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ScienceDirect
Recent advances suggest that there is a stochastic

contribution to the proliferation and fate choice of retinal

progenitors. How does this stochasticity fit with the

progression of temporal competence and the transcriptional

hierarchies that also influence cell division and cell fate in the

developing retina? Where may stochasticity  arise in the

system and how do we make progress in this field when we

may never fully explain the behavior of individual progenitor

cells?
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The conflict
More than two decades ago, clonal analysis in the retina

revealed the multipotency of retinal progenitor cells

(RPCs) [1–3]. The widely accepted competence model

proposed by Livesey and Cepko [4] put multipotency

into the context of the previously described evolutiona-

rily conserved order of retinal histogenesis correlated to

the fact that clones generated early, produce both early

and late generated cell types, while clones generated

later produce only late cell types [5,6]. The competence

model suggests that RPCs acquire and then lose the

ability to make various cell types as retinal development

proceeds (Figure 1a). It was proposed that the pro-

gression of competence might be largely regulated by

extrinsic signalling — that instructive environmental

cues could be changing as a function of development

[5,7]. However, no convincing instructive cues have been

found. Indeed, cell-mixing and transplant experiments

revealed that young RPCs in older environments do not

change their temporally appropriate fates [8–10]. More
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recently, it was shown that RPCs grown in isolation give

rise to clones that are similar both in size and composition

to clones in vivo [11�,12��]. Thus, a changing external

environment is neither essential, nor adequate, to

achieve histogenetically appropriate fates (although it

should be noted that environmental cues may never-

theless provide negative feedback to fine-tune the pro-

portions of cells that acquire particular fates [13–15]).

The competence model must therefore rely on an intrin-

sic progression in fate potential. Indeed, the intrinsic

nature of cellular diversification in the developing retina

is consistent with a large and growing literature on various

of transcription factors (TFs), often working together

within hierarchies, that are involved in specifying cell

fates [16,17].

A puzzling aspect of retinal development in light of these

transcriptional cascades has come from recent theoretical

treatments of the statistical properties of retinal clones,

which are variable in cell number and fate composition.

This work shows that the variability of cell number

among clones can be accurately accounted for by assum-

ing that RPCs are equipotent and their proliferation is in

part stochastic [12��,18�,19��]. This work also shows that

cell fate variability among clones is likely to have a

partially stochastic explanation [12��,19��]. The fact that

proliferation and fate might be in part stochastic does not

mean that these processes are uncontrolled, random or

unregulated, but rather that they operate according to

defined probabilities and predictable ensemble behaviors

that are statistically well behaved. Consistent with the

predictions of these stochastic models, live imaging stu-

dies have shown that the daughters of individual RPCs do

not appear to obey a strict temporal program of fates.

Rather they sometimes give rise to cell types within a

clone that are reversed in their order of appearance to the

overall order of histogenesis, and are thus contrary to the

predictions of a strict competence model [12��,19��,20]

(Figure 1b). These findings raise questions about how our

understanding of intrinsic progression of RPCs, and TF

hierarchies, can be reconciled with the stochastic nature

of clonal lineages.

The transcriptional circuitry of retinal cell fate
It is clear that numerous TFs expressed in RPCs play roles

in the specification of retinal cell types. In a number of

vertebrates, there is a core transcriptional hierarchy
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The competence model. The classical view sees retinal progenitor cells progressing through competence windows during which a particular cell type

is generated (a). Recent studies suggest that although a unidirectional transition of competence occurs, progenitor cells choose from multiple fates at

any one time (b).
(Figure 2), which can explain some of the molecular

decisions that retinal cells must make to achieve particular

fates. The TF Atoh7 is required for the generation of GCs

[21,22] and prevents PR fate by inhibiting genes required

for their development [21,23]. Loss of Atoh7 leads to an

increase in cone PRs suggesting that the absence of Atoh7

provides a permissive environment for a fate shift to cones

[24]. Ptf1a can inhibit Atoh7 expression and is necessary for

the specification of HCs and ACs [25,26]. Misexpression of

Ptf1a causes an increase in HCs and ACs at the expense of

GCs, PRs and BCs indicating that Ptf1a is sufficient for the

re-specification of these cell types [20,26]. Vsx2 is initially

expressed throughout the RPC pool, and represses the

expression of Atoh7, FoxN4 (an upstream regulator of

Ptf1a expression) and Vsx1 [27�,28]. Vsx2 is down-

regulated in all but a small population of RPCs that will

give rise to a subset of BCs and MCs. The Vsx1-lineage

gives rise to a subset of BCs distinct from the Vsx2-lineage

derived BCs [27�]. Loss of FoxN4 or Ptf1a prevents HC

genesis, severely reduces the number of ACs, and leads to

an increase of PRs and GCs [25,29,30].

While this core hierarchy may explain how the major cell

types arise, a number of studies, too many to review here,

have revealed that several additional factors that also

influence particular retinal fates (Figure 3, revised from

[31]). Moreover, the simultaneous expression of two or
www.sciencedirect.com 
more TFs can synergistically influence fate suggesting

that combinatorial coding also plays an influential role cell

fate diversification [32–34]. From these studies, it appears

that the intrinsic core hierarchy of retinal cell determi-

nation is overlaid with a complex weave of transcriptional

circuitry that makes it challenging to predict which cell

types will arise from particular progenitors.

Many of the TFs discussed above are expressed only when

cells exit or are about to exit the cell cycle and seem to act by

specifying one fate over another. In other words, most of

them control what the daughter cells of RPCs will become

once they exit the cycle but not the competence of RPCs.

Competence controlling factors should be expressed in

dividing RPCs during the time that they are making particu-

lar cell types. They should also act upstream of the fate

determining genes, perhaps by increasing the chance that

particular sets of these fate determining genes are turned on

or off. Such temporal competence factors are clearly seen in

Drosophila CNS neuroblasts, where a sequence of fate-

influencing TFs starting with Hunchback are expressed

[35]. There is some evidence for similar temporal compe-

tence factors playing a role in vertebrate neurogenesis. For

example, in the mouse, RPCs pass through an early stage in

which they express Ikaros, the vertebrate orthologue of

Hunchback. Ikaros, when overexpressed, biases the pro-

duction of early fates, while Ikaros mutant mice have
Current Opinion in Neurobiology 2014, 27:68–74
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Figure 2
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Core transcriptional hierarchies. During the early proliferative phase of

retinal development all RPCs express Vsx2, which inhibit factors such as

Atoh7 and Vsx1. As development progress this inhibition is abolished

and genes influencing cell fate are expressed. Depending on the level of

Atoh7, and presence or not of Ptf1a, the progenitor follows different

paths giving rise to different cell fates. The Vsx1-lineage gives rise to a

distinct population of BCs from the population expressing Vsx2.
reduced numbers of early-born cell types [36�,37]. One

cannot rule out the possibility that an entire sequence of

competence factors homologous to those found in Droso-

phila neuorblasts will be found in the vertebrate retina, but

at present there is scant evidence for this.

Clonal stochasticity
The statistical distribution of clone sizes seen in both late

rat RPCs in vitro and zebrafish RPCs in vivo fits well with

a model that assumes RPCs are equipotent but that the

mode of division (proliferative (PP) versus asymmetric

(PD) versus differentiative (DD)) is stochastic [12��,19��].
Layered on top of this stochasticity, however, is a pro-

gressive program in which the probability for particular

modes of division ontogenetically evolves. For example,

in the zebrafish retina at early stages, all divisions are

proliferative. This is followed by a period where each

division mode (PP, PD and DD) occurs with approxi-

mately equal probability. The final stage of retinal pro-

liferation is another stochastic period dominated by DD
Current Opinion in Neurobiology 2014, 27:68–74 
divisions (Figure 4) [19��]. This simple model not only

accounts for the distribution of clone sizes from RPCs at

different stages of development, it also accurately pre-

dicts division patterns observed in a population of indi-

vidual RPCs in vivo.

The choice of fate also appears to have a stochastic

element. Gomes et al. [12��], found that the cell fates in

more than one hundred clones from a rat retina were largely

consistent with the hypothesis that these late progenitors

were equipotent but choosing their fates stochastically,

with the relative possibility for each cell type being equiv-

alent to the proportions of these cells in the mature retina.

However, it has to be said that a few combinations of fate

within clones appear more or less frequently than

expected, indicating that in addition to the overriding

stochasticity, there may also be some preprogrammed

motifs operating according to underlying, but as yet

unknown, rules. For example, it was recently found that

a subset of RPCs express the TF Olig2 and were biased

toward production of rod PRs and ACs [38]. Similarly, GCs

that respond to vertical motion arise from progenitors that

express Cdh6 [39]. In the zebrafish analysis [19��], there

were also some patterns that could not be explained by a

stochastic mechanism, such as the fact that at late stages of

retinogenesis, most PRs, BCs and HCs come in pairs. All of

these instances, however, may reflect the action of TFs

operating very close to the last division to specify particular

fates. Asymmetrically inherited Numb may also be at play

here. If, for example, Numb, is inherited by one of the two

daughters at a terminal division, the two daughter will

chose two different fates (e.g. a dominant fate taken by the

Numb inheriting cells and a secondary fate taken by the

other). This could explain why some terminal divisions are

partially patterned, though it may be impossible to predict

in advance of the division which daughter will inherit

Numb and thus which daughter will take which fate [40].

Why stochasticity?
It is interesting to speculate about the mechanisms that

generate stochasticity within retinal lineages. We can

imagine that levels of TFs themselves might be variable,

due to dynamic changes in transcription rate, translation

efficiency, or mRNA and protein stability (as reviewed in

[41]). There may even be mechanisms for generating a

stochastic outcome. For example, the choice of red versus

green opsin in the primate retina relies on the random

looping of DNA to bring a single promoter region adja-

cent to one of the two protein coding regions [42,43].

Variability may also arise through post-transcriptional

mechanisms involving mi-RNAs and long noncoding

RNAs, or post-translational mechanisms such protein

phosphorylation and ubiquitination through interaction

with cell cycle enzymes [44,45]. It is also likely that

epigenetics, the packing and remodeling of chromatin

in the nucleus, will affect the chance that a specific locus

will fire or not [46].
www.sciencedirect.com
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Figure 3
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The complexity of transcriptional regulation. Although key factors can explain some the diversification there are numerous factors affecting fate

outcome. Cross-talk between branches increase the complexity of the system.
The Notch-Delta signaling mechanism may also contrib-

ute to the stochastic decisions that RPCs make [47–49].

This mechanism can magnify small fluctuations in fate

potential and may also lead to oscillations. Indeed the
Figure 4
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expression of the Notch downstream target, Hes1, is

known to oscillate at rates much shorter than the minimal

cell cycle time in neural progenitor cells in culture, and

pairs of interacting cells may oscillate out of phase with
opmental time

 division
ate A

DD division
Fate B

Current Opinion in Neurobiology

 RPCs, whether the daughter cells of RPCs continue to proliferate (P) or

ithin a progression changing probabilities.
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each other [50]. The pattern generator for this rhythm

may lie within individual progenitors due to a cell intrin-

sic double negative feedback loop in which miR-9 con-

trols the stability of Hes1 mRNA, while Hes1 represses

the transcription of miR-9 [51]. Recent studies in the

mouse telencephalon have shown that proneural TFs also

oscillate in progenitor cells possibly in response to the

oscillations of the Hes1 repressor [52]. Interkinetic

nuclear migration along the apico-basal axis of the neu-

roepithelium may also contribute to stochasticity through

this pathway. For example, Notch signaling tends to be

apical, and cells whose nuclei are more apical may be

influenced to a greater extent [53]. But as the apico-basal

movements of RPC nuclei throughout most of interphase

are themselves stochastic [54], the efficacy of Notch

signaling could be affected by this random one-dimen-

sional walk. Similarly, as mentioned above, the asym-

metric inheritance at the last division of Numb, a negative

regulator of Notch signaling, may contribute to stochas-

ticity by influencing which daughter cell which choose a

dominant fate and which will choose a secondary one [39].

Finally, it is unknown to what extent the multiple tran-

scriptional hierarchies present within RPCs interact. In

the face of combinatorial coding mechanisms where

different TFs have non-additive influences on fate

choice, asynchronous, loosely coupled, or independently

firing networks could mean that such combinations of

TFs may appear probabilistically within single PRCs. All

of these stochasticity-generating mechanisms may be

going on simultaneously within RPCs, suggesting that

a high level of uncertainty is inherent in this system. This

is not necessarily a bad thing. Complex systems in which

many variables interact often produce robust and well-

behaved distributions such as the relative proportions of

‘snake eyes’ versus ‘lucky sevens’ in a large population of

dice throws. Similarly, although individual RPCs give rise

to clones that are highly variable, the total number of

differentiated retinal cells generated from the 2000 or so

RPCs of the zebrafish optic vesicle will always be very

close to 22 000, and within this large set of differentiated

retinal cells, all the major neuronal types will proportion-

ally represented [19��].

Research after reconciliation
Stochasticity can be seen as a problem. It may be dis-

appointing to think that we may never be able to predict

exactly what a set of RPCs will do; which cells will divide

how many times and what the fate outcomes of these

divisions will be. But while this kind of stochasticity is

like a cloud that obscures the answers to certain ques-

tions, it is a cloud that has a silver lining, in that it focuses

our attention on other questions that may be easier to

address, and even perhaps more interesting. For example,

recent studies show that eliminating certain TFs leads to

fate switches in daughter cells rather than the death of

particular cell types. As a result, such retinas may have
Current Opinion in Neurobiology 2014, 27:68–74 
vastly altered cell fate distributions while the number of

cells in such retinas may be very similar to wild type

retinas. Such results suggest that proliferation and fate

may therefore be best explained by independent and

largely uncoupled stochastic mechanisms, and this makes

sense as many of the TFs that have major roles in cell fate

are not expressed until cells are about to leave or have just

left the cell cycle. Another important issue is that, in spite

of the stochastic noise, retinal development clearly pro-

gresses through distinct phases of proliferation and cell

fate probabilities (i.e. at each stage of development we

can accurately predict the population distributions of

proliferative/differentiative divisions and the cell fate

distributions). Clearly, the next step is to understand

what it is that determines the transition between these

phases. What is the timer and how does it work? We

would also like to know more about how the probability

profiles at each phase are themselves controlled. In the

developing retinas of some animals, for example, it is

likely that probability of asymmetrical divisions during

the middle phases will be higher than in other animals, or

the probability of rods may be much higher than the

probability of cones. What are the factors that set these

probabilities and are they the same factors that are at the

heart of the evolution of retinal size and cellular compo-

sition within vertebrates? Finally, we would like to know

more about the extrinsic versus intrinsic influences on cell

proliferation and fate. For example, do large clones tend

to have small clones as neighbors, or are the decisions that

are made within each clone independent of the behavior

of neighboring clones? Therefore, crucially, while the

mechanisms that generate stochasticity are interesting

to consider, it may be more productive to investigate

those features of retinal development that are indepen-

dent of stochasticity and remain salient in spite of it.

Lastly, it will be useful to know if the concepts outlined

here for the retina are also applicable to other parts of the

nervous system, or even other tissues.
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