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Abstract:  

The biodiversity–productivity relationship (BPR) is foundational to our understanding of the 

global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical 

for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data 

from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a 

globally consistent positive concave-down BPR, whereby a continued biodiversity loss would 

result in an accelerating decline in forest productivity worldwide. The value of biodiversity in 

maintaining forest productivity—US$396–579 billion per year according to our estimation—is 

by itself over five times greater than the total cost of effective global conservation. This 

highlights the need for a worldwide re-assessment of biodiversity values, forest management 

strategies, and conservation priorities. 

 
One Sentence Summary:  

Global forest inventory records suggest that biodiversity loss would result in an accelerating 

decline in forest productivity worldwide.  

 
  



7 
 

The biodiversity–productivity relationship (BPR) has been a major ecological research focus 

over recent decades. The need to understand this relationship is becoming increasingly urgent in 

light of the global extinction crisis, as species loss affects the functioning and services of natural 

ecosystems (1, 2). In response to an emerging body of evidence which suggests that the 

functioning of natural ecosystems may be significantly impaired by reductions in species 

richness (3-10), global environmental authorities, including the Intergovernmental Platform on 

Biodiversity and Ecosystem Services (IPBES) and United Nations Environment Programme 

(UNEP), have made substantial efforts to strengthen the preservation and sustainable use of 

biodiversity (2, 11). Successful international collaboration, however, requires a systematic 

assessment of the value of biodiversity (11). Quantification of the global BPR is thus urgently 

needed to facilitate the accurate valuation of biodiversity (12), the forecast of future changes in 

ecosystem services worldwide (11), and the integration of biological conservation into 

international socio-economic development strategies (13). 

The evidence of a positive BPR stems primarily from studies of herbaceous plant 

communities (14). In contrast, the forest BPR has only been explored at the regional scale (see 3, 

4, 7, 15, and references therein) or within a limited number of tree-based experiments (see 16, 

17, and references therein), and it remains unclear whether these relationships hold across forest 

types. Forests are the most important global repositories of terrestrial biodiversity (18), but 

deforestation, climate change, and other factors are threatening a considerable proportion (up to 

50%) of tree species worldwide (19-21). The consequences of this diversity loss pose a critical 

uncertainty for ongoing international forest management and conservation efforts. Conversely, 

forest management that converts monocultures to mixed-species stands has often seen a 

substantial positive effect on productivity with other benefits (e.g. 22, 23, 24). Although forest 
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plantations are predicted to meet 50–75% of the demand for lumber by 2050 (25), nearly all are 

still planted as monocultures, highlighting the potential of forest management in strengthening 

the conservation and sustainable use of biodiversity worldwide. 

Here, we compiled in situ remeasurement data, most of which were taken at two 

consecutive inventories from the same localities, from 777,126 permanent sample plots 

(hereafter, global forest biodiversity or GFB plots) across 44 countries/territories and 13 

ecoregions to explore the forest BPR at a global scale (Fig.1). GFB plots encompass forests of 

various origins (from naturally regenerated to planted) and successional stages (from stand 

initiation to old-growth). A total of over thirty million trees across 8,737 species were tallied and 

measured on two or more consecutive inventories from the GFB plots. Sampling intensity was 

greater in developed countries, where nationwide forest inventories have been fully or partially 

funded by governments. In most other countries, national forest inventories were lacking and 

most ground-sourced data were collected by individuals and organizations (Data Table S1).    

<Fig.1> 

Based on ground-sourced GFB data, we quantified BPR at the global scale using a data-

driven ensemble learning approach (see §Geospatial random forest in Materials and Methods). 

Our quantification of BPR involved characterizing the shape and strength of the dependency 

function, through the elasticity of substitution (ș), which represents the degree to which species 

can substitute for each other in contributing to forest productivity. ș measures the marginal 

productivity – the change in productivity resulting from one unit decline of species richness, and 

reflects the strength of the effect of tree diversity on forest productivity, after accounting for 

climatic, soil, and plot specific covariates. A higher ș corresponds to a greater decline in 

productivity due to one unit loss in biodiversity. The niche–efficiency (N–E) model (3) and 
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several preceding studies (26-29) provide a framework for interpreting the elasticity of 

substitution and approximating BPR with a power function model: 

 SfP  )(X ,          (1) 

where P and S signify primary site productivity and tree species richness (observed on a 900-m2 

area basis on average, see Materials and Methods), respectively,  f(X) a function of a vector of 

control variables X (selected from stand basal area and 14 climatic, soil, and topographic 

covariates), and Į a constant. This model is capable of representing a variety of potential patterns 

of BPR. 0<ș<1 represents a positive and concave down pattern (a degressively increasing curve) 

consistent with the N–E model and preceding studies (3, 26-29), whereas other ș values can 

represent alternative BPR patterns, including decreasing (ș<0), linear (ș=1), convex (ș>1), or no 

effect (ș=0) (e.g. 14, 30) (Fig.2). The model (Eq.1) was estimated using the geospatial random 

forest technique based on GFB data and covariates acquired from ground-measured and remote 

sensing data (Materials and Methods). 

<Fig.2> 

We found that a positive biodiversity-productivity relationship (BPR) predominated 

forests worldwide. Out of 10,000 randomly selected subsamples (each consisting of 500 GFB 

plots), 99.87% had a positive concave-down relationship (0<ș<1), whereas only 0.13% show 

negative trends, and none was equal to zero, or was greater than or equal to 1 (Fig.2). Overall, 

the global forest productivity increased with a declining rate from 2.7 to 11.8 m3ha-1yr-1 as tree 

species richness increased from the minimum to the maximum value, which corresponds to a ș 

value of 0.26 (Fig.3A).  

<Fig.3> 
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 At the global-scale, we mapped the magnitude of BPR (as expressed by ș) using 

geospatial random forest and universal kriging. By plotting values of ș onto a global map, we 

reveal considerable geospatial variation across the world (Fig.3B). The highest ș (0.29–0.30) 

occurred in the boreal forests of North America, Northeastern Europe, Central Siberia, and East 

Asia; and sporadic tropical and subtropical forests of South-central Africa, South-central Asia, 

and the Malay Archipelago. In these areas of the highest elasticity of substitution (31), the same 

percentage biodiversity loss would lead to greater percentage reduction in forest productivity 

(Fig.4A). In terms of absolute productivity, the same percentage biodiversity loss would lead to 

the greatest productivity decline in the Amazon, West Africa’s Gulf of Guinea, Southeastern 

Africa including Madagascar, Southern China, Myanmar, Nepal, and the Malay Archipelago 

(Fig.4B). Due to a relatively narrow range of the elasticity of substitution (31) estimated from the 

global-level analysis (0.2–0.3), the regions of the greatest productivity decline under the same 

percentage biodiversity loss largely matched the regions of the greatest productivity (Fig.S1). 

Globally, a 10 percent decrease in tree species richness (from 100 to 90 percent) would cause a 

2–3 percent decline in productivity, and with a 99 percent decrease of tree species richness (see 

§Economic analysis), this decline in forest productivity would escalate to 62–78 percent, even if 

other things, such as the total number of trees and forest stocking, remained the same (Fig.4A). 

<Fig.4> 

Discussion 

Our global analysis provides strong and consistent evidence that productivity of forests would 

decrease at an accelerating rate with the loss of biodiversity. The positive concave-down pattern 

we discovered across forest ecosystems worldwide corresponds well with recent theoretical 

advances in BPR (3, 27-29), as well as with experimental (e.g. 26) and observational (e.g. 14) 



11 
 

studies on forest and non-forest ecosystems. It is especially noteworthy that the elasticity of 

substitution (31) estimated in this study (ranged between 0.2 and 0.3) largely overlaps the range 

of values of the same exponent term (0.1–0.5) from previous theoretical and experimental studies 

(see 10, and references therein). Furthermore, our findings are consistent with the global 

estimates of the biodiversity-dependent ecosystem service debt under distinct assumptions (10), 

and with recent reports of the diminishing marginal benefits of adding a species as species 

richness increases, based on long-term forest experiments dating back to 1870 (see 15, 32, and 

references therein).  

Our analysis relied on stands ranging from unmanaged to extensively managed forests, 

i.e. managed forests with low operating and investment costs per unit area. Conditions of natural 

forests would not be comparable to intensively managed forests, as timber production in the 

latter systems often focuses on single or limited number of highly productive tree species. 

Intensively managed forests, where saturated resources can weaken the effects of niche–

efficiency (3), are shown in some studies (33, 34) to have higher productivity than natural 

diverse forests of the same climate and site conditions (Fig.S3). In contrast, other studies (e.g. 6, 

22-24) compared diverse stands to monocultures at the same level of management intensity, and 

found that the positive effects of species diversity on tree productivity and other ecosystem 

services are applicable to intensively managed forests. As such, there is still an unresolved 

debate on the BPR of intensively managed forests. Nevertheless, as intensively managed forests 

only account for a minor (<7%) portion of global forests (18), our estimated BPR would be 

minimally affected by such manipulations and thus should reflect the inherent processes 

governing the vast majority of global forest ecosystems.   
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We focused on the effect of biodiversity on ecosystem productivity. Recent studies on the 

opposite causal direction (i.e. productivity-biodiversity relationship, cf. 14, 35, 36) suggest that 

there may be a potential two-way causality between biodiversity and productivity. It is 

admittedly difficult to use correlative data to detect and attribute causal effects. Fortunately, 

substantial progress has been made to tease the BPR causal relationship from other potentially 

confounding environmental variables (14, 37, 38), and this study made considerable efforts to 

account for these otherwise potentially confounding environmental covariates in assessing likely 

causal effects of biodiversity on productivity.  

 Because taxonomic diversity indirectly incorporates functional, phylogenetic and 

genomic diversity, our results that focus on tree species richness are likely applicable to these 

other elements of biodiversity, all of which have been found to influence plant productivity (1). 

Our straightforward analysis makes clear the taxonomic contribution to forest ecosystem 

productivity and functioning, and the importance of preserving species diversity to biological 

conservation and forest management. 

Our findings highlight the necessity to re-assess biodiversity valuation and re-evaluate 

forest management strategies and conservation priorities in forests worldwide. In terms of global 

carbon cycle and climate change, the value of biodiversity may be considerable. Based on our 

global-scale analyses (Fig.4), the ongoing species loss in forest ecosystems worldwide (1, 21) 

could substantially reduce forest productivity and thereby forest carbon absorption rate, which 

would in turn compromise the global forest carbon sink (39). We further estimate that the 

economic value of biodiversity in maintaining forest productivity is $396–579 billion per year 

(3.96–5.79×1011 yr-1 in 2015 US$, see §Economics Analysis in Materials and Methods). By 

itself, this value represents only a small percentage of the total value of biodiversity (40, 41), but 
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it is over five times greater than the total estimated cost of protecting and effectively managing 

all terrestrial sites of global conservation significance ($76.1 billion per year (42)). The high 

benefit-cost ratio underlines the importance of conserving biodiversity for forestry and forest 

resource management.  

Amid the struggle to combat biodiversity loss, the relationship between biological 

conservation and poverty is gaining increasing global attention (13, 43), especially with respect 

to rural areas where livelihoods depend most directly on ecosystem products. Given the 

substantial geographic overlaps between severe, multifaceted poverty and key areas of global 

biodiversity (44), the loss of species in these areas has the potential to exacerbate local poverty 

by diminishing forest productivity and related ecosystem services (43). For example, in tropical 

and subtropical regions, many areas of high elasticity of substitution (31) overlapped with 

biodiversity hotspots (45), including Eastern Himalaya and Nepal, Mountains of Southwest 

China, Eastern Afromontane, Madrean pine-oak woodlands, Tropical Andes, and Cerrado. For 

these areas, only a few species of commercial value are targeted by logging. As such, the risk of 

losing species through deforestation would far exceed the risk through harvesting (46). 

Deforestation and other anthropogenic drivers of biodiversity loss in these biodiversity hotspots 

are likely to have considerable impacts on the productivity of forest ecosystems, with the 

potential to exacerbate local poverty. Furthermore, the greater uncertainty in our results for the 

developing countries (Fig.5) reflects the well documented geographic bias in forest sampling 

including repeated measurements, and reiterates the need for strong commitments towards 

improving sampling in the poorest regions of the world.  

<Fig.5> 
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 Our findings reflect the combined strength of large-scale integration and synthesis of 

ecological data and modern machine learning methods to increase our understanding of the 

global forest system. Such approaches are essential for generating global insights into the 

consequences of biodiversity loss, and the potential benefits of integrating and promoting 

biological conservation in forest resource management and forestry practices— a common goal 

already shared by intergovernmental organizations such as the Montréal and Helsinki Process 

Working Groups. These findings should facilitate efforts to accurately forecast future changes in 

ecosystem services worldwide, which is a primary goal of IPBES (11), and provide baseline 

information necessary to establish international conservation objectives, including the UNCBD 

Aichi targets, the UNFCCC REDD+ goal, and the UNCCD land degradation neutrality goal. The 

success of these goals relies on the understanding of the intrinsic link between biodiversity and 

forest productivity. 

 

Materials and Methods 

Data collection and standardization  

Our current study used ground-sourced forest measurement data from 45 forest inventories 

collected from 44 countries and territories (Fig.1, Data Table S1). The measurements were 

collected in the field from predesignated sample area units, i.e. Global Forest Biodiversity 

permanent sample plots (hereafter, GFB plots). For the calculation of primary site productivity, 

GFB plots can be categorized into two tiers. Plots designated as ‘Tier 1’ have been measured at 

two or more points in time with a minimum time interval between measurements of two years or 

more (global mean time interval is 9 years, see Table 1). ‘Tier 2’ plots were only measured once 

and primary site productivity can be estimated from known stand age or dendrochronological 
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records. Overall, our study was based on 777,126 GFB plots, of which 597,179 (77%) were Tier 

1, and 179,798 (23%) were Tier 2. GFB plots primarily measured natural forests ranging from 

unmanaged to extensively managed forests, i.e. managed forests with low operating and 

investment costs per unit area. Intensively managed forests with harvests exceeding 50 percent of 

the stocking volume were excluded from this study. GFB plots represent forests of various 

origins (from naturally regenerated to planted) and successional stages (from stand initiation to 

old-growth).  

For each GFB plot, we derived three key attributes from measurements of individual 

trees— tree species richness (S), stand basal area (G), and primary site productivity (P). Because 

for each of all the GFB plot samples, S and P were derived from the measurements of the same 

trees, the sampling issues commonly associated with biodiversity estimation (47) had little 

influence on the S–P relationship (i.e. BPR) in this study.  

Species richness, S, represents the number of different tree species alive at the time of 

inventory within the perimeter of a GFB plot with an average size of approximately 900 m2. 

Ninety-five percent of all plots fall between 100 and 1,100 m2 in size. To minimize the species-

area effect (e.g. 48), we studied the BPR here using a geospatial random forest model in which 

observations from nearby GFB plots would be more influential than plots that are farther apart 

(see §Geospatial random forest). Because nearby plots are most likely from the same forest 

inventory data set, and there was no or little variation of plot area within each data set, the BPR 

derived from this model largely reflected patterns under the same plot area basis. To investigate 

the potential effects of plot size on our results, we plotted the estimated elasticity of substitution 

(ș) against plot size, and found that the scatter plot was normally distributed with no discernible 

pattern (Fig.S2). In addition, the fact that the plot size indicator I2 had the second lowest (0.8%) 
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importance score (49) among all the covariates (Fig.6) further supports that the influence of plot 

size variation in this study was negligible.  

Across all the GFB plots there were 8,737 species in 1,862 genera and 231 families, and 

S values ranged from 1 to 405 per plot. We verified all the species names against 60 taxonomic 

databases, including NCBI, GRIN Taxonomy for Plants, Tropicos - Missouri Botanical Garden, 

and the International Plant Names Index, using the ‘taxize’ package in R (50). Out of 8,737 

species recorded in the GFB database, 7,425 had verified taxonomic information with a matching 

score (50) of 0.988 or higher, whereas 1,312 species names partially matched existing taxonomic 

databases with a matching score between 0.50 and 0.75, indicating that these species may have 

not been documented in the 60 taxonomic databases. To facilitate inter-biome comparison, we 

further developed relative species richness (Š), a continuous percentage score converted from 

species richness (S) and the local maximal species richness (S*) using 

*S
S

S 


.           (2) 

Stand basal area (G, in m2ha-1) represents the total cross-sectional area of live trees per 

unit sample area. G was calculated from individual tree diameter-at-breast-height (dbh, in cm): 

i
i

idbhG   2000079.0 ,         (3) 

where ți denotes the conversion factor (ha-1) of the ith tree, viz. the number of trees per ha 

represented by that individual. G is a key biotic factor of forest productivity as it represents stand 

density— often used as a surrogate for resource acquisition (through leaf area) and stand 

competition (51). Accounting for basal area as a covariate mitigated the artifact of different 

minimum dbh across inventories, and the artifact of different plot sizes. 



17 
 

 Primary site productivity (P, in m3ha-1yr-1) was measured as tree volume productivity in 

terms of periodic annual increment (PAI) calculated from the sum of individual tree stem volume 

(V, in m3): 

Y

MVV

P
i

i
ii

i
i 


 

1,
1,

2,
2,

,        (4) 

where Vi,1 and Vi,2 (in m3) represent total stem volume of the ith tree at the time of the first 

inventory and the second inventory, respectively. M denotes total removal of trees (including 

mortality, harvest, and thinning) in stem volume (in m3ha-1). Y represents the time interval (in 

years) between two consecutive inventories. P accounted for mortality, ingrowth (i.e. recruitment 

between two inventories), and volume growth. Stem volume values were predominantly 

calculated using region- and species-specific allometric equations based on dbh and other tree- 

and plot-level attributes (Table 1). For the regions lacking an allometric equation, we 

approximated stem volume at the stand level from basal area, total tree height, and stand form 

factors (52). In case of missing tree height values from the ground measurement, we acquired 

alternative measures from a global 1-km forest canopy height database (53). For Tier 2 plots that 

lacked remeasurement, P was measured in mean annual increment (MAI) based on total stand 

volume and stand age (51), or tree radial growth measured from increment cores. Since the 

traditional MAI metric does not account for mortality, we calculated P by adding to MAI the 

annual mortality based on regional-specific forest turnover rates (54). The small and insignificant 

correlation coefficient between P and the indicator of plot tier (I1), together with the negligible 

variable importance of I1 (1.8%, Fig.6) indicate that PAI and MAI were generally consistent so 

that MAI could be a good proxy of PAI in our study. Although MAI and PAI have considerable 
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uncertainty in any given stand, it is difficult to see how systematic bias across diversity gradients 

could occur on a scale sufficient to influence the results shown here.  

P, although only represents a fraction of total forest net primary production, has been an 

important and widely used measure of forest productivity, because it reflects the dominant 

aboveground biomass component and the long-lived biomass pool in most forest ecosystems 

(55). Additionally, although other measures of productivity (e.g. net ecosystem exchange 

processed to derive gross and net primary production; direct measures of aboveground net 

primary production including all components; and remotely sensed estimates of LAI and 

greenness coupled with models) all have their advantages and disadvantages, none would be 

feasible at a similar scale and resolution as in this study. 

<Table 1> 

To account for abiotic factors that may influence primary site productivity, we compiled 

14 geospatial covariates based on biological relevance and spatial resolution (Fig.6). These 

covariates, derived from satellite-based remote sensing and ground-based survey data, can be 

grouped into three categories: climatic, soil, and topographic (Table 1). We preprocessed all 

geospatial covariates using ArcMap 10.3 (56) and R 2.15.3 (57). All covariates were extracted to 

point locations of GFB plots, with a nominal resolution of 1 km2.  

<Fig.6> 

Geospatial random forest 

We developed geospatial random forest— a data-driven ensemble learning approach— to 

characterize biodiversity–productivity relationship (BPR), and to map BPR in terms of elasticity 
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of substitution (31) on all sample sites across the world. This approach was developed to 

overcome two major challenges that arose from the size and complexity of GFB data without 

assuming any underlying BPR patterns or data distribution. Firstly, we need to account for 

broad-scale differences in vegetation types, but global classification and mapping of 

homogeneous vegetation types is lacking (58); and secondly, correlations and trends that 

naturally occur through space (59) can be significant and influential in forest ecosystems (60). 

Geostatistical models (cf. 61) have been developed to address the spatial autocorrelation, but the 

size of the GFB data set far exceeds the computational constraints of most geostatistical 

software.  

 Geospatial random forest integrated conventional random forest (49) and a geostatistical 

nonlinear mixed-effects model (62) to estimate BPR across the world based on GFB plot data 

and their spatial dependence. The underlying model had the following form: 

2),()()(log)(log  DuuuXĮuu iji ijijiij eSP


 ,     (5) 

where logPij(u) and logŠij(u) represent natural logarithm of productivity and relative species 

richness (calculated from actual species richness and the maximal species richness of the training 

set) of plot i in the jth training set at point locations u, respectively. The model was derived from 

the niche–efficiency model, and ș corresponds to the elasticity of substitution (31). Įi·Xij (u)=Įi0 

+ Įi1·xij1+…+ Įin·xijn represents n covariates and their coefficients (Fig.6, Table 1).  

To account for potential spatial autocorrelation, which can bias tests of significance due 

to the violation of independence assumption and is especially problematic in large-scale forest 

ecosystem studies (59, 60), we incorporated a spherical variogram model (61) into the residual 

term eij(u). The underlying geostatistical assumption was that across the world the gradient in 
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BPR is inherently spatial— a common geographical phenomenon in which neighboring points 

are more similar to each other than they are to points that are more distant (63). In our study, we 

found strong evidence for this gradient (Fig.7), indicating that observations from nearby GFB 

plots would be more influential than plots that are farther away. The positive spherical 

semivariance curves estimated from a large number of bootstrapping iterations indicated that 

spatial dependence increased as plots became closer together. 

<Fig.7> 

 The aforementioned geostatistical nonlinear mixed-effects model was integrated into 

random forest (49) by means of model selection and estimation. In the model selection process, 

random forest was employed to assess the contribution of each of the candidate variables to the 

dependent variable logPij(u), in terms of the amount of increase in prediction error as one 

variable is permuted while all the others are kept constant. We used the randomForest package 

(64) in R to obtain importance measures for all the covariates to guide our selection of the final 

variables in the geostatistical nonlinear mixed-effects model, X ij (u). We selected stand basal area 

(G), temperature seasonality (T3), annual precipitation (C1), precipitation of the warmest quarter 

(C3), potential evapotranspiration (PET), indexed annual aridity (IAA), and plot elevation (E) as 

control variables since their importance measures were greater than the 9 percent threshold 

(Fig.6) preset to ensure that the final variables accounted for over 60 percent of the total variable 

importance measures.    

 For geospatial random forest analysis of BPR, we first selected control variables based on 

the variable importance measures derived from random forests (49). We then evaluated the 

values of elasticity of substitution (31), which are expected to be real numbers greater than 0 and 
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less than 1, against the alternatives, i.e. negative BPR (H01: ș<0), no effect (H02: ș=0), linear 

(H03: ș=1), and convex positive BPR (H04: ș>1). We examined all the coefficients by their 

statistical significance, and effect sizes, using Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and the generalized coefficient of determination (65). 

Global analysis 

For the global-scale analysis, we calibrated the nonlinear mixed-effects model parameters (ș and 

Į’s) using training sets of 500 plots randomly selected (with replacement) from the GFB global 

dataset according to the bootstrap aggregating (bagging) algorithm. We calibrated a total of 

10,000 models based on the bagging samples, using our own bootstrapping program and the 

nonlinear package nlme (62) of R, to calculate the means and standard errors of final model 

estimates (Table 2). This approach overcame computational limits by partitioning the GFB 

sample into smaller subsamples to enable the nonlinear estimation. The size of training sets was 

selected based on the convergence and effect size of the geospatial random forest models. In 

pilot simulations with increasing sizes of training sets (Fig.8), the value of elasticity of 

substitution (31) fluctuated at the start until the convergence point at 500 plots. Generalized R2 

value declined as the size of training sets increased from 0 to 350 plots, and stabilized at around 

0.35 as training set size increased further. Accordingly, we selected 500 as the size of the 

training sets for the final geospatial random forest analysis. Based on the estimated parameters of 

the global model (Table 2), we analyzed the effect of relative species richness on global forest 

productivity with a sensitivity analysis by keeping all the other variables constant at their sample 

means for each ecoregion.   

<Fig.8> 
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<Table 2> 

Mapping BPR across global forest ecosystems 

For mapping purposes, we first estimated the current extent of global forests in several steps. We 

aggregated the 'treecover2000' and 'loss' data (66) from 30 m pixels to 30 arc-second pixels (~1 

km) by calculating the respective means. The result was ~1 km pixels showing the percentage 

forest cover for the year 2000 and the percentage of this forest cover lost between 2000 and 

2013, respectively. The aggregated forest cover loss was multiplied by the aggregated forest 

cover to produce a single raster value for each ~1 km pixel representing a percentage forest lost 

between 2000 and 2013. This multiplication was necessary since the initial loss values were 

relative to initial forest cover. Similarly, we estimated the percentage forest cover gain by 

aggregating the forest 'gain' data (66) from 30 m to 30 arc-seconds while taking a mean. Then, 

this gain layer was multiplied by 1 minus the aggregated forest cover from the first step to 

produce a single value for each ~1 km pixel that signifies percentage forest gain from 2000–

2013. This multiplication ensured that the gain could only occur in areas that were not already 

forested. Finally, the percentage forest cover for 2013 was computed by taking the aggregated 

data from the first step (year 2000) and subtracting the computed loss and adding the computed 

gain. 

We mapped productivity P and elasticity of substitution (31) across the estimated current 

extent of global forests, here defined as areas with 50 percent or more forest cover. Because GFB 

ground plots represent approximately 40 percent of the forested areas, we used universal kriging 

(cf. 61) to estimate P and ș for the areas with no GFB sample coverage. The universal kriging 

models consisted of covariates specified in Fig.6(B) and a spherical variogram model with 
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parameters (i.e. nugget, range, and sill) specified in Fig.7. We obtained the best linear unbiased 

estimators of P and ș and their standard error across the current global forest extent with the 

gstat package of R (67). By combining ș estimated from geospatial random forest and universal 

kriging, we produced the spatially continuous maps of the elasticity of substitution (Fig.3B) and 

forest productivity (Fig.S1) at a global scale. The effect sizes of the best linear unbiased 

estimator of ș (in terms of standard error and generalized R2) are shown in Fig.5. We further 

estimated percentage and absolute decline in worldwide forest productivity under two scenarios 

of loss in tree species richness— low (10% loss) and high (99% loss). These levels represent the 

productivity decline (in both percentage and absolute terms) if  local species richness across the 

global forest extent would decrease to 90 and 1 percent of the current values, respectively. The 

percentage decline was calculated based on the general BPR model (Eq.1) and estimated 

worldwide spatially explicit values of the elasticity of substitution (Fig.3B). The absolute decline 

was the product of the worldwide estimates of primary forest productivity (Fig.S1) and the 

standardized percentage decline at the two levels of biodiversity loss (Fig.4A). 

Economic Analysis 

Estimates of the economic value-added from forests employ a range of methods. One prominent 

recent global valuation of ecosystem services (68) valued global forest production (in terms of 

‘raw materials’ provided by forests(TableS1 in 68)) in 2011 at US$ 649 billion (6.49×1011, in 

constant 2007 dollars). Using an alternative method, the UN FAO (25) estimates gross value-

added in the formal forestry sector at US$606 billion (6.06×1011, in constant 2011 dollars). We 

used these two reasonably comparable values as bounds on our coarse estimate of the global 

economic value of forest productivity, converted to constant 2015 US$ based on the US 

consumer price indices (69). As indicated by our global-scale analyses (Fig.4A), a 10 percent 
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decrease of tree species richness distributed evenly across the world (from 100% to 90%) would 

cause a 2.1–3.1 percent decline in productivity which would equate to US$13–23 billion per year 

(constant 2015 US$). For the assessment of the value of biodiversity in maintaining forest 

productivity, a hypothetical 99 percent drop in species richness would lead to 62–78% reduction 

in forest productivity, equivalent to 396–579 billion US$ per year (3.96–5.79×1011, constant 

2015 US$). Therefore, we estimated that the economic value of biodiversity in maintaining 

forest productivity worldwide would be 396–579 billion US$ per year.  

Even though these estimates of the economic value-added from forest BPR employed two 

starkly different methods, they were still reasonably close. We held the total number of trees, 

global forest area and stocking, and other factors constant to estimate the value of productivity 

loss solely due to a decline in tree species richness. As such, these estimates did not include the 

value of land converted from forest and losses due to associated fauna and flora decline and 

forest habitat reduction. This estimate only reflects the value of biodiversity in maintaining forest 

wood productivity, and does not account for other values of biodiversity. The total global value 

of biodiversity could exceed this estimate by orders of magnitudes (40, 41).   
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Fig.1. Global forest biodiversity (GFB) ground-sourced data were collected from in situ re-
measurement of 777,126 permanent sample plots consisting of over thirty million trees across 8,737 
species. GFB plots extend across 13 ecoregions (vertical axis, delineated by the World Wildlife Fund 
where extensive forests occur within all the ecoregions (70)), and 44 countries and territories. Ecoregions 
are named for their dominant vegetation types, but all contain some forested areas. GFB plots cover a 
significant portion of the global forest extent (white), including some of the most unique forest 
conditions: (a) the northernmost (73°N, Central Siberia, Russia), (b) southernmost (52°S, Patagonia, 
Argentina), (c) coldest (-17°C annual mean temperature, Oimyakon, Russia), (d) warmest (28°C annual 
mean temperature, Palau, USA) plots, and (e) most diverse (405 tree species on the 1-ha plot, Bahia, 
Brazil). Plots in war-torn regions (e.g. f) were assigned fuzzed coordinates to protect the identity of the 
plots and collaborators. The box plots show the mean and interquartile range of tree species richness and 
primary site productivity (both on a common logarithmic scale) derived from ground-measured tree- and 
plot-level records. The complete list of species was presented in Data Table S2. 
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Fig.2. Theoretical positive and concave-down biodiversity–productivity relationship supported by 
empirical evidence drawn from the GFB data. The diagram (left) demonstrates that under the 
theoretical positive and concave-down (i.e. monotonically and degressively increasing) BPR (3, 26, 27), 
loss in tree species richness may reduce forest productivity (71). Functional curves in the center 
represent different BPR under different values of elasticity of substitution (ș). ș values between 0 and 1 
correspond to the positive and concave-down BPR (blue curve). The 3D scatter plot (right) shows ș 
values we estimated from observed productivity (P), species richness (S), and other covariates. Out of 
5,000,000 estimates of ș (mean=0.26, SD=0.09), 4,993,500 fell between 0 and 1 (blue), whereas only 
6500 were negative (red), and none was equal to zero, or was greater than or equal to 1. In other words, 
the positive and concave-down BPR was supported by 99.9% of our estimates.  
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Fig.3. The estimated global effect of biodiversity on forest productivity was positive and concave-
down (A) and revealed considerable geospatial variation across forest ecosystems worldwide(B). (A) 
Global effect of biodiversity on forest productivity (red line with pink bands representing 95 percent 
confidence interval) corresponds to a global average elasticity of substitution (ș) value of 0.26, with 
climatic, soil, and other plot covariates being accounted for and kept constant at sample mean. Relative 
species richness (Š) is in the horizontal axis, and productivity (P, m3ha-1yr-1) in the vertical axis 
(histograms of the two variables on top and right in the logarithm scale). (B) ș represents the strength of 
the effect of tree diversity on forest productivity. Spatially explicit values of ș were estimated using 
universal kriging (see Materials and Methods) across the current global forest extent (effect sizes of the 
estimates were shown in Fig.5), whereas blank terrestrial areas were non-forested. 
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Fig.4. Estimated percentage (A) and absolute (B) decline in forest productivity under 10 and 99 
percent decline in current tree species richness (values in parentheses correspond to 99 percent), 
everything else remained the same. (A) Percent decline in productivity was calculated based on the 
general BPR model (Eq.1) and estimated worldwide spatially explicit values of the elasticity of 
substitution (Fig.3B). (B) Absolute decline in productivity, was derived from the estimated elasticity of 
substitution (Fig.3B) and estimates of global forest productivity (Fig.S1). The first 10 percent reduction in 
tree species richness would lead to 0.001–0.597 m3ha-1yr-1 decline in periodic annual increment, which 
accounts for 2–3 percent of current forest productivity. The raster data are displayed in 50-km resolution 
with a three-standard deviation stretch. 
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Fig.5. Standard error (A) and generalized R2 (B) of the spatially explicit estimates of elasticity of 
substitution (ș) across the current global forest extent.  Standard error increased as a location was 
farther from those sampled. The generalized R2 values were derived with a geostatistical nonlinear mixed-
effects model for GFB sample locations, and thus (B) only cover a subset of the current global forest 
extent. 
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Fig.6. Correlation matrix (A) and importance values (B) of potential variables for the geospatial 
random forest analysis. There were a total of 15 candidate variables from three categories, namely plot 
attributes, climatic variables, and soil factors (see Table 1 for a detailed description). Correlation 
coefficients between these variables were represented by sizes and colors of circles, and × marks 
coefficients not significant at Į=0.05 level (A). Variable importance (%) values were determined by the 
geospatial random forest (see Materials and Methods). Variables with importance values exceeding the 
9% threshold line (blue) were selected as control variables in the final geospatial random forest models 
(B). Elasticity of substitution (coefficient), productivity (dependent variable), and species richness (key 
explanatory variable) were not ranked in the variable importance chart, as they were not potential 
covariates. 
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Fig.7. Semivariance (gray circles) and estimated spherical variogram models (blue curves) obtained 
from geospatial random forest. There was a general trend that semivariance increased with distance, i.e. 
spatial dependence of ș weakened as the distance between any two GFB plots increased. The final 
spherical models had nugget=0.8, range=50 degrees, and sill=1.3. To avoid identical distances, all plot 
coordinates were jittered by adding normally distributed random noises.  
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Fig.8. Effect of the size of training sets used in the geospatial random forest on estimated elasticity 
of substitution (ș) and generalized R2. Mean (solid line) and standard error band (green area) were 
estimated with 100 randomly selected (with replacement) training sets for each of the 20 size values 
(between 50 and 1000 GFB plots, with an increment of 50). 
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Table 1. Definition, unit, and summary statistics of key variables.  
Variable Definition Unit Mean Std. Source Nominal 

Resolution 
Response variables   

P Primary forest productivity 
measured in periodic annual 
increment in stem volume (PAI) 

m3·ha-1·yr-1 7.57 14.52 Author generated 
from ground-
measured data  

 

Plot Attributes   
S Tree species richness, the number 

of live tree species observed on 
the plot  

unitless 5.79 8.64 ground-measured  

A Plot size, area of the sample plot  ha 0.04 0.12 ground-measured  
Y Elapsed time between two 

consecutive inventories 
year 8.63 11.62 ground-measured  

G Basal area, total cross-sectional 
area of live trees measured at 1.3-
1.4 m above ground 

m2·ha-1 19.00 18.94 Author generated 
from ground-
measured data 

 

E Plot elevation  m 469.30 565.92 G/SRTM(72)  
I1 Indicator of plot tier 

I1=1 if a plot was Tier-2, 
I1=0 if otherwise 

unitless 0.23 0.42 Author generated 
from ground-
measured data 

 

I2 Indicator of plot size 
I2=1 when 0.01≤ps<0.05, 
I2=2 when 0.05≤ps<0.15, 
I2=3 when 0.15≤ps<0.50, 
I2=4 when 0.50≤ps<1.00, 
where ps was plot size (ha.) 

unitless 1.43 0.80 Author generated 
from ground-
measured data 

 

Climatic Covariates    
T1 Annual mean temperature 0.1°C 108.4  55.92  WorldClim 

v.1(73) 
1 km2 

T2 Isothermality unitless 
index*100 

35.43 7.05 WorldClim v.1 1 km2 

T3 Temperature seasonality Std.(0.001°C) 7786.00 2092.39 WorldClim v.1 1 km2 
C1 Annual precipitation mm 1020.00 388.35 WorldClim v.1 1 km2 
C2 Precipitation seasonality 

(coefficient of variation) 
unitless% 27.54 16.38 WorldClim v.1 1 km2 

C3 Precipitation of warmest 
quarter 

mm 282.00 120.88 WorldClim v.1 1 km2 

PET Global Potential 
Evapotranspiration 

mm·yr-1 1063.43 271.80 CGIAR-CSI(74) 
 

1 km2 

IAA Indexed Annual Aridity unitless 
index*10-4 

9915.09 4512.99 CGIAR-CSI 
 

1 km2 

Soil Covariates      
O1 Bulk density g·cm-3 0.70 0.57 WISE30sec 

v.1(75) 
1 km2 

O2 pH measured in water unitless 3.72 2.80 WISE30sec v.1 1 km2 
O3 Electrical conductivity  dS·m-1 0.44 0.76 WISE30sec v.1 1 km2 
O4 C/N ratio unitless 9.64 7.78 WISE30sec v.1 1 km2 
O5 Total nitrogen  g·kg-1 2.71 4.62 WISE30sec v.1 1 km2 

Geographic Coordinates and Classification     

x Longitude in WGS84 datum degree     
y Latitude in WGS84 datum degree     

Ecoregion Ecoregion defined by World 
Wildlife Fund(76) 
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Table 2. Parameters of the global geospatial random forest model in 10,000 iterations of 500 randomly selected (with replacement) GFB 
plots. Mean and standard error (S.E.) of all the parameters were estimated using bootstrapping. Effect sizes were represented by the Akaike 
information criterion (AIC), Bayesian information criterion (BIC), and generalized R2 (G-R2). Const: Constant. 

     Coefficients 
 Loglik AIC BIC G-R2 const ș G T3 C1 C3 PET IAA E 

Mean -761.41 1546.71 1597.08 0.354 3.816 0.2625243 0.014607 -0.000106 0.001604 0.001739 -0.002566 -0.000134 -0.000809 

S.E. 0.54 1.10 1.13 0.001 0.011 0.0009512 0.000039 0.000001 0.000008 0.000008 0.000009 0.000001 0.000002 

Iteration             

1 -756.89 1537.78 1588.35 0.259 4.299 0.067965 0.014971 -0.000100 0.002335 0.001528 -0.003019 -0.000185 -0.000639 

2 -801.46 1626.91 1677.49 0.281 3.043 0.167478 0.018232 -0.000061 0.000982 0.002491 -0.001916 -0.000103 -0.000904 

3 -768.71 1561.41 1611.99 0.357 5.266 0.299411 0.008571 -0.000145 0.002786 0.002798 -0.003775 -0.000258 -0.000728 

4 -775.19 1574.37 1624.95 0.354 4.273 0.236135 0.016808 -0.000126 0.001837 0.003755 -0.003075 -0.000182 -0.000768 

5 -767.66 1559.32 1609.89 0.248 2.258 0.166024 0.018491 -0.000051 0.000822 0.002707 -0.001575 -0.000078 -0.000553 

6 -773.76 1571.52 1622.10 0.342 3.983 0.266962 0.018675 -0.000113 0.001372 0.001855 -0.002824 -0.000101 -0.000953 

7 -770.26 1564.53 1615.10 0.421 4.691 0.353071 0.009602 -0.000127 0.002390 -0.001151 -0.003337 -0.000172 -0.000441 

…              

2911 -778.21 1580.43 1631.00 0.393 3.476 0.187229 0.020798 -0.000069 0.001826 0.001828 -0.002695 -0.000135 -0.000943 

2912 -755.35 1534.71 1585.28 0.370 2.463 0.333485 0.013165 -0.000005 0.001749 0.000303 -0.002447 -0.000119 -0.000223 

2913 -800.52 1625.03 1675.61 0.360 4.526 0.302214 0.021163 -0.000105 0.001860 0.001382 -0.003207 -0.000166 -0.000974 

2914 -725.89 1475.78 1526.36 0.327 2.639 0.324987 0.013195 -0.000057 0.001322 0.000778 -0.001902 -0.000080 -0.000582 

2915 -753.64 1531.28 1581.85 0.324 4.362 0.202992 0.014003 -0.000146 0.001746 0.002229 -0.002844 -0.000143 -0.000750 

2916 -796.75 1617.50 1668.08 0.307 3.544 0.244332 0.010373 -0.000118 0.002086 0.002510 -0.002667 -0.000152 -0.000650 

2917 -746.88 1517.77 1568.34 0.348 4.427 0.290416 0.008630 -0.000107 0.002203 -0.000314 -0.002770 -0.000155 -0.000945 

…              

9997 -775.08 1574.17 1624.74 0.313 1.589 0.193865 0.012525 -0.000056 -0.000589 0.000550 -0.000066 -0.000155 -0.000839 

9998 -781.20 1586.40 1636.98 0.438 5.453 0.412750 0.014459 -0.000169 0.002346 0.002175 -0.003973 -0.000117 -0.000705 

9999 -734.72 1493.43 1544.01 0.387 4.238 0.211103 0.013415 -0.000118 0.001896 0.002450 -0.002927 -0.000076 -0.000648 

10000 -776.14 1576.28 1626.86 0.355 2.622 0.468073 0.015632 -0.000150 -0.000093 0.001151 -0.000756 -0.000019 -0.000842 
 

 


