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Ordered Information Systems and Graph Granulation

John G. Stell

School of Computing, University of Leeds, Leeds, U.K.
j.g.stell@leeds.ac.uk

Abstract. The concept of an Information System, as used in Rough Set theory, is ex-
tended to the case of a partially ordered universe equipped with a set of order preserving
attributes. These information systems give rise to partitions of the universe where the set of
equivalence classes is partially ordered. Such ordered partitions correspond to relations on
the universe which are reflexive and transitive. This correspondence allows the definition of
approximation operators for an ordered information system by using the concepts of open-
ing and closing from mathematical morphology. A special case of partial orders are graphs
and hypergraphs and these provide motivation for the need to consider approximations on
partial orders.
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1 Introduction

From one perspective the theory of rough sets allows us to move between two levels of detail.
Elements at the more detailed level are grouped together and these granules become elements at
a more abstract (less detailed) level of detail. The process of granulation, that is the process of
forming the granules, can be parameterized by a relation on a set. In the classic case described
by Pawlak [8] the relation is an equivalence relation, but arbitrary relations give rise to several
different granulations as described by Yao [18]. Stell [14] showed how these could be generalized to
the case of a relation on a hypergraph, as opposed to the relations on a set considered in [18], by
using operations of erosion and dilation from mathematical morphology. However, the treatment
in [14] did not consider how to connect relations on a hypergraph with partitions of the underlying
set of edges and nodes. The present paper is also related to the work of Lin [7] on granular
computing and neighbourhood systems, since neighbourhood systems correspond to arbitrary
relations. However, neighbourhood systems are structures on sets whereas here the more general
case of partially ordered sets is studied.

The paper start by reviewing how hypergraphs can be seen as partial orders. This leads to a
motivating example of a graph granulation which prompts an examination of ordered information
systems. This shows how the partitions induced by such structures have corresponding reflexive
and transitive relations. Using these relations we use the well-known operations of opening and
closing, but novelly in the general case of a partial order rather than a set, to obtain appropriate
approximation operators.

2 Background on Graphs and Hypergraphs

In this section we start by outlining the approach to graphs and hypergraphs that we use.



2.1 Graphs and Hypergraphs

We work with graphs which are undirected and which may have multiple edges between nodes
as well as multiple loops on nodes. In a graph each edge is incident with one or two nodes, but
consideration of binary relations on graphs leads naturally to hypergraphs as we will see later.
In a hypergraph [1] there are edges and nodes, but each edge may be incident with any number
of nodes. In our work we require that edges are incident with a non-zero number of nodes. One
formalization of these structures is to have two disjoint sets for the nodes and for the edges. We
use an alternative approach with a single set consisting of all the node and edges together with
an incidence relation which expresses which edges are incident with which nodes. This has been
used in [13, 14] and is based on using a similar approach to graphs in [3]. Relations appear in
two ways in the paper: every hypergraph is treated as a set of edges and nodes equipped with
an incidence relation on this set, and an indiscernibility relation on the hypergraphs is a further
binary relation on the set of edges and nodes subject to appropriate constraints.

Definition 1. A hypergraph consists of a set U and a reflexive incidence relation H ⊆ U × U

such that for all u, v, w ∈ U , if (u, v) ∈ H and (v, w) ∈ H then u = v or v = w.

Given a hypergraph (U,H), an element u ∈ U is an edge if there is some v ∈ U where (u, v) ∈ H

and u 6= v. An element which is not an edge is a node.

It is straightforward to check that in a hypergraph (U,H) the incidence relation H will be
transitive as well as reflexive so that it is a preorder and, in fact, a partial order too. Hypergraphs
defined in this way may have edges that are incident with arbitrary non-empty sets of nodes and
not just with one or two nodes as in the case of a graph. Graphs arise as a special case of
hypergraphs as in the next definition.

Definition 2. A graph is a hypergraph (U,H) which satisfies the constraint that for every u ∈ U

the set {v ∈ U | (u, v) ∈ H and u 6= v} has at most two elements.

We use the terminology ‘subgraph’ for the structural parts of arbitrary hypergraphs.

Definition 3. A subgraph of a hypergraph (U,H) is defined as a subset K ⊆ U for which k ∈ K

and (k, u) ∈ H imply u ∈ K.

Figure 1 shows three different ways in which graphs may be visualised. The example shows a
graph with two edges and three nodes. The node-edge visualisation is the most familiar depiction,
with each edge drawn as line between two nodes. A useful alternative to this, and the only
viable possibility once we are dealing with hypergraphs which are not graphs is the Boundary

Visualisation. In this each edge is shown as a boundary enclosing all the nodes with which it is
incident.

3 Granules in Graphs and Hypergraphs

Figure 2 provides a motivating example of a graph and its abstraction to a less detailed view. The
left hand diagram provides the more detailed view. It shows an imaginary transport network of
rail lines in a city. There are nine labelled stations:West ,Mid ,C1 ,C2 ,C3 ,North,South,SouthEast ,
and SouthWest . Five lines are labelled: a and b as well as p, q , and r .
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Fig. 1. Three ways of visualising a graph

Now consider the representation on the right-hand side. This provides a less detailed view. Some
of the stations are unchanged from the more detailed view. The three stations C1 ,C2 and C3

together with the three lines joining them have become a single node labelled Centre. This node
does not represent a single station at the more detailed level; it represents a subgraph consisting
of three nodes and three edges. The line labelled westline consists of two lines a and b together
with the intermediate station Mid . Here the subgraph consisting of nodes West ,North,Mid and
edges a and b has become a subgraph consisting of one edge and two nodes.

The more detailed representation is a graph, with undirected edges which connect pairs of nodes.
However, the less detailed representation is a hypergraph having two edges, one of which is
incident with three nodes, North,Centre and South. This edge, labelled circleline, stands for a
granule at the more detailed level consisting of the SouthWest and SouthEast nodes together
with the edges connecting them to South, to North and to C1 ,C2 ,C3 .
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Fig. 2. Motivating example of coalescing edges and nodes

The clustering of separate entities at the more detailed level into a single entity at the less detailed
level can be understood as the action of an attribute which assigns values in the lower level to
entities at the higher level. To explain how this works in the case of a partially ordered set of
entities, it is necessary next to introduce the concept of an ordered information system.

4 Ordered Information Systems

In this section we consider a generalization of the notion of Information System in which the
universe is not merely a set but carries a partial order. In this setting the attributes defined on



the universe are monotone, or order-preserving, functions to partially ordered sets of values. We
see how this gives rise to a partition of the universe, as in the well-known set-based case, but
with the additional structure of a partial order on the equivalence classes. In order to understand
the appropriate way to define upper and lower approximations we then need to connect these
partially ordered partitions with relations on the partially ordered universe, which we do in
Theorem 2 below. Although our motivation used graphs and hypergraphs, we shall see that it is
the partial order that provides the essential structure.

4.1 Information Systems on a Partially Ordered Universe

We recall the set case following the terminology of [9]. An Information System, A = (U,A),
consists of a set U and a set A of functions called attributes defined on U where α : U → Vα

for each α ∈ A. Each subset B ⊆ A gives rise to an indiscernibility relation INDB where
(u1, u2) ∈ INDB iff α(u1) = α(u2) for all α ∈ B. The relation INDB is an equivalence relation on
U , and we denote the equivalence class of u by [u]B or just [u] where no ambiguity arises.

Each subsetX ⊆ U has an upper approximation, B(X), and a lower approximation, B(X),
with respect to a given B ⊆ A where,

B(X) = {u ∈ U | ∃w((w, u) ∈ INDB and w ∈ X)}

B(X) = {u ∈ U | ∀w((u,w) ∈ INDB implies w ∈ X)}

Now we generalize this to the case of a partially ordered set (U,H).

Definition 4. An Ordered Information System, A = (U,H,A), consists of set U and partial

order H on U , and a set, A, of order preserving functions called ordered attributes defined on

(U,H) where α : (U,H) → (Vα,Kα)

An ordered information system gives rise to an indiscernibility relation INDB as before where
(u1, u2) ∈ INDB iff α(u1) = α(u2) for all α ∈ B. The equivalence classes are partially ordered if
we define [u1] 6 [u2] iff ∀α ∈ B (αu1 Kα αu2), This defined ordering necessarily satisfies

u1 H u2 implies [u1] 6 [u2]. (1)

As an example we can consider the change of level of detail in Figure 2 as an Ordered Information
System. For simplicity, take just the part of the hypergraph at the detailed level consisiting of
nodes {West ,Mid ,North} and of edges {a, b}. The set U is then {West ,Mid ,North, a, b}, and
the partial order H relates every edge in U to its two incident nodes. Thus (a,West) ∈ H and
(a,Mid) ∈ H and so on. In addition H is defined to be reflexive. In this simple example there is
just one attribute α where Vα = {West ,westline,North} with the partial order Kα containing
(westline,North) and (westline,West) as well as the identity pairs (westline,westline) etc. The
attribute α assigns the value westline to both a and b as well as to Mid because this is the
less-detailed feature to which these entities belong, as well as satisfying α(West) = West and
α(North) = North.

In a partially ordered universe approximations need to respect structure. To do this we need to
make use of definitions of approximations based on relations. So next we introduce relations on
partial orders.



4.2 Relations on Partial Orders

A relation on a graph, a special case of Definition 5, is a relation on the set of all edges and
nodes of the graph which in addition respects the incidence structure. The consequences of this
definition have been explored in more detail in [15, 16], but all works in the more general setting
of a partially ordered set (U,H).

Here we only need a few properties of these relations, which we set out in Theorem 1; proofs can
be found in the above references. In the definition we write composition of relations as ; and we
take R ; S to mean composition in the following order

R ; S = {(u,w) ∈ U × U | ∃v ∈ U ((u, v) ∈ R and (v, w) ∈ S)}.

Definition 5. A relation R ⊆ U × U is stable for a partial order H on U if H ;R ;H ⊆ R.

The significance of Definition 5 is that stable relations on a hypergraph (U,H) correspond to
union-preserving functions on the lattice of subgraphs [15]. Arbitrary relations correspond to
union-preserving functions on the lattice of subsets, but here subgraphs are approximated.

Theorem 1 (Stell[15]). Let R and S be stable relations on (U,H). We use R ;S, to denote the

composition, of R and S as relations on U .

1. R ; S is stable.

2. The equality relation I ⊆ U × U need not be stable, but H is a stable relation and satisfies

H ;R = R = R ;H.

3. Neither the converse R̆ nor the complement R need be stable, but stable relations are closed

under the converse complement operation aR = R̆ = R̆ and this satisfies aaR = R.

Definition 6. A relation R on (U,H) is reflexive if H ⊆ R, and is transitive if R ;R ⊆ R.

We note in passing that the notion of symmetry for such relations is not straightforward on
account of the lack of an involutory converse operation [15]. In fact there are several different
ways of defining symmetry but these are outside the scope of the present paper.

It can be seen that any relation on U (without any assumption of stability) which satisfies the
reflexivity and transitivity conditions must actually be stable. This is because we would have
H ;R ;H ⊆ R ;R ;R ⊆ R.

Figure 3 provides two examples of stable relations on the partial order, which is also more
specifically a graph, from Figure 1. These two relations, which are described in detail as subsets
of U×U in the figure, are reflexive which allows the convenient visualisation shown. In a reflexive
relation we only need show those arrows (ordered pairs) which are present in addition toH. These
added arrows are shown as dashed lines with arrow heads in the figure.

4.3 Correspondence between Partitions and Relations on Partial Orders

The well-known correspondence between partitions of a set and equivalence relations on a set
allows us to switch between two ways of thinking about indiscernibility. The consideration of
relations on sets that need not be equivalence relations has often been used in rough set theory [11,
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Fig. 3. Graph from Fig 1 with two examples of reflexive transitive stable relations

18, 12], but the use of relations on hypergraphs, or more generally on partial orders has been
relatively unexplored. The approach in [14] deals with several approximation operators in terms of
relations on hypergraphs, but did not consider what connection there might be between partitions
(in some generalized sense) of a hypergraph and relations on the hypergraph with properties
analogous to reflexivity, transitivity and symmetry. As already noted, symmetry will not be
considered in this paper, so we will just deal with reflexive and transitive relations in the sense
of Definition 6.

Definition 7. For any relation R on U and any u ∈ U , define the u-dilate of R to be uR =
{v ∈ U | u R v}. More generally, for any X ⊆ U , we will use XR to denote {v ∈ U | ∃x (x R

v and x ∈ X)}.

The terminology ‘dilate’ is used as in mathematical morphology [10, 2] uR is the dilation by R

of the set {u} usually denoted {u} ⊕ R. In the case that R is an equivalence relation on U , the
u-dilates are just the equivalence classes. For more general R, two dilates can overlap without
being equal and this can be seen in the examples in Figure 4.

Lemma 1. Let R be a reflexive and transitive relation on U . Then for any u, v ∈ U the following

three statements are equivalent:

v ∈ uR, u R v, vR ⊆ uR.

In generalizing the notion of a partition from a set to a hypergraph, and more generally to a
partial order, it is clear that if the blocks of the partition are disjoint then they will not, except in
trivial cases, respect the additional structure of the set. In the case of a graph, if we require that
blocks are disjoint and that in addition they are always subgraphs then a connected graph will
only have a single partition consisting of just one block. In the case of a partial order requiring
blocks to both be disjoint and to be downward closed sets leads to a generalized form of this
limitation.

Thus, we expect a general partition of a partial order either to have blocks that overlap or to
have blocks that need not be downward closed sets. But a good notion of partition should also be
connected with relations on the partial order and should be capable of supporting approximation
operators with good properties. The following result demonstrates how these requirements are
connected.



Theorem 2. Let U be a set and H a partial order on U . The following three sets of structures

are in bijective correspondence with each other.

1. Relations R on U such that H ⊆ R and R ;R ⊆ R.

2. Partitions of U equipped with a partial order, P , on the set of equivalence classes such that

∀u, v ∈ U (u H v ⇒ [u] P [v]), (2)

where [u] denotes the equivalence class of u.

3. Sets C of subsets of U such that if we define for u ∈ U

puqC =
⋂

{B ∈ C | u ∈ B}

then for every u ∈ U we have puqC ∈ C and if u H v then pvqC ⊆ puqC.

Proof. We show first that 1 corresponds with 2.

Given a relation R as in 1, define a relation ≡R by x ≡R y if x R y and y R x. It is straightfor-
ward to check that this is an equivalence relation. From R we also define a relation PR on the
equivalence classes of ≡R by [x] PR [y] if x R y. To check this is well-defined we need to check
that if x ≡R x′ and y ≡R y′ then x R y iff x′ R y′, but this is routine. It is also clear that PR

satisfies the property stated of P in (2).

In the other direction, given an equivalence relation ≡ and a partial order P satisfying (2), define
a relation, S≡

P , on U by x S≡

P y iff [x] P [y]. We can check that S≡

P contains H and is transitive.

To justify that we have a bijection, suppose first that we have a relation R as in 1. We need to
show that S≡R

PR
= R. Secondly, given an equivalence relation E and a partial order Q satisfying

(2), we need to show that ≡SE
Q
= E and that PSE

Q
= Q. These are both routine calculations from

the definitions.

We now show that 1 corresponds with 3.

Given a relation R as in 1, define a set of subsets of U by BR = {uR ⊆ U | u ∈ U}. The key
observation here is that puqBR = uR. To justify this, note that for any w ∈ U the condition
u R w is equivalent, since R is reflexive and transitive, to

∀v (v R u ⇒ v R w). (3)

Now (3) is equivalent to w ∈
⋂
{vR ⊆ U | u ∈ vR} and hence to w ∈ puqBR .

To map a set of subsets C as in 3 to a relation as in 1 we define the relation TC by

u TC v iff pvqC ⊆ puqC .

Finally, to show these two constructions provide a bijection, we have to check that given any
relation R as in 1, and any set of subsets C as in 3, that TBR

= R and that BTC
= C. These are

routine calculations from the definitions. ⊓⊔

The above result shows how reflexive and transitive relations on a partial order are equivalent to
two ways of weakening the usual notion of a partition on a set. Clearly, in the special case that
H is the identity relation on U and in addition that R is symmetric, the structures in parts 2
and 3 both reduce to an ordinary partition on U .



Besides equivalence relations and partitions of a set U , functions defined on U provide another
way of performing granulation. This too generalizes to the partial order case. We omit the proof
as it uses similar techniques to that of Theorem 2.

Theorem 3. Let (U,H) and (V,K) be posets and ϕ a function from U to V such that for all

u1, u2 ∈ U we have u1 H u2 implies ϕu1 K ϕu2. Then the relation Rϕ on U defined by u1 Rϕ u2

iff ϕu1 K ϕu2 is transitive and contains H. ⊓⊔

Figure 5 illustrates Theorem 5 by showing how the relations used in Figure 4 have corresponding
order-preserving functions defined on the underlying partial orders.

4.4 Two Kinds of Granulation

In a set the notion of granulation, that is the formation of granules, involves grouping or clustering
together subsets of the elements. This happens too with graphs. The lower example in Figure 4
shows a case where one edge and one node form one cluster and the remaining two nodes and edge
form another cluster. However, granulating a partial order, such as a graph, is not just a matter
of clustering elements together. Such clustering by itself only yields a discrete set and cannot
produce non-trivial partial orders. The second component to granulation on a partial order is
the provision of a partial order on the clusters of elements. Theorem 2 shows that reflexive and
transitive relations on partial orders correspond to granulations consisting of the formation of
clusters together with ordering the clusters.

The upper example in Figure 4 shows that even if the formation of clusters gives only singleton
clusters we can still have an ordering on these clusters which strictly extends the original ordering.
The cluster ordering is shown by bold arrows in the figure.

Fig. 4. Relations from Fig 3 with corresponding ordered partitions and overlapping dilates

5 Approximation Operators

Returning now to the definition of an ordered information system (U,H,A) in section 4.1 we
can see that as each subset B ⊆ A provides a partially ordered set of equivalence classes which



Fig. 5. Relations from Fig 3 with corresponding quotient structures

respects H as in equation (1). Thus by Theorem 2 we can construct a relation RB which is
stable with respect to H and is reflexive and transitive. The significance of this is that we can
use RB to define upper and lower approximation operators using opening and closing. Several
different pairs of operators can be considered. The pair B and B suggested below does not
generalize any of the three dual pairs discussed in [18] but generalizes apr ′

n
and apr ′n̆ in the

notation of [18] where n is the neighbourhood operator arising from the relation RB and n̆

is that arising from the converse of RB . The definition uses the erosion operator, defined for
X ⊆ U by RB ⊖X = {u ∈ U : ∀v ((u, v) ∈ RB implies v ∈ X)}.

Definition 8. Let (U,H,A) be an ordered information system and B ⊆ A. For any X where

XH ⊆ X we define the upper and lower approximation operators B, B by B(X) = RB⊖(XRB),
and B(X) = (RB ⊖X)RB.

This departs from the more usual dualities of upper and lower in rough set theory by choosing
an adjoint pair of operators. This reflects the preferred duality in mathematical morphology, and
also the trend in some aspects of modal logic to consider adjoint pairs of modalities. Appropriate
properties for approximation operators still hold with this choice including the following.

1. BB(X) = B(X), and BB(X) = B(X)

2. B(X) ⊆ X ⊆ B

3. B(X ∩ Y ) ⊆ B(X) ∩B(Y ) and B(X) ∪B(Y ) ⊆ B(X ∪ Y )

4. B(X ∩ Y ) ⊆ B(X) ∩B(Y ) and B(X) ∪B(Y ) ⊆ B(X ∪ Y )

5. X ⊆ Y implies B(X) ⊆ B(Y ) and B(X) ⊆ B(Y )

Some properties here are weaker than in the situation where the universe is unordered and where
indiscernability is symmetric as well as reflexive and transitive. For example, we do not have
B(X)∪B(Y ) = B(X∪Y ), nor do we have B(B(X)) = B(X). These weakenings are already well
known in the the case of binary relations on a set (rather than a poset as here) in [18].



6 Conclusions and Further Work

This paper has used a correspondence between partially ordered partitions and certain reflexive
transitive relations to find a simple way of defining approximation operators on ordered informa-
tion systems. Further work is continuing on connections between these approximation operators
and the bi-intuitionistic modal logic using relations on hypergraphs that was introduced in [17].
This is likely to provide a way of generalizing information logics [4] to the partially ordered
setting. The notion of granulation used in this paper is not the only way parts of graphs can
constitute granules. Further work will examine how ideas such as the tree-decompositions de-
scribed in [5, p337] are connected with the reflexive and transitive relations studied here. In [6]
Fan considers information systems where instead of functional attributes defined on the universe
there are relations. Combining this approach with the present paper suggests it would be inter-
esting to explore relational information systems in the more general case of a partially ordered
universe.
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