliminary results from using

mrstudyr, highlighting the benefits of mutant reduction

and the ease with which these results may be obtained.

II. IMPLEMENTATION AND USE OF THE mrstudyr TOOL

A. Objectives

When performed with tools such as Major [23], the process

of mutation testing, as displayed in Figure 1, involves the

use of operators to generate mutants for a specific program

and then the execution of tests to determine how they kill

the mutants. The outcome of this phase is the higher-is-

better mutation score, or the ratio of the number of killed

mutants to the number of mutants generated [7]. In many

cases, as shown in Figure 1, it is necessary to perform various

analyses of the mutants. For instance, testers may want to see

which mutants were not killed so as to determine if they are

equivalent (i.e., semantically the same as the original program)

or, alternatively, indications of ways to improve the test suite.

This paper presents another type of mutant analysis: the

retrospective study of mutant reduction techniques. Leveraging

data collected during mutation testing (e.g., the name of an op-

erator that produced a mutant, the kill-status of a mutant, and

TABLE I: The generalized data format accepted by mrstudyr.
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fpbpyn2 SQLite CoffeeOrders FKCColumnPairR NORMAL true 59
fpbpyn2 SQLite CoffeeOrders FKCColumnPairR NORMAL true 59
fpbpyn2 SQLite CoffeeOrders FKCColumnPairR NORMAL true 88
fpbpyn2 SQLite CoffeeOrders FKCColumnPairR NORMAL true 54
fpbpyn2 SQLite CoffeeOrders FKCColumnPairE NORMAL true 56
fpbpyn2 SQLite CoffeeOrders FKCColumnPairE NORMAL true 49

the costs of producing and analysing a mutant), this method

supports the study of mutant reduction techniques. This type

of retrospective analysis allows testers to ask and answer

questions like “what would the mutation score be if only a

random 20% of the mutants were executed?” While questions

of this nature could be executed through, for instance, either

a manual analysis or a bespoke program, this paper presents

mrstudyr, a tool that makes it easy to effectively pose and

answer questions about methods for mutant reduction.

Currently, mrstudyr can perform a widely-studied mutant

reduction technique: mutant sampling [4], [5], [8]. Due to

its extensible design, the mrstudyr tool could be extended to

perform specific reduction techniques such as E-selective [24],

where mutants are only created by the following operators:

ABS, UOI, LCR, AOR, and ROR [8]. Additionally, reduction

methods that group mutants with clustering algorithms [5]

could also be incorporated into mrstudyr. To support the

integration of new algorithms for mutant reduction, mrstudyr is

accompanied with extensive documentation that explains the

inputs, outputs, and behavior of the main functions [18].

B. Input Format

By accepting a generalized input format, the mrstudyr tool

can be used in a variety of testing domains to assess the

efficiency and effectiveness of mutant reduction techniques.

Table I gives a snippet of a data set analyzed in the experimen-

tal study of this paper. Organized so that each row furnishes

data about an individual mutant, mrstudyr’s data is in a “tidy”

format [25] that primarily focuses on the entity under test, the

configuration in which mutation testing was performed, and

the operator that produced each mutant. Since mutation testing

systems can produce different types of mutants (e.g., normal,

still-born, or equivalent) [26], mrstudyr’s input files also record

the type of the mutant. Additionally, the tool tracks the status

of the mutant and one of many different execution timings

(e.g., mutant generation or analysis time); as necessary, the

tool can also be extended to process more input types.

C. Conducting Experiment Campaigns

Figure 2 gives the structure for the campaign of experiments

that mrstudyr conducts to collect the reduced mutant data

from a single reduction technique. The “analyze” algorithm

expects the mutant data from performing mutation testing on

all mutants. Since the presented tool currently focuses on

mutant sampling, the reduction technique algorithm requires as

input an arbitrary x, to be chosen as the maximum percentage

for the number of mutants to be analyzed from a set. Following



function analyze (data)

where
• data is data collected from performing mutation testing on all mutants
• x is the maximum percentage for the number of mutants
• percentages is the list of chosen x values for mutant sampling
• t is the trial index of the experiment
• trials is the total number of trials set for each configuration of technique
• reduced is the reduced mutant data returned from a single reduction method
• d is the data from the configuration of a reduction method and x value

d← ∅, t← 0

for each x ∈ percentages

for t ≤ trials

let reduced← reduction technique (data, x)

let d← append(d, reduced)

t← t+ 1

return d

end function

Fig. 2: An experiment function for studying mutant sampling.

the recommendations of Traeger et al. [27] and Arcuri and

Briand [28], for the preliminary results presented in this

paper, the maximum threshold for the number of trials that

mrstudyr runs for each configuration of a reduction approach

is set to 30, thereby controlling for the randomness inherent

in both a reduction method’s behavior and execution time.

D. Implementation as an R Package

The R programming language is commonly used because

it facilitates reproducible research [29], [30]. It does so by

providing anyone interested with the necessary data and

code to recreate the analyses of the researcher [31]. In the R

language, the established way to share code is via a package,

which is easy to distribute and often includes data, code,

documentation, and test cases [30], [32]. Since mrstudyr has

been released as an R package, installing it requires four

commands. First, install.packages("devtools"),

then library(devtools) to install and load the

devtools [33] package, respectively. The devtools

package is necessary because it facilitates the installation and

maintenance of mrstudyr as well as its dependencies. Finally,

to install mrstudyr [18] from the popular Git repository

hosting service, GitHub [34], use the following command:

devtools::install_github("mccurdyc/mrstudyr").

Then, load mrstudyr using library(mrstudyr).

E. Tool Usage

We designed the mrstudyr tool to make it simple to

perform a thorough and automated empirical analysis of

mutant reduction techniques. The common structure of an

R package expects that externally-collected data is stored

in the inst/extdata folder. This is the location where

mrstudyr looks to find the mutation data, stored as a comma-

separated value file; in this paper, we ran the SchemaAna-

lyst tool [35] to generate the data used as input to mrstudyr.

The “Reduction Techniques”, as referenced in Figure 3,

are performed following the provision of mutant data,

the “Original Data”, to mrstudyr. Using mrstudyr to per-

form analyses and create visualisations requires the call

of a single function per reduction technique; the func-

tions are create_random_sampling_graphs() and

Original Data

Analyze Reduction Technique

Accumulated

Reduced Data

Efficiency & Effectiveness Analysis

MS Red. Corr. Err.

Human Examination

Policy Recommendation

Fig. 3: The inputs and outputs of the mrstudyr tool.

In this figure, the dark square represents the mrstudyr tool and its constituent

parts, a rectangle stands for a process, a rectangle with rounded edges is a

calculation performed by mrstudyr, and an ellipse symbolises an input or output.

create_operator_sampling_graphs(). Both func-

tions accumulate the reduced data over 30 trials into a single

data set, as shown by the “Accumulated Reduced Data” ellipse

in Figure 3. After performing a reduction technique, it is

evaluated in the “Efficiency and Effectiveness Analysis” phase

that results in the output of these values: mutation score (MS),

cost reduction (Red.), correlation (Corr.), and error (Err.).

While mutation score and cost reduction are calcu-

lated in the function performing the analysis, a correla-

tion coefficient and two error metrics are calculated by

analyze_calculations(), where the function’s input

is the accumulated data from a reduction technique and the

output is a new data set with these three effectiveness values.

The mrstudyr tool employs correlation to determine how

the mutation score arising from the reduced set of mutants

corresponds to the score produced by the full mutant set.

Kendall’s τb is a measure of correlation between -1 and 1,

representing a strong negative and strong positive association,

respectively, with 0 indicating that there is no correlation [36].

Following Inozemtseva and Holmes, we adopt the Guildford

scale to describe a correlation, with the absolute value of a

coefficient being described as “low” when it is less than 0.4,

“moderate” when it is between 0.4 and 0.7, “high” between

0.7 to 0.9, and “very high” when it is greater than 0.9 [37]. The

errors calculated by mrstudyr are the widely-used root mean

square error (RMSE) and mean absolute error (MAE) [38],

both “lower-is-better” metrics showing the difference between

the mutation scores for the reduced and full set of mutants.

In the human examination phase of Figure 3,

mrstudyr presents the results of the analysis phase by

using Wickham’s graphing package, ggplot2 [39], to create

easy-to-grasp visualisations that help a user to construct



TABLE II: Schemas analyzed in the empirical study.
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CoffeeOrders 5 20 0 4 10 5 0 19
Employee 1 7 3 0 0 1 0 4
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
JWhoisServer 6 49 0 0 44 6 0 50
MozillaPermissions 1 8 0 0 0 1 0 1
NistWeather 2 9 5 1 5 2 0 13
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14

Total 21 114 13 7 71 21 1 113

a recommendation regarding which reducer should be

incorporated into a mutation testing tool. Examples of

these visualisations, along with a screencast [40] and more

documentation are found on mrstudyr’s GitHub page [18].

III. PRELIMINARY STUDY

To demonstrate the effectiveness and domain extensibility

of mrstudyr, we studied the mutants of the nine schemas in

Table II with the presented tool. Similar to the studies of

Wong and Mathur [15], mrstudyr performed mutant sampling

with x value increments larger than 1%. Specifically, for

this experiment, mrstudyr analyzed x at 1% and 10%, then

increased by 10% intervals to a maximum value of 90%. By

setting the granularity of the experiment to 10% intervals,

mrstudyr reduces the cost of performing retrospective analysis,

while confirming trends from prior work, as shown in Figure 4.

For each of the sampling techniques currently supported by

mrstudyr, the mutant reducer is invoked at every x percentage

for each of the schemas under test and for a total of 30 trials.

Figure 4 is a box-and-whisker plot with the schemas on the

horizontal-axis and the mutation scores of the reduced sets

after random sampling at the x values of 1%, 10%, 20%, and

40% on the vertical-axis. These values were chosen as the x

values because they serve to confirm a previously observed

trend of decreasing errors between the original and reduced

sets’ mutation score as x increases. Moving from top-left to

bottom-right, the boxes in Figure 4 show this decrease in error.

This trend occurs because the mutation scores of reduced

sets from small percentages are often very volatile and can

thus vary largely based on one or few mutants; in contrast,

the mutation scores of sets with greater percentages are

substantially more stable. In the top-left of Figure 4, x is

evaluated at 1%. In this quadrant of Figure 4, the calculated

RMSE, 12.090, is very high with respect to the same metric

at greater percentages, while the correlation coefficient, 0.385,

is classified as “low” according to Guildford scale. In the top-

right quadrant, where x is 10%, stability is already evident

in the reduced sets’ mutation scores. At this percentage, an

RMSE of 4.082 is much lower than at 1% and the correlation

is “moderate” with a coefficient value of 0.654. This same

trend of decreasing RMSE values and increasing correlation

coefficients remains true for x values of 20% and 40%. When

randomly sampling 20% and 40% of the mutants, RMSE is

2.485 and 1.568 and the correlation coefficients are “high” for

both, with values of 0.763 and 0.852, respectively.
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Fig. 4: Mutation scores per database schema over 30 trials.

Each box represents the inter-quartile range (IQR), or the measure of statistical

dispersion that is the difference between the 1st and 3rd quartiles. In this plot the

whiskers extend up to 1.5 times the IQR and the line across the middle of the

box marks the median. Additionally, the triangle in the boxes denotes the mean

and the filled circles extending beyond the whiskers correspond to outliers.

These results demonstrate that it is possible to easily use

mrstudyr to confirm the prior results of Wong and Mathur in

the new application domain of database schemas. More studies

can now be run as mrstudyr is available from GitHub [18].

IV. CONCLUSIONS AND FUTURE WORK

Although mutation testing is well-recognized as a way to

assess test suite quality, it may be too costly to practically use.

As such, various methods have been developed to decrease the

cost of mutation testing. Performing these reduction techniques

in the past has required researchers and experimenters to in-

corporate a reduction method into an, often complex, mutation

testing tool. The mrstudyr tool alleviates the burden of imple-

menting each approach by analyzing reduction techniques in

retrospect, a potentially more cost-effective method.

By retrospectively analyzing the data collected from a

prior analysis of all mutants, the mrstudyr tool is able to

decrease the upfront human-implementation costs by obviating

the need for researchers and industrialists to fully understand

the domain complexities associated with a mutation testing

system. Furthermore, mrstudyr provides an easy-to-use and

rapid way to assess the efficiency and effectiveness of mutant

reduction methods. In addition to being detailed in this paper,

mrstudyr has been released under an open-source license on

a GitHub site that features extensive documentation and a

screencast [18]. In future work, we plan to extend the func-

tionality of mrstudyr by integrating additional mutant reduc-

tion techniques, thereby allowing for a more comprehensive

comparison of the techniques’ efficiency and effectiveness.
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