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ABSTRACT

Lasso-type feature selection has been demonstrated to be effective in handling high dimensional data.

Most existing Lasso-type models over emphasize the sparsity and overlook the interactions among co-

variates. Here on the other hand, we devise a new regularization term in the Lasso regression model to

impose high order interactions between covariates and responses. Specifically, we first construct a fea-

ture hypergraph to model the high-order relations among covariates, in which each node corresponds

to a covariate and each hyperedge has a weight corresponding to the interaction information among

covariates connected by that hyperedge. For the hyperedge weight, we use multidimensional interac-

tion information (MII) to measure the significance of different covariate combinations with respect to

response. Secondly, we use the feature hypergraph as a regularizer on the covariate coefficients which

can automatically adjust the relevance measure between a covariate and the response by the interac-

tion weights obtained from hypergraph. Finally, an efficient alternating directionmethod of multipliers

(ADMM) is presented to solve the resulting sparse optimization problem. Extensive experiments on

different data sets show that although our proposedmodel is not a convex problem, it outperforms both

its approximately convex counterparts and a number of state-of-the-art feature selection methods.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Feature interaction presents a challenge to feature selection

for classification. In many classification problems, a feature

that is completely useless by itself sometimes can provide a

significant performance improvement when taken in combina-

tion with others. If we only consider relevance and redundancy,

but ignore interaction in feature selection, some salient features

may be missed (Jakulin and Bratko, 2003). Therefore, identi-

fying discriminative high-order feature interactions is impor-

tant in machine learning, data mining and data visualization.

High order feature interactions often convey essential informa-

tion about the structures of the problem under consideration and

also reveal characteristic features of the datasets under study.

For example, genes and proteins seldom perform their func-

tions independently, so many human diseases are often mani-

fested as the dysfunction of some pathways or functional gene

∗∗Corresponding author:

e-mail: bailucs@cufe.edu.cn (Lu Bai)

modules. As a result, the disrupted patterns due to diseases are

often more obvious at a pathway or module level. Identifying

these disrupted gene interactions for different diseases such as

cancer will help us understand the underlying mechanisms of

the diseases and develop effective drugs to cure them.

Recently, linear regression with a sparsity inducing regular-

izer has been demonstrated to be effective in handling high di-

mensional data. Sparsity indicates that a regression function

can be efficiently represented by a linear combination of active

atoms selected from the entire set of variables, and the cardinal-

ity of the selected atoms is significantly smaller than the former

number of variables. It enables simultaneous parameter esti-

mation and variable selection. For instance, the effects of the

explanatory variables X = {x1, · · · , xd} on the response vari-

able Y can be estimated by the corresponding coefficients when

fitting the data to the model

Y = β1x1 + · · · + βdxd + ε

To improve the prediction accuracy and interpretability of

ordinary least squares (OLS), Lasso (Least Absolute Shrink-
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age and Selection Operator) (Tibshirani, 1996) adds an ℓ1-norm

penalty to OLS so as to continuously shrink some coefficients

to zero and automatically select a subset of variables. Lasso as-

sumes that the input variables are nearly independent, i.e., they

are not highly correlated, while in most real-world data sources,

variables are often correlated. Furthermore, in the presence of

highly correlated features lasso tends to only select one of these

features resulting in suboptimal performance (Zou and Hastie,

2005). For this reason, the Elastic Net (De Mol et al., 2009)

uses an additional ℓ2-regularization term to promote a group-

ing effect. This method permits groups of correlated features to

be selected when the groups are not known in advance. While

promising, these methods do not incorporate prior knowledge

into the regression/classification process, which is critical in

many applications.

Given feature grouping information, the group Lasso

(Yuan and Lin, 2006) is a refinement in which variables are or-

ganized into groups and each group of variables is penalized

based on a combination of the ℓ1-norm and the ℓ2-norm. If there

is a group of variables in which the pairwise correlations are rel-

atively high, the Lasso tends to select only one variable from the

group and is not sensitive to the feature selected. By contrast,

the group Lasso considers this group as a whole and determines

whether it is important to the problem at hand. If this is the

case, each variable in the group is selected, otherwise none are

selected. However, the requirement of a nonoverlapping group

structure in group Lasso limits its practical applicability. For

example, in microarray gene expression data analysis, genes

may form overlapping groups since each gene may participate

in multiple pathways (Jacob et al., 2009). A further extension

of the group Lasso, namely sparse group Lasso, yields sparsity

at both the group and individual feature levels. By contrast, it

not only determines which groups are selected, but also further

selects some of the most important feature variables from each

selected group. The coefficients are sparse not only between

groups, but also within each group (Zhao et al., 2009).

From the above review of the literature, it is clear that tra-

ditional Lasso-type models assume conditional independence

among the variables, and their aim is to conduct regression in-

dividually for each response vector rather than jointly for all

the response vectors. Therefore, they consider data approxima-

tion and representation only, without explicitly incorporating

correlation information between the response vectors and vari-

ables (referred to as relevant information) as well as the vari-

able correlation (referred to as redundant information) in fea-

ture selection. Some recent works have been proposed to solve

the correlation problem. Chen et al. (2013) proposed an uncor-

related Lasso (unLasso) for variable selection, where variable

de-correlation is considered simultaneously with variable selec-

tion. Therefore, the selected variables are uncorrelated as much

as possible, resulting in little redundancy. Jiang et al. (2014)

proposed a covariate-correlated Lasso (ccLasso) that selects the

covariates that are correlated more strongly with the response

variable. Therefore, the selected covariates are highly relevant

to the response, resulting in high relevance.

Although much improvement has been achieve in the works

(Chen et al., 2013; Jiang et al., 2014) mentioned above, the se-

lected variables might not be optimal. This is because they

only consider relevance and redundancy but ignore high-order

variable interactions in the feature selection. As a result, some

salient variables may be missing. A variable by itself may have

little correlationwith the response, but when it is combinedwith

additional variables, it can be strongly influence the response.

Unintentional removal of such variables can result in poor clas-

sification performance. Therefore, to detect the effects of a vari-

able on the response, it may be necessary to consider it jointly

with others.

In order to solve the aforementioned problem with existing

Lasso-type variable selection methods in this paper, we pro-

pose a high-order covariate interacted Lasso (referred to as in-

teractedLasso). This not only discovers the correlations be-

tween the variables and the response, but also discriminates ar-

bitrarily order variable interactions with the response. This dis-

tinguishes it from most of the existing feature selection work,

which only consider feature relevance and redundancy but ig-

nore high-order feature interactions. Specifically, we first con-

struct a feature hypergraph to model the high-order relations

among features, in which each node corresponds to a feature

and each hyperedge has a weight corresponding to the interac-

tion information among features connected by that hyperedge.

For the hyperedge weight, we use multidimensional interaction

information (MII) (Zhang and Hancock, 2012) to measure the

significance of different feature combinations with respect to

the class. The advantage ofMII is that it can go beyond pairwise

and consider third or higher order features interaction, which

can convey information concerning whether a feature is redun-

dant or interactive. As a result, we can evaluate the significance

of candidate features by considering their neighborhood depen-

dency, and thus avoid missing some valuable features arising in

individual feature combinations. Secondly, we use the feature

hypergraph as a regularizer on the feature coefficients which

can automatically adjust the relevance measure between a fea-

ture and the class using the interaction weights of the hyper-

graph. Finally, an efficient alternating augmented Lagrangian

method (ADMM) is presented to solve the proposed interact-

edLasso optimization problem. Promising experimental results

show the benefits of the proposed interactedLasso model.

2. Related Work

Feature interaction is an increasingly important research

problem. Zhao and Liu (2009) propose to search for interact-

ing features using a consistency criteria to measure feature rel-

evance. Wu et al. (2009) identified discriminative interacting

features using regularization techniques. The algorithm heuris-

tically adds some possible high-order interactions into the in-

put feature set in a greedy way based on Lasso penalized lo-

gistic regression. Recently, Min et al. (2014) proposed an ef-

ficient way to identify combinatorial interactions among inter-

active genes in complex diseases by using overlapping group

lasso and screening.

The work mentioned above has demonstrated the existence

and effectiveness of feature interactions, and they are to some

extent able to deal with feature interaction. Here these methods
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require the order of feature interaction to be specified in ad-

vance, and the process of enumerating all possible interaction

orders is usually time consuming. In real-world applications,

it is hard to estimate the order of feature interactions and dif-

ferent features may have a different optimal interaction order.

Enumerating all orders of feature interaction, a large set of fea-

ture combinations are generated with redundancy. For example,

in (Zhao and Liu, 2009), if we consider i-order feature interac-

tions (1 ≤ i ≤ δm) in a straightforward manner, we have to eval-

uate Ci
d
candidate feature combinations, wherein δm is the pre-

defined maximum order of feature interaction. That is to say, to

enumerate δm relation orders, we have to evaluate
∑δm
i=1
Ci
d
can-

didate feature combinations, which is computational intractable

if δm is large. Thus, there is a need to develop new efficient tech-

niques to automatically capture the relevant order of feature in-

teractions in regression models. This problem is the focus of

this paper. To do this we make use of a feature hypergraph rep-

resentation.

Hypergraph representations allow vertices to be multiply

connected by hyperedges and can hence capture multiple or

higher order relationships between features. Due to their ef-

fectiveness in representing multiple relationships, hypergraph

based methods have been applied to various practical problems,

such as partitioning circuit netlists, clustering (Zhou et al.,

2006), clustering categorial data, and image segmentation. For

multi-label classification, Sun et al. (2008) construct a hyper-

graph to exploit the correlation information contained in differ-

ent labels. In this hypergraph, instances correspond to the ver-

tices and each hyperedge includes all instances annotatedwith a

common label. With this hypergraph representation, the higher-

order relations among multiple instances sharing the same label

can be explored. Following the theory of spectral graph em-

bedding (Chung, 1997), they transform the data into a lower-

dimensional space through a linear transformation, which pre-

serves the instance-label relations captured by the hypergraph.

The projection is guided by the label information encoded in the

hypergraph and a linear Support Vector Machine (SVM) is used

to handle the multi-label classification problem. Huang et al.

(2011) used a hypergraph cut algorithm (Zhou et al., 2006) to

solve the unsupervised image categorization problem, where

a hypergraph is used to represent the complex relationships

among unlabeled images based on shape and appearance fea-

tures. Specifically, they first extract the region of interest (ROI)

of each image, and then construct hyperedges among images

based on shape and appearance features in their ROIs. Hyper-

edges are defined as either a) a group formed by each vertex

(image) or b) its k-nearest neighbors (based on shape or appear-

ance descriptors). The weight of each hyperedge is computed

as the sum of the pairwise affinities within the hyperedge. In

this way, the task of image categorization is transferred into a

hypergraph partition problemwhich can be solved using the hy-

pergraph cut algorithm (Wagner and Klimmek, 1996).

One common feature of these existing hypergraph represen-

tations is that they exploit domain specific and goal directed

representations. Specifically, most of them are confined to uni-

form hypergraphs where all hyperedges have the same cardi-

nality and do not lend themselves to generalization. The reason

for this lies in the difficulty in formulating a nonuniform hyper-

graph in a mathematically neat way for computation. There has

yet to be a widely accepted and consistent way for representing

and characterizing nonuniform hypergraphs, and this remains

an open problem when exploiting hypergraphs for feature se-

lection.

To address these shortcomings, an effective method for hy-

pergraph construction is needed, such that the ambiguities of

relational order can be overcome. Inspired by the recent work

(Hu et al., 2008) which utilized the neighborhood dependency

to evaluate the significance of a feature, in this paper, we at-

tempt to build a hyperedge connecting a feature and its cor-

responding neighbors. Instead of generating a hyperedge for

each feature, we generate a group of hyperedges by varying

the neighborhood size in a specified range. This makes our

approach significantly more robust than previous hypergraph

methods. Moreover, it can capture the important order of fea-

ture interactions, because we do not need to tune the neighbor-

hood size.

Recall that finding high-order feature interactions entails ex-

haustive search of all feature subsets. In this paper, we attempt

to analyze high order feature interaction in the framework of

feature hypergraph. Therefore, our search of feature interac-

tion is accelerated since fewer candidate feature combinations

are evaluated. Moreover, to judge whether there exists interac-

tion or redundancy between features, we measure the weight of

each hyperedge by using multidimensional interaction informa-

tion (MII) (Zhang and Hancock, 2012). Since redundant fea-

tures produce negative influence and interaction features pro-

duce positive influence according to MII, the hyperedge weight

can be used to measure the redundancy and interaction of can-

didate features. Thus, we can adjust the relevance measure be-

tween a feature and the class using its corresponding hyperedge

weight.

In summary, our method offers three advantages: (1) We de-

velop an nonuniform hypergraph (i.e. the hyperedge cardinality

varies) construction approach by varying the size of correlated

features. This makes our approach more robust than that in

(Zhang and Hancock, 2012), because we do not need to turn

the size of correlated features as a parameter and enumerate

all possible orders of feature interaction; (2) For the hyperedge

weight, we use multidimensional interaction information (MII)

to measure the significance of different feature combinations

with respect to the class. The advantage of MII is that it can go

beyond pairwise order and capture third or higher order feature

interactions, which can reflect whether a feature is redundant

or relevant at higher order. As a result, we can evaluate the

significance of candidate features by considering their neigh-

borhood dependency, and thus avoid overlooking some valu-

able features arising in individual feature combinations; (3) We

use the feature hypergraph as a regularizer on the feature coef-

ficients which can automatically adjust the relevance measure

between a feature and the class using the interaction weights

of hypergraph. Therefore, the final selected feature subset is

jointly informative with the class.

The remainder of this paper is organized as follows. We

briefly review the standard Lasso and Elastic Net in Section 3
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and introduce our formulation of high order covariate interacted

Lasso in Section 4. Then an effective iterative algorithm is pre-

sented to solve the sparse optimization problem in Section 5.

Experimental results and performance comparisons with com-

peting methods are presented in Section 6. We conclude this

paper by summarizing the proposed method in Section 7.

3. Brief Review of Sparse Learning Based Feature Selection

According to the structure of the norm, sparsity can be ob-

tained from the following two types of regularization terms for

feature selection: a) Flat sparsity, where the sparsity is often

achieved by the ℓ1-norm or ℓ0-norm regularizer to select indi-

vidual features; b) Structural sparsity, where the ℓ2,1-norm or

ℓ2,0-norm are imposed to select group features.

Typically we have a set of training data (x1, y1), . . . , (xn, yn)

from which to estimate the parameters β. Each xi =

{ f i
1
, f i
2
, . . . , f i

d
}T ∈ ℜd×1 is a predictive vector of feature mea-

surements for the i-th case. The most popular estimation meth-

ods is least squares, in which we select the coefficients β =

{β1, . . . , βd}
T to minimize the residual sum of squares

min
β

n
∑

i=1

∥yi −

d
∑

j=1

β j f
i
j∥
2
2 = min

β
∥yT − βTX∥22

s.t.
d
∑

j=1

∥β∥0= k (1)

where y ∈ ℜn×1 is the label vector, X ∈ ℜd×n is the training

data, and k is the number of features selected. Solving Eq.1

directly has been proved NP-hard, very difficult even by opti-

mization. In many practical situations it is convenient to allow

for a certain degree of error, and we can relax the optimization

constraint using the following formulation

min
β
∥yT − βTX∥22 + λ∥β∥0 (2)

where λ ≥ 0 is the regularization parameter. Unfortunately Eq.2

is still challenging, and for practical purposes an alternative for-

mulation using ℓ1-norm regularization instead of ℓ0-norm has

been proposed

min
β
∥yT − βTX∥22 + λ∥β∥1 (3)

where ∥β∥1 is ℓ1-norm of vector β (sum of absolute elements),

∥β∥1 =
∑d

j=1|β j|. The tuning parameter λ ! 0 controls the

amount of regularization applied to the estimate. The larger

λ, the larger the number of zeros in β. The nonzero compo-

nents give the selected variables. After we obtain the opti-

mal value of β, we choose the feature indices corresponding

to the top k largest values of the summation of the absolute

values along each column. In statistics, Eq.3 is referred to as

the regularized counterpart of the Lasso problem (Tibshirani,

1996). This has been widely studied (e.g. (Efron et al., 2004;

Osborne et al., 2000a,b)) and proved to have a closed form so-

lution. However, one of the main limitations of ℓ1-norm fea-

ture selection is that it focuses on estimating the response vec-

tor for each variable individually without considering relations

with the remaining variables. Moreover, the ℓ1-minimization

algorithm is not stable when compared with ℓ2-minimization

(Xu et al., 2012). Therefore, if the goal is to select features

across all the classes, some structural sparsity is preferred. In

multi-task learning, the ℓ2,1-norm square regularization term to

couple feature selection across tasks. A concrete example is the

Elastic Net (Zou and Hastie, 2005).

The Elastic Net (Zou and Hastie, 2005) adds an ℓ2-

minimization term into the Lasso objective function, which can

then be formulated as

min
β∈ℜd
∥yT − βTX∥22 + λ1∥β∥1 + λ2∥β∥

2
2, (4)

where λ1, λ2 ! 0 are tuning parameters. Apart from enjoy-

ing a similar sparsity of representation to Lasso, the Elastic Net

encourages a grouping effect, where strongly correlated predic-

tors tend to be in or out of the model together (Zou and Hastie,

2005).

Predictors with high correlation contain similar properties,

and contain some overlapped information. In some cases, es-

pecially when the number of selected predictors is very limited,

more information needs to be contained in the selected predic-

tors. Strongly correlated predictors should not participate in

the model together. When strongly correlated predictors are

present, then only one is selected. As a result the limited se-

lected predictors will contain more information.

4. Interacted Lasso

In this section, we attempt to analyze feature relevance, re-

dundancy and interaction in the framework of the feature hyper-

graph. Moreover, we use the feature hypergraph as a regularizer

on the feature coefficients which can automatically adjust the

relevance measure between a feature and the class through the

interaction weights of hypergraph. As a result, the final selected

feature subset are jointly informative with the class.

4.1. Hypergraph Construction via Multiple Feature Neighbor-

hoods

For our hypergraph construction, we regard each feature in

the data set as a vertex on hypergraph H = (V, E,W), where

V = {v1, v2, . . . , vd} is the vertex set, E = {e1, e2, . . . , em} is set

of non-empty subsets of V or hyperedges and w(e) is a weight

functionwhich associates a real value with each hyperedge. As-

sume there are d-dimensional features in the data set, and thus,

the generated hypergraph contains d vertices. In our method, a

hyperedge is constructed from a feature and its k nearest neigh-

bors. Instead of generating a hyperedge for each feature, we

generate a group of hyperedges by varying the neighborhood

size k in a specified range. Specifically, in our experiment, we

vary k value from 2 to 7 with an incremental step of 1. This

makes our approach much more robust than previous hyper-

graph methods, because we do not need to tune the neighbor-

hood size.
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4.2. Computing Hyperedge Weight by High-order Features

Correlation

Given a set of features fi1 , fi2 , . . . , fiK , the interaction in-

formation among them can be measured by joint entropy

(MacKay, 2003):

H( fi1 , fi2 , . . . , fiK ) = −
∑

fi1 , fi2 ,..., fiK

P( fi1 , fi2 , . . . , fiK )

log2 P( fi1 , fi2 , . . . , fiK ) (5)

where P( fi1 , fi2 , . . . , fiK ) is the probability of features

fi1 , fi2 , . . . , fiK occurring together. According the above

definition, we can see that joint entropy is always positive

which measuring the amount of information contained in

the correlated features. Based on the joint entropy, a new

measure called multidimensional interaction information

(MII) (Zhang and Hancock, 2012) is defined to measure the

high-order correlation among features, i.e.

I( fi1 , fi2 , . . . , fiK ) =

K
∑

k=1

(−1)k−1
∑

F⊂ fi1 , fi2 ,..., fiK ,|F|=k

H(F) . (6)

In Equation 6, F is a subset of features { fi1 , fi2 , . . . , fiK }, and

H(F) represents the joint entropy of a discrete random variable

with possible values and probability mass function. It is clear

that the greater the value of I( fi1 , fi2 , . . . , fiK ) is, the more rele-

vant the K features are. On the contrary, if I( fi1 , fi2 , . . . , fiK ) =

0, the features are unrelated.

Therefore, for the constructed hypergraphG = (V, E,W), we

determine the weight of each hyperedge using an normalized

MII which can measure the relevance degree contained in the

features of each hyperedge with respect to class label C:

W( fi1 , fi2 , . . . , fiK ;C) = K
I( fi1 , fi2 , . . . , fiK ;C)

H( fi1) + H( fi2) + · · · + H( fiK )
. (7)

Therefore, a large value of W( fi1 , fi2 , . . . , fiK ;C) means

{ fi1 , fi2 , . . . , fiK } are strongly relevant with respect to the class

label C.

4.3. Informative feature Matrix Construction

For the constructed hypergraph, the vertex-edge incident ma-

trix H ∈ ℜ|V |×|E| can be defined as:

H(v, e) =

{

1 if v ∈ e

0 otherwise.
(8)

Let W be the diagonal matrix containing the weight of hyper-

edges, and the adjacent matrix S is

S = HWHT (9)

where HT is the transpose of H.

Given the hypergtaph adjacency matrix S and d-dimensional

feature indicator vector β with βi representing the i-th element,

we can locate the informative feature subset by finding the so-

lutions of the following maximization problem:

max f (β) =

d
∑

i=1

d
∑

j=1

βiβ jsi, j

⇒ max
β∈ℜd
βTSβ (10)

subject to β ∈ △, where the multidimensional solution vector

β fall on the simplex △ = {β ∈ ℜd : β ≥ 0} and sii = 0, i.e.,

all diagonal entries of S are set to zero. Our idea is motivated

by graph-based clustering which groups the most dominant ver-

tices into a cluster. On the other hand, in our work, the feature

subset { fi|1 ≤ i ≤ d, βi > 0} is the most coherent subset of

the initial feature set, with maximum internal homogeneity of

the feature relevance (7). According to the value of β, all fea-

tures F fall into two disjoint subsets, A1(β) = { fi|βi = 0} and

A2(β) = { fi|βi > 0}. We refer to the set of nonzero variables

A2(β) as the informative feature subset, because the objective

function (10) selects RFS by maximizing features’ average rel-

evance.

4.4. Interacted Lasso for Feature Selection

Our discriminative feature subset selection is motivated by

the desire to encourage the selected features to jointly correlate

more with the response while giving less redundancy among

them. Therefore, we unify Eq.3 and Eq.10, and propose the so

called interactedLasso for representation and variable selection,

which is formulated as

min
β∈ℜd

1

2
∥yT − βTX∥22 + λ1∥β∥1 − λ2β

TSβ, (11)

where λ1, λ2 ≥ 0 are tuning parameters. Note that β
TSβ is a

nonconvex contrain.

It is worth noting that unlike the previous Lasso-type feature

selection methods using convex optimization methods, which

may be suboptimal in terms of the accuracy of feature selection

and parameter estimation. Here, the proposed method imposes

more strict nonconvex constraints, i.e., ‘high order variable re-

sponse interactions’, in finding the optimal regression β. Once

the solution β∗ of Eq.11 is obtained, we can easily recover the

number of the selected features and index of the selected fea-

ture: a feature fi is selected if and only if β
∗
i
> 0. Consequently,

the number of selected features is determined by the number of

positive coordinated of β∗.

5. Optimization Algorithm

We propose to solve the non-convex problem 11 by us-

ing the alternating direction method of multipliers (ADMM)

(Boyd et al., 2011). The basic idea of the ADMM approach

is to decompose a hard problem into a set of simpler ones.

ADMM attempts to combine the benefits of augmented La-

grangian methods and the dual decomposition for constrained

optimization problem (Boyd et al., 2011). By introducing an

auxiliary variable γ into the objective function Eq.11, the prob-

lem solved by ADMM takes the following form:

min
β∈ℜd

1

2
∥yT − βTX∥22 − λ2β

TSβ + λ1∥γ∥1,

s.t. β − γ= 0 (12)

which is clearly equivalent to the problem in Eq.11. We can re-

gard γ as a proxy for β. The augmented Lagrangian associated
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with the constrained problem 12 given by

L(β, γ, z) =
1

2
∥yT − βTX∥22 − λ2β

TSβ + λ1∥γ∥1

+⟨β − γ, z⟩ +
ρ

2
∥β − γ∥22 (13)

Here ρ is a positive penalty parameter (or dual update length)

and z is a dual variable (i.e. the Lagrange multiplier) corre-

sponding to the equality constraint β = γ. By introducing an

additional variable γ and an additional constraint β − γ = 0, we

have simplified the problem as 11 by decoupling the objective

function into two parts that depend on two different variables.

The alternating direction method of multipliers (ADMM)

that solves our original problem in 11 seeks for a saddle point of

the augmented Lagrangian by iteratively minimizing L(β, γ, z)

over β, γ, and updating z according to the following update rule:

1) β-minimization: βk+1 = arg min
β∈ℜd

L(β, γk, zk)

2) γ-minimization: γk+1 = arg min
γ∈ℜd

L(βk+1, γ, zk)

3) z-update: zk+1 = zk + ρ(βk+1 − γk+1)

All the challenges of the algorithm now reside essentially in

the resolution of these problems until some stopping criterion

is satisfied. Applying ADMM, we carry out the following steps

at each iteration:

Update β: In the (k+1)-th iteration, βk+1 is computed by min-

imizing L(β, γ, z) with γk and zk fixed. Then we need to solve

the following subproblem:

min
β∈ℜd

1

2
∥yT − βTX∥22 − λ2β

TSβ + ⟨β − γk, zk⟩ +
ρ

2
∥β − γk∥22 (14)

Taking derivatives with respect to β and set it to zero, we have

∂

∂β

[

1

2
∥yT − βTX∥22 − λ2β

TSβ + ⟨β − γk, zk⟩ +
ρ

2
∥β − γk∥22

]

= 0

⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂
∂β
1
2
∥yT − βTX∥2

2
= −Xy + XXTβ,

∂
∂β
(−λ2β

TSβ) = −2λ2Sβ,

∂
∂β
⟨β − γk, zk⟩ = zk,

∂
∂β
(
ρ

2
∥β − γk∥2

2
) = ρ(β − γk).

⇒ βk+1 = (ρI + XXT − 2λ2S)
−1[Xy − zk + ργk]

(15)

Update γ: Now supposing that βk+1
i

and the Lagrangian mul-

tipliers zk
i
, i = 1, · · · , d are fixed in the Lagrangian, the opti-

mization problem related to γk+1
i
, i = 1, · · · , d boils down to be:

min
γi
λ1

d
∑

i=1

∥γi∥1 −

d
∑

i=1

⟨γi, z
k
i ⟩ +
ρ

2

d
∑

i=1

∥βk+1i − γi∥
2
2 (16)

Taking the derivative with respect to γi and setting it to zero, we

have

∂

∂γi

[

λ1

d
∑

i=1

∥γi∥1 −

d
∑

i=1

⟨γi, z
k
i ⟩ +
ρ

2

d
∑

i=1

∥βk+1i − γi∥
2
2

]

= 0

⇒
∂(λ1|γi|)

∂γi
= zki − ρ(γi − β

k+1
i )

⇒ γk+1
i
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
ρ
(zk
i
+ ρβk+1

i
− λ1), if zk

i
+ ρβk+1

i
>λ1

1
ρ
(zk
i
+ ρβk+1

i
+ λ1), if zk

i
+ ρβk+1

i
< − λ1

0 if zk
i
+ ρβk+1

i
∈ [−λ1, λ1].

(17)

Update z: Update zk+1
i
, i = 1, · · · , d:

zk+1i = zki + ρ(β
k+1
i − γk+1i ). (18)

A summary of the proposed method is shown in Algorithm 1

below

Algorithm 1: The proposed ADMM algorithm for interact-

edLasso

Input: X,y,β0,z0, λ1,λ2 and ρ

Output: β

1: while not converge do

2: Update βk+1 according to Eq.15;

3: Update γk+1
i
, i = 1, · · · , d according to Eq.17;

4: Update zk+1
i
, i = 1, · · · , d according to Eq.18.

5: end while

The algorithm stops when the primal and dual residuals

(Boyd et al., 2011) satisfy a certain stopping criterion. The

stopping criterion can be specified by two thresholds: absolute

tolerance εabs and relative tolerance εrel (see Boyd et al. (2011)

for more details). The penalty parameter ρ affects the primal

and dual residuals, and hence affects the termination of the al-

gorithm. A large ρ tends to produce small primal residuals,

but increases the dual residuals (Boyd et al., 2011). A fixed ρ

(say 10) is commonly used. However there are some alterna-

tive schemes of varying the penalty parameter to achieve better

convergence.

6. Convergence and Complexity Analysis

In this section, we will analyze the properties of the Interact-

edLasso algorithm according to three criteria. We first provide

a convergence analysis and then discuss its computational com-

plexity and the parameter determination problems.

6.1. Convergence Proof

On the convergence of Algorithm 1, we have the following

result.
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Theorem 1. Let {βk}, {γk}, {zk} be the iterative sequences gen-

erated by Algorithm 1. Suppose that the sequence {zk} con-

verges to a point, i.e., limk→∞ z
k
= z̄ for some z̄. Then every

limit point (β̄, γ̄) of the sequence {(βk, γk)}, together with z̄, sat-

isfy the necessary first order conditions of the problem 12: 1)

Primal feasibility: β̄− γ̄ = 0. 2) Dual feasibility: ∇ f (β̄)+ z̄ = 0

and 0 ∈ ∂g(γ̄)− z̄, where ∂ denotes the sub-differential operator

(see (Rockafellar, 1970)).

One can easily prove Theorem 1 by following a proof similar

to that of Proposition 3 in (Magnússon et al., 2014). We observe

from Theorem 1 that, in general, Algorithm 1 converges to a

local solution to problem 12.

The algorithm stops when the primal and dual residuals

(Boyd et al., 2011) satisfy a stopping criterion. The stopping

criterion can be specified by two thresholds namely a) the

absolute tolerance εabs and b) the relative tolerance εrel (see

Boyd et al. (2011) for more details). The penalty parameter

ρ affects the primal and dual residuals, and hence in turn af-

fects the termination of the algorithm. A large ρ tends to pro-

duce small primal residuals, but increases the dual residuals

(Boyd et al., 2011). A fixed ρ (say 10) is commonly used. But

there are some alternative schemes for varying the penalty pa-

rameter which achieve better convergence (Yang et al., 2013).

6.2. Complexity Analysis

At each iteration, the time complexity for updating β ac-

cording to Eq.15 is O
(

d2 ∗ n
)

, where d is the dimension of

input data and n is the number of data points. The computa-

tional costs of updating γ in Eq.17 and z in Eq.18 are O
(

d
)

.

Thus, the overall computational complexity of Algorithm 1 is

max
{

O
(

k ∗ d2 ∗ n
)

,O(k ∗ d)
}

where k the required number of

iterations to converge.

6.3. Parameter Determination

A parallel issue to optimizing the interactedLasso algorithm

is selecting optimal values of the parameters λ1 and λ2. The pa-

rameter λ1 is a regularization parameter controlling the sparsity

of β, and the parameter λ2 is used to trade off the importance of

data linear regression and high order covariate interactions. In

order to assign an appropriate value of λ2, we employ a cross-

validation procedure for λ2 estimation. In addition, λ1 is empir-

ically determined by grid search.

7. Experiments and Comparisons

In this section, we discuss the merits and limitations of the

proposed feature selection approach. A comprehensive exper-

imental study on 8 data sets is conducted in order to compare

our feature selection approach with 6 state-of-the-art methods.

7.1. Experimental Setting

To demonstrate the effectiveness of the proposed approach,

we conduct experiments on 8 benchmark data sets, i.e., the

USPS handwritten digit data set (Hull, 1994), Isolet speech

data set and Pie data set from the UCI Machine Learning

Repository (Frank and Asuncion, 2010), YaleB face data set

(Georghiades et al., 2001), malignant glioma (GLIOMA) data

set (Nutt et al., 2003), ALLAML (Nie et al., 2010), Leukemia

and Lymphoma datasets (Vinh et al., 2016). Table. 1 summa-

rizes the extents and properties of the 8 data-sets.

Table 1. Summary of 8 benchmark data sets

Data-set Sample Features Classes

Isolet1 1560 617 26

USPS 9298 256 10

YaleB 2414 1024 38

Pie 11554 1024 68

Leukemia 73 7129 2

Lymphoma 96 4026 9

GLIOMA 50 4434 4

AMLLML 72 7129 2

7.2. Experiment setup

In order to explore the discriminative capabilities of the in-

formation captured by our method, we use the selected features

for further classification. We compare the classification results

from our proposed method (InteractedLasso) with six represen-

tative Lasso-type feature selection algorithms. These methods

are the Lasso (Tibshirani, 1996), unLasso (Chen et al., 2013),

ccLasso (Jiang et al., 2014), Fused Lasso (Tibshirani et al.,

2005), Elastic Net (Zou and Hastie, 2005) and group Lasso

(Ma et al., 2007). We will briefly introduce these methods one

by one.

• Lasso (Tibshirani, 1996): The main task of Lasso is to iden-

tify the set of features whose coefficients turn out to be nonzero

by ℓ1 regularizer. However, in the presence of highly correlated

features, it tends to arbitrarily select one of them.

• Fused Lasso (Tibshirani et al., 2005): The fused Lasso en-

forces sparsity in both the coefficients and their successive dif-

ferences. It is desirable for applications with features ordered

in some meaningful way.

• Elastic Net (Zou and Hastie, 2005): The Elastic Net retains

the sparse property of Lasso but uses an additional ℓ2 regular-

izer to encourage highly correlated features to be jointly se-

lected.

• group Lasso (Ma et al., 2007): The group Lasso is known

to enforce the sparsity on variables at an inter-group level,

where variables from different groups are competing to survive.

• unLasso (Chen et al., 2013): For unLasso method, variable

de-correlation is considered simultaneously with variable selec-

tion, so that the selected variables are uncorrelated as much as

possible.

• ccLasso (Jiang et al., 2014): The basic idea of ccLasso is

to apply prior knowledge of variable-response correlation into

Lasso regularized feature selection, thus the final selected vari-

ables are strongly correlated with the responses.

A 10-fold cross-validation strategy using the C-Support Vec-

tor Machine (C-SVM) (Chang and Lin, 2011) is employed to

evaluate the classification performance. Specifically, the en-

tire sample is randomly partitioned into 10 subsets and then we

choose one subset for test and use the remaining 9 for training,
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and this procedure is repeated 10 times. The final accuracy is

computed by averaging of the accuracies from all experiments.

7.3. Classification Comparison
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(a) Isolet1 dataset
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(b) USPS dataset

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Number of features

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y

YaleB

 

 

Lasso

ccLasso

ULasso

FusedLasso

ElasticNet

GroupLasso

InteractedLasso

(c) YaleB dataset
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(d) Pie dataset
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(e) Leukemia
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(f) Lymphoma dataset
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(g) GLIOMA dataset
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(h) AMLLML dataset

Fig. 1. Accuracy rate vs. the number of selected features on 8 benchmark

datasets

The classification accuracies of different algorithms obtained

with different feature subsets are shown in Fig.1. From the fig-

ure, it is clear that our proposed method dLasso is, by and large,

superior to the alternative Lasso-type feature selection meth-

ods on all 8 benchmark datasets. As Fig.1 (a) and (b) shows,

when the number of selected features is small, the Interacted-

Lasso performs much better than other Lasso-type feature se-

lection methods. The results verify that InteractedLasso can

select more discriminative feature subsets than the baselines.

However, we observed that the advantage of the proposed algo-

rithm over the other 6 comparative methods tends to diminish

as the selected number of features is increased. This is within

our expectation, as any feature selection method will work well

if we aim to select most of the features.

For clear comparison, we summarize the averaged classifi-

cation accuracy of different methods when a different num-

ber of features is selected. Table. 2 reports the “aggregated

” SVM classification accuracy of the different algorithms on

each data set. The aggregated SVM classification accuracy is

obtained by averaging the averaged accuracy achieved by SVM

using the top 10,20,. . .,200 features selected by each algorithm.

The boldfaced values are the highest ones. The classification

accuracy (MEAN ± STD) is shown first and the number of

features selected is reported in brackets. Our method Inter-

actedLasso improved the classification accuracy by 6.3% (Iso-

let1), 14.44% (USPS), 17.67% (YaleB) , 1.17% (Pie), 3.6%

(GLIOMA), 1.72% (ALLAML), 4% (Leukemia) and 3.56%

(Lymphoma) respectively, compared to the best performances

among the competing methods. In Isolet1 dataset, we can

note that for small number of selected features (i.e. 10 fea-

tures are selected), the highest accuracy achieved by unLasso is

37.82% which is higher than our proposed method Interacted-

Lasso (37.05%). However, if we select more features (i.e. 30

features are selected), InteractedLasso is clearly larger than the

alternative Lasso-type feature selection methods. The results

verify that having too few features is not necessarily a good

feature selection result. Some interactive features may be lost

in the process of removing redundancy.

The bottom row of Table. 2 shows the averaged classifi-

cation accuracy for all the algorithms over the 8 datasets.

Our method improved the classification accuracy by 11.63%

(Lasso), 10.73% (ccLasso), 9.85% (unLasso), 11.54 % (Fused-

Lasso), 8.1% (Elastic Net), 14.96% (Group Lasso) respectively,

compared to the averaged classification accuracy of all com-

peting methods over the 8 datasets. Meanwhile, our method

gives a lower standard deviation and hence more stable than the

alternatives. Comparatively, group Lasso gives the worst per-

formance. This may be explained by our observation that it is

unable to handle feature redundancy and is prone to select re-

dundant features. The reason why the proposed InteractedLasso

wins over unLasso (Chen et al., 2013) and ccLasso (Jiang et al.,

2014) is that InteractedLasso considers not only the relevance

between a single feature and the class, but also the redundancy

and interaction with other features which are expressed by the

feature hypergraph. Therefore, InteractedLasso performs better

when there is feature interaction in the dataset.

7.4. Convergence of InteractedLasso
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Fig. 2. The behavior of proposed objective function value during iterations



9

Table 2. Aggregated SVM classification accuracy (MEAN ± STD). The last row shows the averaged classification accuracy of all the algorithms over the 8

datasets.

Dataset Lasso ccLasso unLasso FusedLasso Elastic Net Group Lasso InteractedLasso

Isolet1 71.53% 72.02% 73.49% 70.49% 72.80% 66.97% 79.79%

± 3.70 ± 3.84 ± 3.29 ± 3.19 ± 3.93 ± 3.23 ± 2.95

USPS 68.17% 65.64% 66.19% 68.09% 70.47% 60.71% 84.91%

± 2.61 ± 1.56 ± 1.61 ± 1.40 ± 1.83 ± 1.28 ± 1.05

YaleB 31.62% 34.64% 34.93% 29.52 % 36.75% 28.44% 54.42%

± 2.77 ± 2.41 ± 2.74 ± 2.52 ± 3.90 ± 2.71 ± 2.67

Pie 85.11% 86.31% 86.18% 79.77 % 85.14% 75.67% 87.48%

± 0.99 ± 0.96 ± 0.97 ± 1.05 ± 0.95 ± 0.96 ± 0.87

GLIOMA 70.20% 71.6% 72.20% 71.20 % 69.60% 60.60% 75.8%

± 2.18 ± 2.36 ± 1.61 ± 2.17 ± 2.18 ± 2.34 ± 1.64

ALLAML 94.57% 92.14% 94.43% 83.14 % 89.14% 91.57% 96.29%

±0.78 ± 0.91 ± 0.99 ± 1.38 ± 1.15 ± 1.14 ± 0.88

Leukemia 70.43% 72.43% 76.71% 92% 94.29% 83.71% 98.29%

± 1.75 ± 1.71 ± 1.63 ± 1.26 ± 1.05 ± 1.53 ± 0.33

Lymphoma 84.22% 85.11% 82.78% 79.34 % 82.67% 78.33% 88.67%

± 1.19 ± 1.27 ± 1.30 ±1.40 ± 1.31 ± 1.49 ± 0.95

AVG 71.98% 72.48% 73.36% 71.67 % 75.11% 68.25% 83.21%

Figure 2 shows the variation of proposed objective function

across the iterations in Algorithm 1. We can see that Algorithm

1 converges very quickly and the maximum number of interac-

tion is fewer than 30, indicating the efficiency and effectiveness

of the proposed InteractedLasso algorithm.

8. Conclusion

The main goal of feature selection is to find a feature sub-

set that is small in size but high in predictive accuracy. Feature

interaction exists in many applications. It is a challenging task

to find interactive feature. In this paper, we have proposed a

novel Interacted Lasso regression model to identify high-order

feature interactions. Our major methodological contribution is

that by introducing meaningful neighborhood information con-

straint, we can effectively evaluate whether a feature is redun-

dant or interactive based on a neighborhood dependency mea-

sure. We thus avoid missing some valuable features arising in

individual feature combinations. Empirical experiments on real

datasets show that our model outperforms several well-known

techniques such as Lasso, ccLasso and unLasso.
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