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Absence of dissipation in trajectory ensembles

biased by currents

Robert L. Jack

Department of Physics, University of Bath, Bath BA2 7AY, UK

R. M. L. Evans

School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract. We consider biased ensembles of trajectories associated with large

deviations of currents in equilibrium systems. The biased ensembles are characterised

by non-zero currents and lack the time-reversal symmetry of the equilibrium state. In

cases where the equilibrium system has an inversion symmetry which is broken by the

bias, we show that the biased ensembles retain a generalised time-reversal symmetry,

involving a spatial transformation that inverts the current. This means that these

ensembles lack dissipation. Hence, they differ significantly from non-equilibrium steady

states where currents are induced by external forces. One consequence of this result

is that maximum entropy assumptions (MaxEnt/MaxCal), widely used for modelling

thermal systems away from equilibrium, have quite unexpected implications, including

apparent superfluid behaviour in a classical model of shear flow.
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1. Introduction

The mathematical theory of large deviations underlies the rigorous formulation of

equilibrium statistical mechanics and thermodynamics [1, 2], showing how the free

energy of a very large system is related to the probability of certain rare fluctuations

in that system. In addition to the familiar canonical and microcanonical ensembles

used in that context, large deviation theory can also be applied to ensembles of

trajectories [3, 4, 5]. One considers a physical system evolving in time: for long

trajectories, ergodicity implies that time-averaged quantities almost always converge

to their steady-state averages. Nevertheless, by focussing attention on the rare

trajectories in which this convergence does not occur, large deviation theory can reveal

unexpected behaviour. Examples include fluctuation theorems [6, 7, 8, 9, 10, 11],

and the existence of dynamical phase transitions in both non-equilibrium systems and

supercooled liquids [12, 13, 14, 15, 16]. In the context of sheared systems, it has also

been proposed that rare trajectories of an equilibrium system can be used to predict its

response to shear, beyond the linear-response regime [17, 18, 19, 20].

To study these rare trajectories, it is useful to define new ensembles of trajectories

via biases (or constraints) on the dynamical evolution of the original system, so that

typical trajectories within the new ensembles correspond to the rare events of interest in

the original system. In this work, we concentrate on the case where the original system

is at equilibrium, and the rare trajectories of interest are those where a time-averaged

current J has an atypical (non-zero) value. (Here, a current is a generic observable that

is odd under time-reversal. Equilibrium states are time-reversal symmetric, so average

currents all vanish at equilibrium.)

In cases where the current breaks a spatial inversion symmetry of the equilibrium

system, we show that while the biased ensembles support anomalous currents, they do

so without dissipation. Motivated by previous work on sheared systems [17, 18, 19, 21],

we illustrate our results using a schematic model of a sheared fluid, so the relevant

current is the shear rate. However, we frame our main argument in terms of a fairly

general Hamiltonian system in contact with a heat bath, and we consider a general

class of currents. The presence of the heat bath is not essential when considering biased

ensembles, but it is important when comparing such ensembles with systems that are

driven by non-conservative external forces.

Briefly, our main result is that for any trajectory that realises a particular current J ,

there is an equally probable trajectory that is obtained by reversing the direction of

time, and applying a spatial inversion operation. This result forbids processes such as

the flow of heat into the thermal bath: the direction of heat transfer is reversed under

time-reversal but is invariant under spatial inversion, so if some trajectory involves heat

flowing into the bath, there is an equally probable trajectory where the same quantity of

heat flows out of the bath. Hence the average dissipation is zero. (This balance of heat

currents is the usual situation at equilibrium, where it follows directly from time-reversal

symmetry; here the situation is similar but relies on a symmetry that includes both time-
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reversal and spatial inversion.) It follows that trajectories of systems sheared by external

forces are generically different from the rare large-shear trajectories obtained in biased

ensembles. The role of time-reversal symmetry and of currents in this argument means

that our results are related to previous work by Maes and co-workers in the context of

non-equilibrium response theory [22, 23]. The main consequence of our result is that

we identify qualitative differences between responses to external forces on a system, and

dynamical biases (or constraints) on time-averaged currents.

The biased ensembles that we consider are also identical [18] to those obtained by

Jaynes’s maximum entropy inference (MaxEnt) prescription applied to trajectories and

using current as a macroscopic observable (in which case it is also known as MaxCal

[24, 25, 26]). Hence our results demonstrate that MaxEnt/MaxCal does not generally

yield the non-equilibrium dynamics of driven systems, contrary to the widely-held

hypothesis [24, 25, 26, 18].

2. General setting

We consider a system that evolves in time under a dynamics with some stochastic

element. We use x to indicate a generic configuration (or phase space point). We

concentrate on cases where x = (~q, ~p), with ~q being a vector of generalized co-ordinates

and ~p a vector of conjugate momenta. However, the results may be easily generalised to

other Markov processes, in which case x might also represent an element of a discrete

(or continuous) configuration space.

2.1. Equilbrium dynamics

We first define an equilibrium dynamics and an associated energy function E(x). We

fix Boltzmann’s constant kB = 1. We use X to indicate a trajectory of the system,

running from an initial time t = −τ to a final time t = τ . We write (X)t = x(t) for

the state of the system at time t. By “an equilibrium dynamics”, we mean (i) that the

system’s dynamical rules have the Boltzman distribution p0(x) ∝ e−E(x)/T as a steady

state, and (ii) that this steady state is time-reversal symmetric. (We further assume

that the steady state is unique.) An example is the case where x = (~q, ~p), the energy is

E =
∑

i

1

2
p2i + V (~q), (1)

and the system evoves by Langevin equations

∂tqi = pi , (2)

∂tpi = − ∂V

∂qi
− λipi +

√

2λiTηi . (3)

Here, λi is a friction constant and ~η a vector of white noises with mean zero and

〈ηi(t)ηj(t′)〉 = δijδ(t − t′). For λi = 0 we recover Hamiltonian time evolution.

We emphasise that the equilibrium steady state associated with this evolution is
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time-reversal symmetric for all λi, as may be demonstrated explicitly by writing an

appropriate Fokker-Planck equation (see Appendix A, below).

It is useful to define an operator T which gives the time-reversed counterpart of a

trajectory X. The momenta pi are odd under time-reversal, so we can write

(TX)t = x(−t), (4)

where x = (~q,−~p) is obtained by reversing all momenta in configuration x. (The overbar

should not be confused with any kind of average.) Considering these dynamics and

working in the steady state of the system, one may define a probability density Peq(X)

over all possible dynamical trajectories. This distribution has a time-reversal symmetry:

Peq(X) = Peq(TX). (5)

2.2. Driven dynamics

Next we define a dynamics where the system is driven out of equilibrium by some

external forces. That is, we modify (3) to

∂tpi = −∂V

∂qi
− λipi + fi +

√

2λiTηi (6)

where the external forces fi may be collected into a vector ~f . These forces are assumed

to be non-conservative, that is, they cannot be obtained as the gradient of any external

potential. The probability distribution for trajectories in the steady state of this non-

equilibrium dynamics is denoted by Pneq(X). Due to the non-conservative forces, there

is no time-reversal symmetry: Pneq(X) 6= Pneq(TX).

In this work, we are interested in cases where the external forces ~f break a spatial

reflection symmetry of some kind. For example, one might have E(~q, ~p) = E(−~q,−~p)

so that the system’s equilibrium behaviour is unchanged if all co-ordinates are inverted.

More generally, define an operator P by

(PX)t = x̃(t), (7)

where x̃ is related to x through inversion of one or more co-ordinates (and their

conjugate momenta). We assume that the equilibrium dynamics are invariant under

this transformation, in which case

Peq(X) = Peq(PX). (8)

However, we further assume that the external forces ~f break this symmetry so that

Pneq(X) 6= Pneq(PX).

Note that the driven dynamics considered here is different from the “driven

dynamics” of [17, 18, 19, 20, 21, 27]. We consider here a general non-equilibrium driving

force, where they consider a specific force that is chosen so that to mimic particular rare

events in the original system.
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2.3. Biased dynamics

The non-conservative external forces ~f in the driven dynamics will induce currents within

the system. We define an instantaneous current j = j(x). The dependence of j(x) on

x can be fairly general but in order to be interpreted as a current, we require that it

changes sign under time-reversal: j(x) = −j(x). A simple case (see below) is that ~f

corresponds to a shear stress, in which case the associated current would be a strain

rate. The external forces break the spatial reflection symmetry P, and we also assume

that j changes sign under this inversion: j(x̃) = −j(x). The total current associated

with a trajectory X is

J(X) =

∫ τ

−τ

j(x(t))dt. (9)

From the symmetry properties of the current, one has J(TX) = −J(X) and J(PX) =

−J(X).

Following [11, 3, 18], we are concerned here with the large deviations of J in the

limit τ → ∞. To this end we define a biased ensemble of trajectories

Pbias(X|ν) = Peq(X) · e
νJ(X)

Z(ν)
(10)

where ν is the strength of the bias, and Z is a normalisation constant (or dynamical

partition sum). For a physical interpretation of this ensemble, note that for large τ ,

the ensemble Pbias is very close (in a precise sense [28]) to the ensemble of trajectories

obtained by constraining the total current J to some particular value. That is, typical

trajectories from the biased distribution Pbias are the least unlikely trajectories that are

consistent with a particular (ν-dependent) value of the total current J . Alternatively,

(10) is the ensemble with maximum combinatorial entropy relative to Peq, subject to

a conditioning on the average current J . This is exactly the ensemble that results

from Jaynes’ MaxEnt or MaxCal procedure [24, 25]. Recently, general properties

of ensembles defined as in (10) have been explored in some detail [5, 13, 15, 38, 27].

One important result, already anticipated in [17, 18], is that the ensemble (10) can be

generated by a Markov auxiliary process [38, 27], but the transition rates for this process

involve complicated effective interactions between the components of the system, which

cannot be easily calculated or inferred in systems with many degrees of freedom.

Given all these definitions, one easily sees that the probability of a time-reversed

trajectory TX in the biased ensemble is equal to the probability of the original trajectory

X in an ensemble with the opposite bias: that is,

Pbias(TX|ν) = Peq(TX)eνJ(TX)

Z(ν)
=

Peq(X)e−νJ(X)

Z(ν)
= Pbias(X| − ν). (11)

Similarly one finds that Pbias(PX|ν) = Pbias(X|−ν). Hence, substituting X → TX, one

has a “generalised time-reversal” symmetry for the biased ensemble:

Pbias(PTX|ν) = Pbias(X|ν). (12)
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Figure 1. (a) Sketch of a sheared system in a dissipative steady state. Black arrows

indicate the shear flow of the fluid, while grey arrows indicate heat flow from the fluid

into the external heat bath, through the walls of the system. (b) The same system,

after left-right reflection, which reverses the shear flow. (c) Reversing the arrow of time

reverses both the shear flow and the heat flow, so that energy flows into the system

from the bath. For a system that satisfies the PT-symmetry (12), the trajectories

illustrated in (a,c) must be equally likely, so the average heat flow must be zero.

That is, given a trajectory X, one may obtain another trajectory with equal probability

by first inverting the direction of time and then inverting those co-ordinates associated

with the operator P. See also [22]. Appendix A illustrates these considerations further,

using an operator representation.

Note, we have assumed so far that the system has non-zero frictional and noise

forces (i.e., λi > 0), so that its equilibrium steady state is a Boltzmann-distributed

state at temperature T . However, the analysis leading to (12) holds also for purely

deterministic (Hamiltonian) dynamics with λi = 0. The noise and damping forces are

useful here since they ensure that the driven system (with f 6= 0) eventually converges

to a steady state.

2.4. Absence of dissipation in the biased ensemble

Equation (12) is a mathematical statement about trajectory probabilities. To

understand its physical significance, we now discuss how it is related to heat flow and

dissipation. Our central idea is illustrated in Fig. 1, where we sketch the behaviour of

a sheared fluid (such examples will be discussed in more detail in Sec. 3). The fluid is

confined by two hard walls which we assume to have a well-defined temperature T (these

walls might represent, for example, the plates of a rheometer in which an experiment is

being performed). Shearing the system leads to dissipation, which appears in the form

of heat flow from the fluid into its environment, which we assume acts as a heat bath.

In this system, the symmetry P corresponds to a plane (left-right) reflection, which

inverts the direction of the shear flow, but does not affect the heat flow, as shown

in Fig. 1(b). If we then reverse the direction of time, then the shear flow changes

direction again, and the direction of the heat flow is also reversed, leading to Fig. 1(c).

Equation (12) states that, in the biased ensemble, the situation in Fig. 1(c) must have

the same probability as that shown in Fig. 1(a). Hence, on average, there is no heat
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flow in the biased ensemble.

To derive this result mathematically, we define ∆Q(X) as the amount of heat that

flows from the system into its environment, for trajectoryX. We emphasise that ∆Q(X)

is a physical quantity which can be measured by calorimetry. From its definition, we

have immediately that ∆Q(TX) = −∆Q(X). This allows us to prove the (trivial) fact

that, at equilibrium, there is no heat flow from the system into its environment:

〈∆Q〉eq =
∫

dXPeq(X)∆Q(X)

=
1

2

∫

dXPeq(X)[∆Q(X)−∆Q(TX)]

=
1

2

∫

dXPeq(X)∆Q(X)− Peq(TX)∆Q(X) = 0 (13)

where dX indicates an integral over all possible trajectories, the second equality uses

∆Q(X) = −∆Q(TX); the third equality uses a change of integration varibles X → TX

and the last equality uses Peq(X) = Peq(TX).

In both the biased and driven ensembles, the second equality in (13) no longer

holds, since P (TX) 6= P (X). In the driven ensemble, the breaking of this symmetry

is typically linked to a finite heat flow 〈∆Q〉bias, which balances (in steady state) the

work done on the system by the driving forces. However, in the biased ensemble, the

situation is different. On physical grounds (see Fig. 1), we expect the direction of the

heat current to be unaffected by the spatial transformation P, so ∆Q(PX) = ∆Q(X).

In this case we have

〈∆Q〉bias =
1

2

∫

dXPbias(X)[∆Q(X)−∆Q(PTX)]

=
1

2

∫

dXPbias(X)∆Q(X)− Pbias(PTX)∆Q(X) = 0 (14)

where we used the same substitution as in Eq. (13) and the symmetry (12). This is

the mathematical statement of the result illustrated in Fig. 1, that the biased ensemble

has no average heat flow from the system into its environment. We emphasize that this

result does not generally hold for driven systems, as expected on physical grounds since

in those systems we do expect heat flow from the system into its environment.

We note in passing that, since the system is coupled to a heat bath at fixed

temperature T , it seems natural to identify the entropy production for trajectory X

as ∆S(X) = β∆Q(X) in which case 〈∆S〉bias = 0, again confirming that this ensemble

is non-dissipative. However, in contrast to the heat flow ∆Q(X) which is a physical

observable, there is some ambiguity as to the definition of the entropy production in

the biased ensemble. These issues are discussed in Appendix B, but we emphasise that

our conclusion that 〈∆Q〉bias = 0 follows from (12) whenever ∆Q(PX) = ∆Q(X).

2.5. Protected observables in the biased ensemble

As well as the absence of heat flow, the symmetry (12) has several other observable

consequences in biased ensembles. In particular, the analysis of the previous section
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may be generalised to show that there are two classes of observable whose averages must

vanish in the biased ensemble, or in any ensemble with the combined PT symmetry (12).

These observables are averages of state-dependent quantities F (x) that are odd under

the PT symmetry operation: F ((PTX)t) = −F (X−t).

The first main class includes observables that are odd in P but even under T. For

example, if P involves inversion of all positions and momenta then any odd function

of the position co-ordinates is odd under PT and must vanish on average in the biased

ensemble. That is, if F = F (q) = −F (−q) then 〈F 〉bias = 0, following the same steps

as (14).

The second class includes observables that are even in P but odd under T. For

example, if P involves inversion of just one position co-ordinate q1 and its conjugate

momentum p1, then all other momenta p2, p3, . . . are in this class, so that 〈p2〉bias = 0,

again by the same argument. This class also includes dissipative currents which involve

energy flow from the system into a heat bath. Such currents change their sign under T

(that is, reversing the arrow of time means that energy flows from the bath back into

the system) but are unchanged by P (changing the direction of the current J does not

affect the direction of the energy flow).

The remaining sections of this paper concentrate on examples inspired by sheared

systems, motivated by [17, 18]. Example of observables in the two classes described

above are provided in Section 3.4, for one such system.

3. Illustrative examples

3.1. Linear response

We first illustrate differences between biased and driven ensembles by considering linear

response to the bias ν and the force f . For any observable O(t), we work at equilibrium

(ν = 0 = f) and calculate a derivative with respect to ν (see for example [15]). The

result is a fluctuation-dissipation theorem:

d

dν
〈O(0)〉bias =

∫ ∞

−∞

COj
eq (0, t)dt, COj

eq (t
′, t) = 〈O(t′)j(t)〉eq, (15)

where we use a shorthand notation j(t) = j(x(t)), for clarity. Similarly, if we take a

force f conjugate to the current j, then [29]

d

df
〈O(0)〉neq =

1

T

∫ ∞

0

COj
eq (0, t)dt. (16)

Since the system is at equilibrium, the correlation function COj
eq depends only on the

time difference t′ − t. The simplest case is O(t) = j(t), in which case we measure the

response of the current j itself. In this case the correlation function is also even under

time-reversal: Cjj
eq(t − t′) = Cjj

eq(t
′ − t). Hence, changing variables t → −t in (15), one

finds d
dν
〈j(t = 0)〉bias = 2T d

df
〈j(t = 0)〉bias. A analogous result holds for any observables

O for which COj
eq (t, t

′) = COj
eq (t

′, t),
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On the other hand, if COj
eq (t, t

′) = −COj
eq (t

′, t) so that the correlation function is

odd under time reversal, then applying again the change of variables t → −t in (15)

yields d
dν
〈O(0)〉bias = 0. This result applies if O is a protected observable in the sense

of Sec. 2.5, in which case 〈O(0)〉bias = 0 for all ν. For example, in the first class of

protected observable, O depends on position co-ordinates q but not on momenta p, so

that O(t) = O(x(t)) = O(x(t)). In that case, time reversal symmetry of the equilbrium

state yields COj
eq (t

′, t) = 〈O(t′)j(t)〉eq = 〈−j(t′)O(t)〉eq = −COj
eq (t

′, t), where we used

j(x(t)) = −j(x(t)). Hence d
dν
〈O(0)〉bias = 0 for this class of observable. This result

is a special case of the general analysis in Sec. 2.5; it shows that the symmetry (12)

has observable consequences already in the linear-response regime where the currents

flowing in the system are small. (In contrast to this result for the biased ensemble, there

is no reason to suppose that the averages of all observables in this class should vanish in

the driven ensemble, and the derivatives d
df
〈O(0)〉neq are indeed generically non-zero.)

3.2. A continuously sheared fluid

We now illustrate the abstract definitions of the different ensembles by a commonplace

example. Fig. 2(a) illustrates a sheared system, for which biased ensembles of the

form (10) were discussed in [18, 30]. A slab of fluid sits between two parallel walls,

at y = ±yb, with periodic boundaries in the x and z directions. (There should be no

confusion between these Cartesian co-ordinates and the notation x for a generic phase

space point.) Forces are applied to the plates and the system (eventually) converges

to a steady state with a finite shear rate. In this steady state, the external forces are

constantly injecting work into the system, this energy acts to heat up the fluid, and

eventally flows out through the walls of the system, which we assume to be maintained

at constant temperature T by some external thermostat (recall Fig. 1).

The particles within the fluid evolve according to Hamiltonian’s equations, except

for particles close to the boundary, where they feel (stochastic) thermal noise forces,

and shear forces associated with the parallel plates. The equations of motion for the

particle momenta can be written in the form (6), except that the thermal noise forces

ηi, damping forces λiωi, and external forces fi act only at the boundary. In the absence

of external forces, one has a time-reversal symmetric steady state.

On introducing a shear stress σ, a shear rate in the system can be defined as

γ̇ = (vx(yb) − vx(−yb))/2yb where vx(y) is the average of the x-component of the

velocity of the fluid, within a thin slab at height y. This shear rate will correspond to

the general ‘current observable’ of the previous section: j = γ̇. It is a linear combination

of velocities, so is manifestly odd under time-reversal, as required. The total shear γ

is then easily obtained by a time integral, and we identify the time-integrated current

J = γ =
∫ τ

−τ
j(t)dt, as in (9). To apply our general discussion to this system, the relevant

spatial inversion symmetry P is the co-ordinate transform (x, y, z) → (−x, y, z). The

equilibrium dynamics are invariant under this transformation; operation with P inverts

the velocities vx so it also takes j → −j as required.
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Figure 2. (a) Schematic of a sheared system between two parallel plates at y = ±yb,

with forces F and −F applied to the top and bottom rates. The mean velocity at

height y is vx(y) with vx(y) = yγ̇ in a state of uniform shear rate. We imagine periodic

boundaries in the x and z directions. (b) Simplified ‘rotor’ model, consisting of a set

of discs placed along the y-axis. The angular velocity of the disc at position y is ωy,

which is analogous to the velocity vx(y) in (a).

It follows that the generalised time reversal symmetry (12) holds for this system.

That is, the biased ensemble of trajectories (10) for this model is invariant under time-

reversal followed by a spatial reflection in the plane x = 0.

To see the connection of this result to dissipation, we compare this ensemble with

a driven (sheared) steady state. In the driven system, one expects currents of energy to

flow through the system: the work done by external forces injects energy into the system,

this energy flows into the microscopic degrees of freedom of the fluid, and eventually

leaves the system as heat, via the external boundaries. If one could reverse the arrow of

time, these dissipative energy currents would be reversed: heat would flow into the fluid

at the boundaries and appear to perform work on the external plates. A subsequent

spatial reflection through x = 0 does not reverse the direction of these energy currents.

Thus, the driven steady state (with finite shear stress) does not respect the symmetry

(12).

If follows that the dissipative energy currents that naturally flow in driven systems

are inconsistent with the symmetry relation Eq. (12), so they are forbidden within the

biased ensemble (10). This is the sense in which biased ensembles such as (10) differ

from driven non-equilibrium ensembles in which external forces act at the boundaries.

3.3. A model sheared system

To make these arguments concrete, we analyse a simple model system in which Eq. (12)

has important consequences. We consider a set of N rotors (similar to that in [20]),

each with moment of inertia I, as illustrated in Fig. 2(b). We draw an analogy between
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the rotor velocity ωy and the velocity vx(y) for the sheared system shown schematically

in Fig. 2. This one-dimensional set of rotors can then be regarded as a highly simplified

model of the interactions within a sheared fluid.

In analogy with the interparticle forces in a classical fluid, rotors apply purely

conservative torques u′(∆θ) = ε sin(∆θ) to their neighbours, that depend only on the

relative angle ∆θi ≡ θi+1 − θi. To model the application of shear stress and heat on

the boundaries of the fluid, we apply an additional external torque ft(t) to the topmost

rotor, and fb(t) to the rotor at the bottom. The equations of motion are

I∂tω1 = u′(∆θ1) + fb(t)

I∂tω2 = u′(∆θ2)− u′(∆θ1)

. . .

I∂tωi = u′(∆θi)− u′(∆θi−1)

. . .

I∂tωN = − u′(∆θN−1) + ft(t). (17)

These equations fully specify the properties of the rotors. The boundary forces ft,b
follow from properties of the thermal bath to which the rotors are coupled. They have

both deterministic and stochastic parts, arising from applied macroscopic shear stress

and heat exchange respectively. We write

ft = λ0Ω− λ0ωN + ηt(t)
√

2λ0T ,

fb = − λ0Ω− λ0ω1 + ηb(t)
√

2λ0T ,

where λ0 is a friction coefficient associated with the dissipative coupling to the boundary,

λ0Ω is the external torque on the system, and ηt(t) and ηb(t) are independent random

noises, with coefficients chosen to respect the Einstein relation for a heat bath of

temperature T .

At equilibrium (Ω = 0), the ηt,b are the usual Gaussian noises, and the system is

time-reversal symmetric. In the driven case, Ω is non-zero, while the noises have the

same form as at equilibrium. In that case, work is done on the system by the applied

torques at the boundaries, which leads to average shear flow. At the same time, heat

energy (in the form of disordered motion) flows to the boundaries where it is dissipated.

The system will converge to a steady state in which these energy fluxes balance.

In the biased case, no explicit driving force is applied, so Ω = 0, but Eq. 10 means

that the noise from the heat bath is sampled non-uniformly, so that the stochastic

functions ηt,b(t) can acquire non-zero expectation values, which induce shear flow. On

the face of it, one might imagine that 〈ηt〉 in the biased ensemble plays the same role as

Ω
√

λ0/2T in the driven ensemble, in which case the biased and driven ensembles would

be similar. In fact, the two ensembles behave very differently, as we shall now see.

Whatever the ensemble, the mean (time-averaged) torque applied at the top

boundary is 〈ft〉 = 〈I∂tωN + u′(∆θN−1)〉 and, since 〈∂tωN〉 = 0 in a steady state,

we have

〈ft〉 = ε〈sin(∆θN−1)〉 (18)
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for any steady-state ensemble. (There is also a similar expression for 〈fb〉.) This

means that the mean torque on the boundary can be obtained from the (i-dependent)

distribution P (∆θi) of relative angles between neighbouring rotors. To make progress,

we define the symmetry operation P as the co-ordinate transformation (θi) → (−θi),

which has the properties specified in Sec. 2.2. Also note that reversing the arrow of

time leaves P (∆θi) unchanged, while the symmetry operation P changes the sign of

∆θ. Hence the combined PT operation transforms P (∆θi) to P (−∆θi). From (12),

the biased ensemble is invariant under PT so P (∆θi) = P (−∆θi) within this ensemble

(for all i). That is, the distribution of ∆θi is symmetric in the biased ensemble, so

〈sin∆θi〉bias = 0. Indeed, this last result already follows from the analysis of Sec. 2.5,

since sin∆θi is odd under P but depends only on position co-ordinates, and so is a

member of the first class of protected observables discussed in Sec. 2.5.

From here, the startling implication of (18) is that the mean applied torque

on the boundary must vanish, 〈ft〉 = 0 in the biased ensemble, thus describing a

thermodynamic system induced to flow (shear) continuously by the application of no

mean force at all. The system, in the biased ensemble, thus behaves like a superfluid,

which is not consistent with the responses of classical systems to external driving.

3.4. A sheared model with internal noise

Our final example is a modified version of the above model, similar to those considered

in [31, 21]. In contrast to the previous section, all the rotors are coupled to the thermal

bath. For the purposes of this work it is sufficient to consider a system with just three

rotors – this very simple system is already sufficient to illustrate the symmetry (12) of

biased ensembles, and the breaking of this symmetry in driven systems. It is also simple

enough that numerical results are easy to obtain.

As before, the co-ordinates of the system are the angles θ1, θ2, θ3 which specify the

orientation of the rotors. Each rotor has moment of inertia I so the momenta in the

system are Iωi with ω = θ̇i. The energy of the system is

E =
∑

i

1

2
Iω2

i + u(θ1 − θ2) + u(θ2 − θ3) (19)

with u(∆θ) = −ε cos∆θ. Frictional forces act on the velocity differences between all

rotors, and a constant driving torque of strength σ is applied to the boundary rotors,

so that the equations of motion are

I∂tω1 = −u′(θ1 − θ2)− λ(ω1 − ω2) +
√
2λTη1 − σ

I∂tω2 = −u′(θ2 − θ3)− u′(θ2 − θ1)− λ(2ω2 − ω1 − ω3) +
√
2λT (η2 − η1)

I∂tω3 = −u′(θ3 − θ2)− λ(ω3 − ω2)−
√
2λTη2 + σ (20)

where u′(∆θ) = ε sin∆θ is the derivative of u, and η1,2 are uncorrelated Gaussian

noises with mean zero and variances 〈ηi(t)ηj(t′)〉 = δijδ(t − t′), as above. Clearly

∂t(ω1 + ω2 + ω3) = 0 so we fix the global momentum to zero without loss of generality:

ω1 + ω2 + ω3 = 0.
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Figure 3. Dependence of the normalised shear rate 〈j〉 = 〈ω3−ω1〉/2 on bias ν (a) and

applied torque σ (b). The unit of time is τ0 = 1. The dashed lines are linear response

results, obtained by numerical evaluation of the correlation functions in (15,16).

Expanding about the equilibrium state, one has d
d⌫ 〈j(0)〉bias = 2T d

dσ 〈O(0)〉neq.

For σ = 0 one has an equilibrium state with time-reversal symmetry. The system

is also invariant under inversion of all positions and momenta: that is, the symmetry

operation P is defined by taking x̃ = (−~θ,−~ω). The shear rate is j = (ω3 − ω1)/2

which is odd under both time-reversal and under P. (The factor of 2 comes from the

linear extent of the system along the y-direction, for a system of N rotors one would

have j = (ωN − ω1)/(N − 1).) Thus, defining a biased ensemble according to (10)

with J = 1
2

∫ τ

−τ
(ω3 − ω1)dt, the generalised time-reversal symmetry (12) applies in this

system.

The behaviour of the model is controlled by three dimensionless parameters. The

first two of these are ε/T and σ/T , which set the strength of the conservative forces

and the external forces, respectively. The final parameter is λ0 = λ/
√
IT which sets

the strength of the damping. The rotor co-ordinates θ are naturally dimensionless so

it remains only to fix a time unit. There are several intrinsic time scales within the

system: we focus on τ0 = I/λ, which is equal to the velocity relaxation time in the

weak-force limit ε/T → 0. When showing numerical results we use units such that

τ0 = 1. This time scale is natural for systems with intermediate damping strength and

moderate values of ε/T . Other time scales are more relevant for very strong damping

(τB = λ/T = τ0λ
2
0); for very weak damping (τth =

√

I/T = τ0λ0); or very strong

conservative forces (τharm =
√

I/ε = τ0λ0

√

T/ε).

3.4.1. Structure in sheared states We analyse this model using numerical simulation,

in two cases: (i) a non-equilibrium ensemble which depends on the driving force σ; and

(ii) the biased ensemble (10) which depends on the bias strength ν. We consider only the

case where ε/T = 1 and λ0 = 0.3, which is a representative state point that is sufficient to

illustrate our main results. For equilibrium simulations and for case (i), we use solve the

equations of motion by the method of Bussi and Parrinello [32], as described in [33]. The

time step is fixed at 0.01τ0. For biased ensembles, we use the same scheme in conjunction

with transition path sampling methods [34], which are natural tools for sampling

ensembles of the form of (10), see for example [16, 35, 36]. We consider trajectories

of length 2τ with τ = 15τ0, which provides a balance between convergence of the large-τ

limit (as required for studies of large deviations), and manageable computational cost.



Absence of dissipation in trajectory ensembles biased by currents 14

0 0.5 1 1.5

0

0.05

0.1

0.15

0.2

force σ
bias ν

hω
2
si
n
∆
θi

hji
Figure 4. (a) Distributions of the angular difference ∆✓ = (✓2 − ✓1)mod 2π in biased

ensembles with 0 ≤ 〈j〉 < 1.5, as labelled. The solid line is P (∆✓) ∝ e(ε/T ) cos θ, dashed

lines are guides to the eye. (b) Distributions of ∆✓ for driven ensembles (σ > 0),

over a similar range of 〈j〉 (all lines are guides to the eye). As discussed in the main

text, the distribution in the biased ensemble is symmetric while the distribution in the

driven ensemble is not. (c) Mean conservative force 〈sin∆✓〉 plotted parametrically as

a function of the current, in both biased and driven ensembles. In the biased case, the

symmetry of P (∆✓) means that the average force is always zero.

Note also that the symmetry relation (12) applies for all τ , not only in the large-τ

limit. However, the biased ensemble can be identified with a steady state only when τ

is large [15, 27].

Fig. 3 shows how the shear rate 〈j〉 depends on the applied bias ν and applied

force σ. To investigate the structure of the system at finite shear rate, we measure

the distribution of the angular difference ∆θ = (θ2 − θ1)modulo 2π. At equilibrium

P (∆θ) ∝ eε cos∆θ/T , consistent with the Boltzmann distribution.

Fig. 4 shows corresponding distributions for the biased and driven ensembles, over

comparable ranges of the shear rate 〈j〉. The distributions differ qualitatively: for

the biased state, P (∆θ) is a symmetric function of ∆θ while for the driven state, this

symmetry is lacking. To further accentuate this difference, we consider the mean force

between the rotors ε〈sin(θ2 − θ1)〉. For a direct comparison, we plot the mean force

parametrically against the shear rate 〈j〉. The force is a protected observable of the first

class described in Sec. 2.5, since it depends only on co-ordinates that are even under

time-reversal, but is odd under the parity transformation θi → −θi. For this reason, the

average force vanishes in the biased ensemble (consistent with the symmetry of P (∆θ)),
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but is finite in the driven ensemble: hence that driven ensemble does not have the PT-

symmetry (12). The symmetry of P (∆θ) in the biased ensemble is also responsible for

the vanishing of the mean torque discussed in section 3.2. Since the symmetry of P (∆θ)

in the biased case follows from (12), the numerical results in Fig. 4 illustrate the effect of

this generalised time-reversal symmetry. The driven system (σ > 0) lacks the symmetry

(12), as is clear from the asymmetry of P (∆θ) in Fig. 4(b).

3.4.2. Relation to dissipation To illustrate the relation of these results to dissipation,

we consider an observable in the second class discussed in Sec. 2.5, which is a dissipative

current. The conservative part of the torque applied to the second rotor by the first is

−u′(θ2 − θ1), so the first rotor does work on the second at a rate Ẇ12 = −ω2u
′(θ2 − θ1).

We can interpret this as a flow of energy from rotor 1 to rotor 2. It is manifestly odd

under time reversal (since ω2 is odd) but even under the parity symmetry (since both

the angular velocity and the force change sign under that operation). Hence, the PT-

symmetry (12) means that 〈Ẇ12〉bias = 0. However, for the driven ensemble, we have

generically 〈Ẇ12〉σ > 0. Note this quantity is positive, independent of the sign of σ: the

sign of the dissipation is independent of the direction of the applied force, as expected.

Fig 5 shows numerical results for Ẇ12, plotted parametrically as a function of the

shear rate. As expected from the discussion in Sec. 2.5, there is no dissipative current in

the biased ensemble. In the driven ensemble, the symmetry (12) is broken. It is useful

to be clear about the the flow of energy in this case: the external forces do work on

the outer rotors θ1, θ3, at rate Ẇ1 = σω1 and W3 = −σω3. The outer rotors do work

on the inner rotor at rates Ẇ12 and Ẇ32. Eventually, all the work done by the outer

rotors flows out into the heat bath, through the frictional coupling terms (proportional

to λ). All these heat flows are odd under T but even under P so they cannot lead to

any average energy transfer in the biased ensemble, although they are all finite in the

driven ensemble. [We note in passing that since the system is in a steady state, we have

∂t〈cos(θ2 − θ1)〉 = 0 even for σ > 0, and hence 〈(ω1 − ω2) sin(θ2 − θ1)〉 = 0. Hence

one always has 〈ω1 sin(θ2 − θ1)〉 = 〈ω2 sin(θ2 − θ1)〉, the question is whether these two

quantities vanish individually, or not.]

3.4.3. Force balance and non-zero stochastic forces Finally, it is instructive to take the

average of Eq. 20 in the biased ensemble, to make contact with Sec. 3.3. For the first

rotor we obtain

0 = ε〈sin(θ2 − θ1)〉bias + λ〈ω2 − ω1〉bias +
√
2λT 〈η1〉bias (21)

For ν > 0 then clearly 〈ω2 − ω1〉bias > 0, but as noted above, 〈sin(θ2 − θ1)〉bias = 0. The

sum of the last two terms on the right hand side of (21) is analogous to the average

force 〈ft〉bias in Sec. 3.3, and this average force is zero, as noted in that section. Since

〈ω2−ω1〉bias > 0, it must therefore be that the noise term has a non-zero average within

the biased ensemble

〈η1〉bias = −
√

λ

2T
〈ω2 − ω1〉bias. (22)
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Figure 5. Average energy current Ẇ12 = 〈ω2 sin(✓2 − ✓1)〉, comparing biased (ν > 0)

and driven (σ > 0) ensembles. The current is plotted parametrically against the shear

rate 〈j〉. The numerical results are consistent with the absence of dissipation in the

biased ensemble. In the driven ensemble, note that this current is unchanged by the

spatial transform P so it is an even function of σ, and dẆ12/d〈j〉 = 0 at 〈j〉 = 0. This

contrasts with the mean force shown in Fig. 4c, which changes its sign under P, and is

an odd function of 〈j〉.

Thus, as noted in Sec. 3.3, the finite shear rate that appears in the biased ensemble is

sustained by a finite value for a thermal noise force, due to the presence of the bias.

4. Conclusion

The main result of this work is Eq. (12), which is a PT-symmetry of biased ensembles

of trajectories. Our discussion shows that this symmetry places significant constraints

on the behaviour that can be observed in these ensembles. In particular, there is a class

of protected observables whose average value is always zero, even when currents are

flowing in the system. These protected observables are related to dissipative processes

in the system, and we argue that their absence means that biased ensembles are non-

dissipative.

Ensembles of trajectories of the form (10) appear naturally in calculations based

on maximum-entropy inference, since they provide the most likely (or least unlikely)

trajectories that are consistent with constraints that are applied to time-integrated

currents [18]. The popular MaxCal procedure aims to model non-equilibrium driven

systems by using these ensembles of trajectories. Our results show that if we condition

on a current that breaks an inversion symmetry, then MaxCal can be valid only if the

driven system is PT-symmetric. Given the physical picture illustrated in Fig. 1, we

argue that typical driven systems do not have this symmetry, which renders MaxCal

invalid in those cases. However, there may be special cases where this symmetry still

holds in driven systems, as discussed in Appendix B. In these special cases, our results

do not invalidate MaxCal.

From a physical perspective, it is not clear to us why these biased ensembles should

be free from dissipation. This is a consequence of the time-reversal symmetry of the

equilibrium state that survives even in these far-from-equilibrium biased ensembles; it
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is conditional on the existence of an inversion symmetry of the model, which is broken

by the bias (and the drive). We hope that further work on the properties of large

deviations in non-equilibrium systems might lead to insights in this direction. For

example, the absence of dissipation is related to the response theory of [23] and might

also be connected to the effective interactions that arise in biased ensembles [41].
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Appendix A. Operator representations of the generalised time-reversal

symmetry

As discussed in [11, 12, 13], biased ensembles of the form (10) are related to “tilted”

generators or master operators. The symmetry (12) has a simple interpretation in terms

of these operators. We give a brief discussion of this interpretation here (an alternative

approach based on path integrals and action functionals can also be used to obtain

similar results [22, 23]).

Our starting point is the master operator (the adjoint of the generator) of the

equilibrium stochastic process of interest. To analyse the case given in (3), we introduce

a representation of the phase space of the system based on Dirac kets |x〉. The

probability distribution P (x) for system’s phase space point corresponds to a ket

|P 〉 =
∫

dxP (x)|x〉 which evolves in time according to ∂t|P 〉 = Weq|P 〉 with [37]

Weq =
∑

i

[

−pi
∂

∂qi
+

(

∂E

∂qi
+ λpi

)

∂

∂pi
+ λ

(

1 + T
∂2

∂p2i

)]

(A.1)

Applying this operator to the equilibrium (Boltzmann) distribution yields Weq|Peq〉 = 0,

confirming that this is indeed the steady state of the model. To analyse the time-

reversal symmetry of this model, we introduce an operator T̂ which inverts the direction

of momenta: T̂|x〉 = |x〉. We introduce a second operator π̂ which is diagonal,

with elements e−E(x)/T . The time-reversal symmetry of the equilibrium ensemble of

trajectories (5) corresponds to the operator equation

W
†
eq = (T̂π̂)−1

Weq(T̂π̂) (A.2)

This equation may be verified directly from the definitions of the various operators.

(Note that T̂
−1 = T̂, since it simply corresponds to a reversal of momenta.) We

also introduce an operator P̂ corresponding to the spatial transformation P, by taking

P̂|x〉 = |x̃〉. If the dynamics is invariant under P, one has an operator equation

P̂WeqP̂ = Weq. (A.3)

(For the operator Weq in (A.1), this relationship is easily verified as long as ∂E/∂qi
is odd in qi for those co-ordinates qi which are inverted by P.) We also note that
∫

dx〈x|Weq|P 〉 = 0, independent of |P 〉: this corresponds to conservation of probability.
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To analyse the driven ensemble, we write Wneq = Weq −
∑

i fi
∂
∂pi

where the fi are

the external forces (assumed independent of pi). Since these forces are non-conservative,

the relation (A.2) does not apply. However, the relation
∫

dx〈x|Wneq|P 〉 = 0 holds also

for this non-equilbrium dynamics, since probability is (of course) still conserved.

To analyse the biased ensemble, we write Wbias(ν) = Weq + νĵ where the operator

ĵ is diagonal with elements j(x). The theory associated with this operator is discussed

in [11, 13, 38]. The operator Wbias(ν) does not have a probability-conservation property
∫

dx〈x|Wbias(ν)|P 〉 6= 0. However, the steady state probability distribution of x in the

biased ensemble is controlled by the largest eigenvalue of Wbias and the associated left

and right eigenvectors. Given the properties of the current discussed above (it is odd

under both T and P), then we have P̂ĵP̂ = −ĵ = T̂ĵT̂. We also have π̂−1ĵπ̂ = ĵ, since

these operators are all diagonal. Hence it follows from (A.2) that

Wbias(ν)
† = (P̂T̂π̂)−1

Wbias(ν)(P̂T̂π̂) (A.4)

which is the promised operator equation corresponding to the symmetry (12).

To see the consequences of this equation, suppose that 〈L| is the dominant left

eigenvector of W(ν) so that |L〉 is the dominant right eigenvector of W(ν)†. Then from

(A.4) the dominant right eigenvector of W(ν) is |R〉 = (P̂T̂π)|L〉. The probability of

configuration x in the steady state is Pbias(x|ν) ∝ 〈L|x〉〈x|R〉 [38], so that Pbias(x|ν) ∝
L(x)L(x̃)π(x) where x̃ is the phase space point obtained by applying TP. Hence

Pbias(x̃|ν) = Pbias(x|ν) (A.5)

which is the symmetry relation for the steady state distribution of the biased process.

Averages of one-time observables in the biased ensemble are fully determined by

Pbias(x|ν), so (A.5) specifies which quantities can have non-zero values in that ensemble,

and which are constrained equal to zero by symmetry.

The strength of this operator approach is that the same algebraic structure can

hold for a variety of different models. For example, there are many discrete Markov

chain models where symmetries of the form (A.4) apply, including the simple symmetric

exclusion process (SSEP) biased by the total current [3, 39, 40]. Thus, while we

have concentrated throughout on systems with continuous co-ordinates x = (~q, ~p),

the operator formalism allows straightforward generalisations to overdamped Langevin

dynamics (where x = ~q) or to Markov chains such as the SSEP.

Appendix B. Entropy production in biased ensembles, and the special case

of a particle diffusing on a ring

As noted in Sec. 2.4, the definition of entropy production is slightly subtle in these

biased ensembles. In that Section, we argue that the entropy production of a trajectory

should be defined as ∆S(X) = β∆Q(X). If we consider a system at equilibrium (for

which no work is done) then this implies [10] that

∆S(X) = ln
Peq[X|X−τ ]

Peq[TX|(TX)−τ ]
(B.1)
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where Peq[X|X−τ ] = Peq[X]/p0(X−τ ) is the probability of trajectory X, given that the

system started in X−τ at time t = −τ . [To derive the relationship between trajectory

probabilities and heat flow in this situation, it is sufficient to use the definition of

Peq[X|X−τ ] in (B.1) and to note that since no work is done ∆Q(X) is equal to the

energy change along the trajectory, which is equal to T ln p0(Xτ )
p0(X−τ )

.]

Now observe that given a trajectory X of the system, the heat flow is a physically

measurable quantity, and therefore depends on the trajectory X but not on the bias

ν (since the bias ν changes the probabilities of trajectories but has no effect on the

trajectories themselves). Hence the entropy production in the biased ensemble is

obtained by averaging ∆S(X) with respect to the distribution Pbias(X). Also note from

(B.1) that ∆S(TX) = −∆S(X), and that ∆S(PX) = ∆S(X). (The latter equality

follows because all quantities in (B.1) are even under P.) This means that ∆S is an

observable of the second kind considered in Sec. 2.5, and its average must vanish.

However, an alternative definition of the entropy production would be to take

∆S̃(X) = ln
Pbias[X|X−τ ]

Pbias[TX|(TX)−τ ]
. (B.2)

This would be the entropy production that one would infer if, instead of measuring heat

flow directly, one attempted to estimate the entropy production by direct inspection of

the trajectory distribution Pbias. In this case we would find

∆S̃(X) = 2νJ(X) + ln
p0

(

Xτ

)

p0(X−τ )
(B.3)

where we used Pbias[X|X−τ ] = Peq(X)eνJ(X)/[p0(X−τ )Z(ν)]. This differs from the

quantity ∆S(X) defined above by the term 2νJ(X) whose average manifestly does

not vanish in the biased ensemble, since 〈J〉bias 6= 0. Our conclusion in this paper – that

biased ensembles are free from dissipation – is based on the result that 〈∆Q〉bias = 0,

and is not affected by this ambiguity over the entropy production. However, to explore

this issue in more detail, we now consider a simple model.

Appendix B.1. Diffusion on a ring

Consider a single particle undergoing (overdamped) diffusive motion on a circle. Its

co-ordinate is x ∈ [0, 1) and it evolves according to

∂tx = −∇u(x) +
√
2Tη + f (B.4)

where u(x) is a potential, η is a white noise with covariance 〈η(t)η(t′)〉 = δ(t− t′) and f

is a constant applied force that drives the particle around the circle. We assume periodic

boundary conditions and u(x) is a periodic function u(x) = u(1 + x).

The case f = 0 represents the equilibrium system while the special case u = 0

corresponds to free diffusive motion in the absence of any potential. If u = 0 and ν = 0,

it is easy to prove that the only effect of the force f is to bias the diffusive motion, so
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if the system is at position x′ at time t = 0 then the distribution of its position a time

t later is

Gf (x, t; x
′, 0) =

1√
4πTt

e−(x−x′−ft)2/4Tt (B.5)

On the other hand, if u = 0 and f = 0 but we consider the biased ensemble (with ν 6= 0

and J =
∫

(∂tx)dt and τ → ∞) then the corresponding probability is [28]

Gν(x, t; x
′, 0) =

1√
4πTt

e−(x−x′−2νt)2/4Tt (B.6)

Since all information about the system is encoded in this two-time correlation function,

it follows for f = 2ν that the biased and driven ensembles lead to the same behaviour

in this case.

In fact, this system (with u = 0) is a special case because this driven system has

a PT symmetry, which is not typical of driven systems in general. To see this, note

that the statistical properties of a random walk in which a particle hops preferentially

to the right are exactly the same as those obtained by time-reversing a random walk in

which the same particle hops preferentially to the left (by the same amount). This can

be verified directly, or by noting that the generator of the biased random walk satisfies

(A.4). However, it is also easily verified that if ∇u 6= 0 and f 6= 0 then the generator

of the process (B.4) does not satisfy (A.4) so the driven system has no PT symmetry.

This latter situation, in which the driven and biased systems are qualitatively different,

is the more general one.

Appendix B.2. Physical signatures of dissipation

To understand the physical significance of the special case (u = 0) where the driven

particle diffusing on a ring has a PT symmetry, it is useful to consider a physical setting

in which (B.4) might apply. Imagine a colloidal particle immersed in a stationary solvent.

This particle is localised (for example by optical tweezers) to lie in a circular region of

space, and then the same tweezers could be employed to drive the particle around the

circle [42]. In this case the tweezers would do work on the system and this work would

be dissipated as heat in the solvent.

Now consider the same particle, still localised to lie on a circle. To construct the

biased ensemble, the optical tweezers are not used to drive the particle around the

circle. Instead, one waits for spontaneous events to cause the particle to exhibit a mean

current in the clockwise direction. Using (B.4) to model the motion of the colloidal

particle, this problem can be solved exactly [28]. One finds that motion of the colloidal

particle in this case is the same as when it is driven by the tweezers. That is, if we

inspect only the statistics of the motion of the colloidal particle, the rare spontaneous

events (without applied force) are indistinguishable from those where a driving force is

applied. As we explained above, this is a special case, since the driven system has a PT

symmetry only if u = 0: in the general case u 6= 0 then the spontaneous fluctuations
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can be distinguished from the driven systems since only the spontaneous fluctuations

have PT symmetry.

Moreoever, if we consider the physical system of interest instead of the simplified

model (B.4), we find that the driven process and the biased process can be distinguished,

as long as we observe the solvent properties as well as the colloid. When the force is

applied to the colloid, we expect local heating of the solvent due to the work done

by the tweezers, but when we observe rare events, there is no such heating. The case

u = 0 is peculiar because it is not possible to detect this heat flow by inspection of the

colloidal particle alone. In this sense, the coarse-grained model (B.4) that we are using

to describe the system is insufficient to capture the dissipation (and associated entropy

production) that is taking place in the driven system. Again, this is a feature of the

special case u = 0 in this one-particle system.

The dependence of entropy production on the environment in which an object is

moving has been discussed previously [43, 44]. For the purposes of this work, we believe

that the ambiguity over the definition of the entropy production in the biased ensemble

(∆S or ∆S̃) is based on a similar effect, which is related to the question of whether an

external force is doing work on the colloid, or whether some rare realisation of random

solvent collisions causes the colloid to move. While this may appear to be a semantic

question, we argue here that these two cases can be distinguished (typically), because

the first case (usually) results in breaking of PT-symmetry, but the second does not.
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