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Abstract 

When selection differs between the sexes for traits that are genetically correlated between the 

sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in 

the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While 

potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over 

a set of morphological traits (wing length, tarsus length, bill depth, and bill length) in a wild 

population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the 

microevolutionary impacts of ISC by combining intra- and inter-sex additive genetic 

(co)variances and sex-specific selection estimates in a multivariate framework. Large genetic 

correlations between homologous male and female traits combined with evidence for sex-

specific multivariate survival selection suggested that ISC could play an appreciable role in the 

evolution of this population. Together, multivariate sex-specific selection and additive genetic 

(co)variance for the traits considered accounted for additive genetic variance in fitness was 

uncorrelated between the sexes (cross-sex genetic correlation = -0.003, 95% CI = -0.83, 0.83). 

Gender load, defined as the reduction in a population’s rate of adaptation due to sex-specific 

effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the 

evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and 

selection analyses can be combined in a multivariate framework to quantify the 

microevolutionary impacts of ISC. 



A
c

c
e

p
te

d
 A

r
ti

c
le

A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Keywords: G matrix, genetic correlation, intralocus sexual conflict, selection gradient, sexual 

dimorphism, animal model, heritability, natural selection, quantitative genetics, gender load 

 

Introduction 

Males and females in dioecious species are typically dimorphic for a large number of phenotypic 

traits (Fairbairn et al., 2007). Such sexual dimorphism is generally believed to be adaptive, 

reflecting difference in sex-specific phenotypic optima (Fairbairn, 2007). While the widespread 

occurrence of sexual dimorphism indicates that its evolution is possible, large genetic 

correlations between most homologous male and female traits suggest that its short-term 

evolution may be constrained (Lande, 1980; Poissant et al., 2010). Indeed, whenever selection 

differs between the sexes for traits that are genetically correlated between the sexes, there is 

potential for the effect of selection in one sex to be altered by indirect selection in the other sex, 

a situation generally referred to as intralocus sexual conflict (ISC) or gender load (Arnqvist & 

Rowe, 2005; Bedhomme & Chippindale, 2007; Bonduriansky & Chenoweth, 2009; Pennell & 

Morrow, 2013). While potentially common and important, such intersexual genetic constraints 

remain little studied in wild populations (Bonduriansky & Chenoweth, 2009; Pennell & Morrow, 

2013; Poissant et al., 2010; Wyman et al., 2013). 

 

The evolutionary forces acting on sexual dimorphism depend on the interaction between sex-

specific genetic (co)variances and directional selection, as represented by the Lande (1980) 

sex-specific version of the Lande (1979) equation: 

 ȟݖȟݖ ൌ 	 ଵଶ 	۵ ۰۰் ۵൨ ቂఉఉ ቃ                             (1) 
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where ȟݖ	and	ȟݖ are vectors of male and female specific responses, Gm and Gf are sex-

specific additive genetic covariance matrices, B and BT are matrices of cross-sex additive 

genetic covariances, and ߚ and ߚ are sex-specific vectors of selection gradients. The 

coefficient of one half is included to account for the fact that selected male and female parents 

make equal autosomal contributions to offspring of both sexes (Lande, 1980). Despite being 

well known among evolutionary biologists studying sexual dimorphism, surprisingly few have 

applied the Lande (1980) equation in wild populations (though see Jensen et al., 2008, Stearns 

et al., 2012, Tarka et al., 2014, and Walling et al., 2014, for rare examples). Instead, studies 

typically focus on estimating either only sex-specific selection (Cox & Calsbeek, 2009) or 

quantitative genetic parameters (Poissant et al., 2010). In addition, while equation 1 is explicitly 

multivariate, most quantitative genetic studies of sexual dimorphism performed to date have 

focused on univariate traits (Wyman et al., 2013). As a consequence, we still know relatively 

little about the structure of the B matrix and its impact on the evolution of sexual dimorphism 

(Gosden et al., 2012; Wyman et al., 2013). For example, asymmetry of the B matrix (differences 

between below- and above-diagonal elements) may play an important role in facilitating the 

evolution of multivariate sexual dimorphism (Wyman et al., 2013), but too few B matrices have 

been published to assess the importance of this mechanism (Barker et al., 2010; Wyman et al., 

2013). Studies combining sex-specific selection and quantitative genetic parameters, and 

especially those doing so in a multivariate framework, are therefore needed (Walsh & Blows, 

2009; Wyman et al., 2013).  

  

Genetic constraints on the evolution of sexual dimorphism may be widespread (Bonduriansky & 

Chenoweth, 2009; Cox & Calsbeek, 2009; Pennell & Morrow, 2013; Poissant et al., 2010). In 

particular, negative cross-sex genetic correlations (rmf) for lifetime fitness in wild populations 

have been reported (e.g. Brommer et al., 2007; Foerster et al., 2007), and rmf for fitness 
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components are on average lower than for other trait categories (Poissant et al., 2010). 

However, little is known about the traits underlying these cross-sex genetic correlations for 

fitness and their relative importance (Bonduriansky & Chenoweth, 2009; Pennell & Morrow, 

2013). In part, this is because research tends to be qualitative rather than quantitative, with 

publications focusing on the statistical significance of intralocus sexual conflicts rather than 

quantifying their impacts on microevolution.  

 

A variety of metrics have been developed to quantify multivariate genetic constraints (Walsh & 

Blows, 2009), and researchers have started applying them to studies of sexual dimorphism in 

both laboratory (Gosden et al., 2012; Lewis et al., 2011) and wild (Stearns et al., 2012; Tarka et 

al., 2014; Walling et al., 2014) populations. However, in many cases, differences in data 

transformation and standardization make comparison of results across traits and studies difficult 

(Hansen & Houle, 2008; Houle et al., 2011). In addition, not all metrics provide easily 

interpretable or comparable quantitative information (Hansen & Houle, 2008). One approach 

that is particularly valuable for the study of ISC is the R metric of Agrawal and Stinchcombe 

(2009). This metric quantifies the impact of genetic covariances on a population’s rate of 

adaptation, including the specific case of cross-sex genetic covariances. Importantly, it yields 

results that are readily comparable across sets of traits, populations and species (Agrawal & 

Stinchcombe, 2009). Despite its potential for improving our understanding of ISC, to date few 

have applied the approach in that context (see Walling et al., 2014, for a rare example). 

 

The importance of considering multivariate phenotypes in studies of ISC is increasingly being 

recognized (Wyman et al., 2013). However, conducting multivariate quantitative genetic studies 

in wild populations remains challenging, due to difficulties in acquiring sufficiently large 

pedigree-linked datasets (Wilson & Poissant, 2016). In this study, we take advantage of a long-

term study of individual variation in morphological traits (wing length, tarsus length, bill depth 
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and bill length) conducted over multiple decades in a wild pedigreed population of great tits 

(Parus major) from Wytham Woods, Oxford, UK (Savill et al., 2010), to quantify the 

microevolutionary impacts of ISC in a wild population. Despite being a model organism for 

evolutionary ecology research, surprisingly little is currently known about the genetic basis of 

homologous male and female traits and ISC in this species. This could be due to the fact that 

morphological traits routinely measured in field studies such as wing and tarsus length are not 

particularly sexually dimorphic in great tits relative to other bird species (Gosler, 1990; Székely 

et al., 2007). However, it should be stressed that sexual dimorphism is a relatively poor 

predictor of contemporary sex-specific selection (Cox & Calsbeek, 2009) and quantitative 

genetic parameters (Poissant et al., 2010), and hence ISC. In fact, while studies in other great tit 

populations found little evidence for sex-specific selection on morphology (e.g. Björklund & 

Linden, 1993), in Wytham Woods, differential use of space and resources by males and females 

(Gosler, 1987a,b), evidence for sex-specific selection on size (Blakey & Perrins, 1999), and 

large cross-sex genetic correlations for morphological traits (Garant et al., 2004; Robinson et al., 

2013) all suggest that gender load from sex differences in selection on morphology could be 

substantial. In addition to providing novel insights into the causes and consequences of 

morphological variation in great tits, this study illustrates some means for generating quantities 

that will be valuable to quantitatively compare the impacts of ISC over various sets of traits in 

different populations and species.  

 

Materials and methods 

Study population 

Great tits are small passerine birds distributed throughout Europe and Asia (Gosler, 1993). 

Their abundance, wide distribution in Europe, and willingness to use nest boxes, have made 

them a model of choice in ecology and evolution research, and numerous populations 

throughout the species’ range are now the focus of long-term individual-based studies. The 
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Wytham Woods great tit population has been monitored since 1947. Details about the 

population and field methods are available in Perrins and Gosler (2010) and references therein. 

Since 1963, ~1020 nest boxes have been monitored yearly during the breeding season. Each 

year, all nestlings (10-15 days post-hatching) and ~80% of presumed parents were captured 

and fitted with a unique metal ring serving as an ID tag. Additional birds were also captured with 

nets within and around Wytham Woods as part of specific experiments and long-term 

monitoring. At each capture, birds were aged and sexed using plumage characteristics and 

measured for a variety of traits. We assumed that birds not first ringed as nestlings in a Wytham 

Woods nestbox were immigrants from elsewhere; while a small number of nests probably occur 

each year in natural cavities these are a small proportion compared to those in nest boxes.  

 

Morphological data 

We considered four sexually dimorphic morphological traits that have been consistently 

measured in adults since 1983: wing length, tarsus length, bill depth and bill length. We 

considered breeding adults born between 1982 and 2008. For simplicity and to ensure higher 

repeatability, we limited our analyses to measurements obtained by a single measurer (A. 

Gosler) who obtained all bill dimension measurements. We only used records of recruits (birds 

identified attempting reproduction in Wytham Woods) obtained during the nesting season (May 

and June) in a bird’s first year of life. Some individuals (< 0.1%) were measured multiple times 

and in such cases we used the average. Phenotypic records were available for 2575 individuals 

measured on average at 3.90 traits each (96.5% of individuals were measured for all traits).     

 

We quantified sexual dimorphism using the size dimorphism index (SDI) of Lovich and Gibbons 

(1992). It is obtained by subtracting one from the ratio of the larger sex to the smaller sex (i.e. 1 

- trait mean of larger sex / trait mean of smaller sex), which sets the neutral value at 0 (i.e. no 

sexual dimorphism). By convention, values are made positive when female values are the 



A
c

c
e

p
te

d
 A

r
ti

c
le

A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

largest and negative when male values are the largest (Lovich & Gibbons, 1992). 95% CI for 

SDI estimates were obtained by bootstrapping phenotypes 10000 times. We tested if 

multivariate sexual dimorphism was statistically significant using a MANOVA in R (R Core 

Team., 2015).  

 

Pedigree information 

A pedigree was constructed based on field information of social parentage from 1958 to 2010. 

This pedigree included birds ringed within Wytham Woods as well as surrounding woodlands. 

The pedigree contained 87956 individuals connected by 79400 maternal and paternal links 

(7187 dams and 7963 sires). Molecular parentage is not routinely conducted in the study 

population. Given the small number of individuals genotyped relative to the size of the social 

pedigree and an EPP rate of 12-13% (Firth et al., 2015; Patrick et al., 2012), efforts to combine 

social and genetic parentage would have affected less than 0.1% of pedigree links, with 

negligible impacts on quantitative genetic and selection analyses. For simplicity we therefore 

only used social parentage information. The full social pedigree was used to estimate lifetime 

reproductive success for selection analyses (details below). For estimating quantitative genetic 

parameters, we used a trimmed pedigree excluding uninformative individuals generated with the 

prunePed function in the R package MCMCglmm (Hadfield, 2010). This trimmed pedigree 

contained 4036 individuals with 1328 unique sires (mean number of offspring per sire ± 1 

standard deviation [SD] = 1.83 ± 1.14) and 1313 unique dams (mean number of offspring per 

dam ± 1 SD = 1.88 ± 1.25), and had a maximum depth of 26 generations.  
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Quantitative genetic analyses 

We partitioned phenotypic variance into additive genetic and other components using a single 

multivariate animal model and restricted maximum likelihood implemented in ASReml 3.0 

(Gilmour et al., 2009). The animal model is a form of mixed model incorporating pedigree 

information, where the phenotype of each individual is modeled as the sum of its additive 

genetic value and other random and fixed effects (Kruuk, 2004; Wilson et al., 2010). Fixed 

effects, fitted to control for environmental causes of phenotypic resemblance among relatives, 

included year of birth (fitted as a categorical variable), immigration status (locally raised or not), 

and information about the environment at each bird’s natal nest box (longitude, latitude, altitude 

and the numbers of oaks within 50 meters; for local birds only). Year of birth was included it as a 

fixed rather than a random variable to facilitate convergence. Longitude, latitude, altitude and 

number of oaks within 50 meters were fitted as 4th order polynomials to allow for non-linear 

relationships. Note that when fixed effects are included trait heritability estimates need to be 

interpreted as being ‘conditioned’ on these variables (Wilson, 2008). Mother ID and clutch ID 

were fitted as random variables in exploratory univariate models but they were generally 

attributed either little (< 5%) or none of the phenotypic variation. They were therefore not 

considered in the final multivariate model to facilitate convergence. Ultimately, phenotypic 

variation after having accounted for fixed effects was therefore partitioned into two components: 

additive genetic (Va) and residual (Vr). Inter-sex residual covariances were fixed to zero and 

genetic correlations were constrained to be between -1 and 1 using the !GZ and !GP arguments 

in ASReml (Gilmour et al., 2009), respectively. Our choice of starting values for the full 

multivariate REML was guided by the outputs of simpler models. 

 

Heritability (h2) was determined by dividing Va by Vp, where Vp = Va + Vr. To allow comparisons 

of additive genetic variation among traits and studies (Houle, 1992; Wilson, 2008), we also 

calculated sex-specific coefficients of variation as  
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CVa = ͳͲͲ	 ൈ	ξ 	                                    (2) 

 

 

and mean-standardized additive genetic variance as  

 

 

Ia = 
మ                                                     (3) 

 

 

Significance of individual additive genetic (co)variance components was tested using likelihood 

ratio tests. For hypotheses involving parameters on the boundary of parameter space, such as 

variances, the theoretical asymptotic distribution of the likelihood ratio is a mixture of Ȥ2 variates, 

where the mixing probabilities are 0.5, one with 0 degrees of freedom and the other with 1 

degree of freedom (Dominicus et al., 2006; Gilmour et al., 2009; Self & Liang, 1987). In these 

cases, p-values from Ȥ2 tests with 1 degree of freedom were divided by 2. Likelihood ratio tests 

were also used to test if individual genetic correlations (rG) were significantly smaller than one. 

We tested for significance of variance and covariance estimates using univariate and bivariate 

models, respectively. To test for multivariate sex × G interactions, we compared an 

unconstrained multivariate model with models where 1) G matrices were constrained to be 

equal between the sexes, 2) genetic variances were constrained to be equal between the 

sexes, 3) genetic covariances were constrained to be equal between the sexes, and 4) genetic 

correlations were constrained to be equal between the sexes. This was done using the != 

argument in ASReml (Gilmour et al., 2009). Because asymmetry of the B matrix can play an 

important role in the evolution of sexual dimorphism (Wyman et al., 2013), we also tested if B 

was asymmetric by comparing an unconstrained model with a model where the corresponding 
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elements from above and below the diagonals of B and BT were constrained to be equal. 

Statistical significance was determined using likelihood ratio tests.  

 

Selection analysis 

We estimated selection using three fitness metrics. These were the observed number of recruits 

produced by individuals over their lifetime (lifetime reproductive success, LRS), reproductive 

longevity (age at last reproduction, hereafter referred to as longevity), and mean annual 

reproductive success (MRS), calculated as LRS × longevity-1. A recruit was defined as an 

individual having attempted reproduction in Wytham Woods, and therefore did not include 

individuals that have only attempted reproduction elsewhere (which is sometimes documented 

from recapture at other study sites). We restricted selection analyses to individuals that had 

been measured for all traits simultaneously, and excluded individuals whose nest(s) had been 

manipulated for experimental purposes such as cross-fostering experiments. Selection 

coefficients were therefore estimated with fewer records (986 males and 1095 females) than 

quantitative genetic parameters. Mean observed LRS ± 1 SD was 1.23 ± 1.55 (1.23 ± 1.47 in 

males and 1.24 ± 1.61 in females). LRS was smaller than the mean number of offspring per 

parent expected under stable population size (i.e. 2) because a substantial proportion of 

breeding adults were immigrants, rather than because of a decline in population size. In fact 

population size has increased over the study period (Garant et al., 2004).  Mean longevity was 

1.65 ± 1.07 (1.62 ± 1.05 in males and 1.67 ± 1.08 in females), and mean MRS was 0.73 ± 0.87 

(0.76 ± 0.90 in males and 0.71 ± 0.84 in females). Variance in relative fitness was 1.57 for LRS 

(1.43 for males and 1.70 for females), 0.42 for longevity (0.43 for males and 0.42 for females), 

and 1.40 for MRS (1.38 for males and 1.41 for females).  
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We tested for the presence of multivariate directional selection using generalized linear models. 

For LRS, we used a log link function and a negative binomial error structure; for longevity we 

used a log link function with a poisson error structure; and for MRS, which is a rate, we used a 

log link function with poisson error while including longevity as weights. In these analyses, sex-

specific traits were pooled together after having been centered to sex-specific means of zero. 

Significance was tested by comparing models with a fitness component as the dependent 

variable and no explanatory variable (i.e. only an intercept) with models including all traits as 

linear explanatory variables. Significance was tested using likelihood ratio tests with 4 degrees 

of freedom. We then tested for sex × multivariate selection interactions by comparing models 

with sex and the four traits as linear explanatory variables and models also including all sex × 

trait interactions (Chenoweth & Blows, 2005).  

 

We estimated sex-specific selection coefficients using the R package GSG version 2.0 

(Morrissey & Sakrejda, 2013). Directional (S) and quadratic selection differentials were 

calculated using the moments.differentials function, with standard errors and p-values 

determined with 10000 bootstraps. Mean-standardized and variance-standardized directional 

selection differentials were obtained by dividing differentials by trait means and standard 

deviations, respectively. Quadratic differentials were standardized by dividing by the square of 

trait means and standard deviations, to obtain mean-standardized and variance-standardized 

measures, respectively. For this we used trait means and standard deviations obtained from the 

larger dataset used to estimate quantitative genetic parameters. 

 

We used generalized additive models (GAM) with negative binomial (for LRS) and poisson (for 

longevity and MRS) error structures fitted using the R package MGCV to identify the most 

appropriate fitness functions. Initially, we fitted a smooth term (cubic splines) for each trait and 

all linear interactions. However, when doing so, many smooth terms were penalized to the point 



A
c

c
e

p
te

d
 A

r
ti

c
le

A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

of being linear. In that case, meaningful point estimates for quadratic selection gradients could 

not be obtained (as all curvature of the expected fitness function arises from the curvature of the 

link function in such instances). Since reporting information about nonsignificant quadratic terms 

is generally desirable, for example in the context of meta-analyses, we decided to test if there 

actually was statistical support for fitting smooth terms as opposed to only including linear and 

quadratic terms. We did this by comparing models including linear and quadratic predictors with 

models additionally including smooth terms, with significance of non-linear effects above and 

beyond quadratic relationships being tested with likelihood ratio tests. Using that approach we 

found little evidence for non-linear effects above and beyond quadratic relationships, and 

therefore opted to obtain selection gradients using quadratic models.  

 

Directional (ȕ), quadratic and correlational (Ȗ) selection gradients were obtained using the 

gam.gradients function of GSG. Standard errors (SE) and p-values for selection gradients were 

determined with parametric bootstrapping (10000). We obtained mean-standardized and 

variance-standardized selection gradients (ȕu and ȕı) by multiplying directional gradients by trait 

means and standard deviations, and quadratic and correlational gradients by the square and 

cross-product of trait means and standard deviations, respectively (Hansen & Houle, 2008). For 

this we used trait means and standard deviations obtained from the larger dataset used to 

estimate quantitative genetic parameters. Note that while Sı is equivalent to obtaining ȕı from a 

model including a single trait, there is no such direct correspondence between unstandardized 

and mean-standardized selection differentials and gradients.  

 

As in Stearns et al. (2012), we compared the direction of multivariate selection between the 

sexes by calculating the angle between male and female vectors of directional selection 

gradients: 
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 Ʌ ൌ 	 cosିଵ ቀ ήȁȁ	ȁȁቁ                                                 (4) 

 

where a and b are the two vectors, ȁܽȁ ൌ 	ξܽ ή ܽ and ȁܾȁ ൌ 	ξܾ ή ܾ. 

 

An angle of 0° would indicate that multivariate selection is perfectly parallel between the sexes 

while an angle of 180° would indicate that selection is completely antagonistic. To determine if 

multivariate selection was significantly parallel or antagonistic (i.e. Ʌ different from the null 

expectation of 90°) we generated a 95% CI with 10000 sex-specific vectors of selection 

gradients obtained by parametric bootstrapping in GSG.   

 

Evolutionary responses 

The expected responses to selection for sex-specific traits were obtained using Lande’s (1980) 

multivariate equation (equation 1). In order to assess the impact of cross-sex genetic 

covariances on the evolution of sex-specific traits, we compared predictions from the model 

above with a model where all elements of the B matrix were set to zero. As detailed in 

Morrissey et al. (2012), 95% confidence intervals and standard errors were obtained using 

10000 sex-specific vectors of selection gradients generated by parametric bootstrapping in GSG 

and bootstrap-like replicate G matrices by drawing random samples from the sampling variance-

covariance matrix of REML estimate of G. 

 

Genetic constraints and gender load 

The impact of genetic covariances on a population’s rate of adaptation can be quantified by 

comparing the rate of adaptation obtained while considering a full G matrix with that obtained 

while setting all or a subset of genetic covariances to zero (Agrawal & Stinchcombe 2009).  
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We assessed the impact of cross-sex genetic covariances (i.e. the B matrix) on the population’s 

rate of adaptation using the R metric of Agrawal and Stinchcombe (2009) while ignoring 

nonlinear selection (as we are mainly interested in sex-specific directional evolution):  

 

ܴ  	ൌ ఉᇱ۵ఉ	ఉᇱ۵ሺ۰	స	బሻఉ	                                         (5) 

 

where is ߚ	is a vector of sex-specific selection gradients, ߚ’ is its transpose, ۵ is the 

additive genetic covariance matrix for sex-specific traits, and ۵ሺ۰	ୀ	ሻ is the G matrix where all 

elements of B and BT (i.e. cross-sex genetic covariances) are set to zero. A value of RB = 0 

would indicate that adaptive evolution of sexual dimorphism is completely precluded by B, a 

value of 1 would indicate that it is not affected by B, and values above 1 would indicate that B 

increases adaptive evolution of sexual dimorphism (Agrawal & Stinchcombe, 2009). However, it 

is important to note that these conclusions are relative to a scenario where traits are not 

genetically correlated between the sexes. In the absence of any difference in selection between 

the sexes (i.e. ߚ = ߚ) and complete overlap of genetic architectures (i.e. ۵ ൌ	۵ ൌ ۰), RB 

would take a value of two. We therefore quantified the percent decrease in the population’s rate 

of adaptation due to the presence of separate sexes, or gender load (GL), as  

 

 GL ൌ 	 ሺͳ െ	ோ		ଶ	  ) * 100.                                            (6) 
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Note that because we are not considering nonlinear selection, identical RB and GL values would 

be obtained when using Hansen and Houle (2008) multivariate evolvability metric instead of 

Agrawal and Stinchcombe (2009) rate of adaptation (Agrawal & Stinchcombe, 2009). 

 

Genetic variance for fitness implied by selection gradients and G 

Evolutionary constraint is any process that reduces the rate of adaptation (increase in mean 

fitness, or increase (decrease) in a positively (negatively) selected trait, relative to some 

(presumed) naïve reference rate).  Motivated by the fundamental theorem of selection (Fisher 

1930), and convincing arguments that constraints should be found in the genetic covariances 

among traits (Walsh and Blows 2009), the rate of adaptation as represented by some value of 

the genetic variance of relative fitness, is a particularly useful quantity for evaluating constraint.  

Any pattern of selection for genetically variable traits implies some genetic variance in relative 

fitness. For example, in a univariate scenario, the genetic variance in fitness implied by a 

selection gradient ߚ and an additive genetic variance Va is Va(w) = Va*	ߚଶ. Any quantity that 

reduces this value of Va(w), e.g., selection of a genetically correlated trait, can be seen as a 

constraint. In the context of studying sexual dimorphism, we can construct a somewhat more 

subtle measure of constraint due to B by calculating sex-specific Va(w) values due only to sex-

specific selection and genetic variation, and characterize the extent to which the intersexual 

genetic covariances in B may reduce these values of Va(w). 

 

In the absence of nonlinear selection, the rate of adaptation of Agrawal and Stinchcombe (2009) 

measures the amount of genetic variance for fitness accounted for by G and selection for a set 

of traits (ߚԢ۵ߚ, from formula 12 in Walsh & Blows, 2009). When treating the sexes seperately, 

population-wide genetic variance in fitness accounted for by sex-specific traits can be obtained 

by including a factor of ¼ (because we are combining variances; see equation 1 of Wolak et al., 

2015): 
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ܸሺఉᇲ۵ఉሻ 	ൌ 	 ଵସߚԢ۵ߚ                      (7) 

 

 

To obtain sex-specific variances, as well as their covariance, the ߚԢ and ߚ vectors in 

equation 7 can be replaced with matrices containing sex-specific selection gradients on different 

rows, which yields a 2 × 2 sex-specific covariance matrix: 

 

 

ܸሺఉᇲ۵ఉሻ ൌ ଵସ ߚ ͲͲ ࢌ൨ᇱ۵ߚ ߚ ͲͲ ൨ߚ ൌ 	ଵସ ቈ ܸሺఉᇲ۵ఉሻ	 ܱܥ ܸሺఉᇲ۵ఉǡ	ఉᇲ۵ఉሻܱܥ ܸሺఉᇲ۵ఉǡ	ఉᇲ۵ఉሻ ܸሺఉᇲ۵ఉሻ      (8) 

 

 

Population level and sex-specific heritabilities can then be obtained by dividing ܸሺఉᇲ۵ఉሻ, 
ܸሺఉᇲ۵ఉሻ and ܸሺఉᇲ۵ఉሻ by population-wide, male, and female phenotypic variance in fitness, 

respectively. Note that when the genetic variance for fitness itself is known, the proportion of the 

total genetic variation in fitness accounted for by ܸሺఉᇲ۵ఉሻ can also be measured (Walsh & 

Blows, 2009). However, this was not attempted here because the heritability of fitness in the 

study population is known to be very small (McCleery et al., 2004). Finally, the standardized 

cross-sex genetic correlation between sex-specific additive genetic variances in fitness 

accounted for by the set of traits can be obtained as:  

 

 

ݎ ൌ	 ைೌሺഁᇲ۵ഁǡ	ഁᇲ۵ഁሻට	ೌሺഁᇲ۵ഁሻכ	ೌሺഁᇲ۵ഁሻ	.                        (9) 
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Results 

Phenotypic variation 

Multivariate phenotypic sexual dimorphism was statistically significant (MANOVA, F4,2481 = 

1041.7, P < 0.001). On average, males had longer wings (SDI = -0.039 or 3.9% difference, 95% 

CI = -0.040, -0.037), longer tarsi (SDI = -0.033, 95% CI = -0.035, -0.031), and deeper (SDI = -

0.035, 95% CI = -0.037, -0.032) but shorter bills (SDI = 0.016, 95% CI = 0.014, 0.019) than 

females.    

 

Quantitative genetic parameters 

There was detectable additive genetic variance for all sex-specific traits (Table 1). The 

proportion of phenotypic variance explained by additive genetic effects after accounting for fixed 

effects (h2 ± SE) ranged from 0.53 ± 0.08 for male bill length to 0.78 ± 0.06 for female wing 

length. In both sexes coefficients of variation (CVa) and mean-standardized additive genetic 

variances (Ia) were lowest for wing and tarsus length and highest for bill length and width (Table 

1).  

 

Additive genetic covariances were generally positive, and significantly different from zero for 

approximately half of the trait pairs (Table 2). Genetic correlations (rG ± SE) within each sex 

were generally small, with the largest one being between tarsus length and bill depth in males 

(0.508 ± 0.082). Genetic correlations between the sexes were similarly low, with the exception 

of cross-sex genetic correlations between homologous traits, which were all large (> 0.8) and 

not significantly smaller than one.  

 

Male and female G matrices were significantly different from each other (Table 2, 2 × (LogL1-

LogL2) = 29.38, df = 10, p < 0.01). Genetic variances did not differ significantly between the 

sexes (2 × (LogL1-LogL2) = 7.62, df = 4, p = 0.11). Genetic covariances and correlations were 
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always smaller in males than in females (Table 2), and these differences were statistically 

significant (covariances: 2 × (LogL1-LogL2) = 26.16, df = 6, p < 0.001; correlations: 2 × (LogL1-

LogL2) = 27.94, df = 6, p < 0.001). The B matrix was not significantly asymmetric (2 × (LogL1-

LogL2) = 3.36, df = 6, p = 0.76). 

 

Selection coefficients 

We did not observe significant multivariate directional selection when including all traits from 

both sexes as explanatory variables in a generalized linear model for either LRS (χ2 = 4.20, p = 

0.38), longevity (χ2 = 5.71, df = 4, p = 0.22), or MRS (χ2 = 4.89, df = 4, p = 0.30). Similarly, we 

did not observe significant sex × multivariate selection interaction for LRS (χ2 = 7.09, df = 4, p = 

0.13) and MRS (χ2 = 2.00 , df = 4, p = 0.74). We did, however, observe a significant sex × 

multivariate selection interaction for longevity (χ2 = 14.04, df = 4, p < 0.01).  

 

Unstandardized, mean, and variance standardized directional selection differentials and 

gradients for LRS, longevity and MRS are presented in Table 3. Mean standardized directional 

selection gradients for LRS ranged from -3.103 ± 1.927 for female tarsus length to 3.551 ± 

1.314 for female bill depth. Only one selection gradient for LRS was statistically significant 

(female bill depth, ȕu = 3.551 ± 1.314, p < 0.01) and this appeared to result mostly from 

selection through longevity (ȕu = 2.661 ± 0.767, p < 0.001). While not statistically significant in 

males, selection on bill length through longevity was notably different between the sexes (male 

ȕu = 1.473 ± 0.867, p = 0.09, female ȕu = -1.493 ± 0.771, p = 0.05).  

 

The angle between sex-specific vectors of mean-standardized selection gradients for LRS was 

88.5° (95% CI = 31.5°-147.65°), meaning that multivariate selection in males and females was 

neither predominantly parallel nor antagonistic. For longevity and MRS, the angle between sex-
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specific vectors of mean-standardized selection gradients were 128.5° (59.5°, 156.4°) and 

50.68° (20.43°, 145.82°), respectively. Overall, selection through longevity was therefore (non-

significantly) predominantly antagonistic between the sexes, while selection through MRS was 

predominantly (non-significantly) parallel.  

 

With the exception of bill depth in males, all point estimates for quadratic selection differentials 

were negative. However, only those for female bill length were significant different from zero 

(Appendix S1). No clear tendency emerged for quadratic and correlational selection gradients, 

with statistical support being generally low (Appendix S2). 

 

Selection responses  

Predicted mean-standardized sex-specific responses when including and excluding the B matrix 

are presented in Fig. 1. Point estimates for predictions based on LRS were largest for bill depth 

and smallest for wing length. Selection through survival was expected to contribute most to the 

evolution of bill depth, while selection through annual reproductive success was expected to 

contribute most to the evolution of tarsus length. Patterns appeared to differ between the sexes 

when setting all elements of B to zero. Most notably, bills were predicted to become deeper in 

females but not in males. However, in general, predicted responses in males and females 

became nearly identical once including B, suggesting little opportunity for the evolution of sexual 

dimorphism given current multivariate selection and additive genetic (co)variances. Note, 

however, that 95% confidence intervals generally overlapped between traits, fitness 

components, and sexes. 

 

Genetic variance for fitness  

Together, sex-specific selection through LRS and G for the morphological traits considered here 

accounted for genetic variance explaining less than 1% of the phenotypic variation in relative 
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fitness ( ܸሺఉᇲ۵ఉሻ = 0.0025, 95% CI = 0.0020, 0.0137; h2 = 0.0016, 95% CI = 0.0013, 0.0086, 

Table 4). About 2/3 of this genetic variance was related to selection through MRS ( ܸሺఉᇲ۵ఉሻ	= 

0.0016, 95% CI = 0.0004, 0.0084), while the reminder was related selection through longevity 

( ܸሺఉᇲ۵ఉሻ = 0.0008, 95% CI = 0.0003, 0.0036). Sex-specific estimates are presented in Table 4.  

 

The correlation between male and female genetic variance for relative fitness accounted for by 

the set of morphological traits was -0.003 (95% CI = -0.83, 0.83). Longevity and MRS, when 

considered in isolation, accounted for genetic variances in relative fitness that were negatively -

0.43 (95% CI = -0.86, 0.58) and positively 0.59 (95% CI = -0.78, 0.91) correlated between the 

sexes, respectively. The ratio of ܸሺఉᇲ۵ఉሻ	obtained while including B to ܸሺఉᇲ۵ఉሻ obtained while 

excluding B was 1 (RB = 1.00, 95% CI = 0.27 – 1.73). Cross-sex genetic covariance therefore 

did not impact ܸሺఉᇲ۵ఉሻ		relative to a situation where traits were not genetically correlated 

between the sexes. On the other hand, the presence of separate sexes, relative to a situation 

where there would be no differences in selection and genetic architectures between the sexes, 

resulted in a gender load of 50% (95% CI = 13, 86). Gender load estimates for longevity and 

MRS were 68 % (95% CI = 25, 90) and 26% (95% CI = 8, 84), respectively.  

 

Discussion 

Significant additive genetic variance was detected for all traits, indicating that responses to 

selection and genetic constraints were possible. Corresponding heritability estimates were 

large, as is usually the case for morphological traits in birds (Merilä & Sheldon, 2001) including 

previous estimates in Wytham Woods great tits obtained using a variety of methods (Gosler, 

1987a; Robinson et al., 2013; Santure et al., 2015). Coefficients of variation (CVa) were also 

typical of morphological traits in other species (Houle, 1992).  
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G matrices differed between the sexes, with covariances (and genetic correlations) being 

consistently smaller in males than in females. Sex differences in G are relatively common and 

have, for example, been documented in a number of vertebrates (Arnold & Phillips, 1999; 

Jensen et al., 2003), invertebrates (Lewis et al., 2011; Rolff et al., 2005), and plants (Ashman, 

2003; Campbell et al., 2011; McDaniel, 2005; Steven et al., 2007). Such differences are 

important because they indicate that the sexes could respond differently to direct and indirect 

selection. The larger genetic covariances in females suggest that genetic integration of 

morphological traits may be greater in that sex. The reasons why that would be are unclear but 

one possibility could be the presence of sex differences in correlational selection (McGlothlin et 

al., 2005). Extra-pair paternities (EPP) may also have contributed to these patterns, a point we 

return to below. 

 

The evolution of sexual dimorphism depends on the structure of the B matrix, which includes 

genetic covariance between homologous as well as non-homologous male and female traits 

(Lande, 1980; Wyman et al., 2013). Genetic correlations between homologous male and female 

traits were all very large, which was similar to previous findings for wing length and fledgling 

mass in the same population (Garant et al., 2004; Robinson et al., 2013). Large genetic 

correlations for traits exhibiting relatively low level of sexual dimorphism was consistent with the 

tendency for cross-sex genetic correlations and sexual dimorphism to be negatively correlated 

(Poissant et al., 2010). Combined with an absence of significant differences in additive genetic 

variance between the sexes, our results suggests that the short-term evolution of sexual 

dimorphism in Wytham Woods great tits may be limited for many aspects of morphology 

(Lande, 1980). In contrast, genetic correlations between non-homologous traits were 

comparatively small and at first sight appeared to play a smaller role in constraining the 

evolution of sexual dimorphism; although assessing the constraining effect of individual genetic 

correlations can be misleading (Walsh & Blows, 2009). Finally, for the traits considered here, 
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asymmetry of the B matrix (i.e. of its off-diagonal elements, Wyman et al., 2013) did not appear 

to play a role in facilitating the evolution of sexual dimorphism.  

 

The presence of a significant sex × multivariate selection interaction for longevity indicated that 

aspects of morphology, or correlated traits, were under sex-specific directional survival 

selection. However, this pattern was attenuated and no longer statistically significant once 

combined with variation in MRS (i.e. when considering LRS). This illustrates how considering 

various fitness components can increase knowledge about the biology of selection and 

constraints, but also how individual fitness components, when treated in isolation, may lead to 

erroneous evolutionary predictions. In the context of ISC, it also stresses out the need to 

interpret and compare studies in the context of the fitness component used. For example, Tarka 

et al. (2014) also studied ISC over morphological traits in a wild bird population using LRS but 

they defined LRS as the total number of fledglings produced over an individual’s lifetime 

whereas we defined LRS as the total number of recruits produced. While results from the two 

studies are similar, they are therefore not entirely equivalent because the LRS metric used by 

Tarka et al. (2014) did not include selection through survival to adulthood and sexual selection 

(i.e. finding a mate) whereas the one used in herein did.  

 

We detected significant directional selection for female bill depth when considering LRS, and 

this pattern appeared to result primarily from viability selection. Bill morphology is a classic 

example of a selected trait in birds, as is it closely tied to variation in the availability of different 

food types. The strength of selection for female bill depth was relatively strong, as a ȕu of 3.55 is 

larger than the 75% percentile for ȕu in natural populations (ȕu  = 1.34) compiled by Hereford et 

al. (2004). The selection gradient for female bill depth was also especially large considering that 

our sample size was greater than most published studies to date and that large sample sizes 

tend to yield smaller, more accurate, estimates (Hereford et al., 2004). In contrast, bill depth did 
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not appear to be under directional selection in males. Bill length, another important aspect of bill 

morphology, appeared to be under sexually antagonistic viability (longevity) selection, but this 

pattern was not mirrored by selection through MRS. As a consequence, evidence for sexually 

antagonistic selection on bill length was attenuated when considering selection through LRS. 

Sex differences in selection on bill morphology, believed to arise from sex differences in food 

utilization, have been documented in other systems. For example, in a wild population of serin 

(Serinus serinus), survival selection on bill morphology was directional in females but stabilizing 

in males (Björklund & Senar, 2001). Male and female great tits are known to exploit different 

dietary niches in Wytham Woods (Gosler, 1987a,b) and this could explain patterns documented 

herein. Additional research on the drivers of sex-specific selection on bill morphology and 

associated genetic constraints would be valuable; for example on the impact of spatial and 

temporal heterogeneity in food availability and niche partitioning.  

 

Extra-pair paternity (EPP) has been estimated at 12-13% in the study population (Firth et al., 

2015; Patrick et al., 2012) and these could have affected selection coefficients and quantitative 

genetic parameters estimates. This situation is similar to other studies where molecular 

parentage analyses are not routinely conducted, such as in humans (e.g. Bolund et al., 2013; 

Stearns et al., 2012). EPP introduce errors in male LRS estimates, which may unduly reduce 

covariance between LRS and trait variation in that sex. EPP is also expected to limit phenotypic 

resemblance between offspring and their (social) father as well as other relatives (e.g. paternal 

grand-parents), which could reduce additive genetic variance and heritability of both male and 

female traits estimated from an animal model but more so for male traits (Brommer et al., 2005; 

Brommer et al., 2007; Charmantier & Réale, 2005; Jensen et al., 2003; Morrissey et al., 2007). 

Reduced phenotypic resemblance between offspring and paternal relatives could also reduce 

genetic covariance within and between the sexes. We would expect such a bias to be most 

pronounced for male-specific genetic covariances, followed by cross-sex and female-specific 
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covariances. Larger covariances in females compared to males were consistent with this 

predicted pattern. However, it is worth noting that sex differences in genetic correlations were 

substantial, and that Morrissey et al. (2007) found that, for the most part, genetic correlations 

are usually unbiased by pedigree errors because covariances and variances are usually 

underestimated in similar proportions. The large differences between male and female genetic 

correlations therefore suggest that sex differences in quantitative genetic parameters were 

unlikely due to EPP alone. Nonetheless, the potential for EPP to bias estimates means that any 

downstream sex differences in evolutionary predictions should be interpreted with caution.  

 

In this study we have quantified the evolutionary consequences of ISC over a set of 

morphological traits in a population of great tits by estimating the impacts of sex-specific 

selection and genetic variance on the population’s rate of adaptation. At face value, a gender 

load of 50% for a set of traits exhibiting little sexual dimorphism appeared substantial. In 

comparison, in a similar study in Red Deer (Cervus elaphus) by Walling et al. (2014), gender 

load for a set of life history traits was estimated at 27.5% (calculated from their multivariate 

evolvability ratio of 1.45). However, additional studies where a similar approach is applied will 

be needed to reach conclusions on the relative importance of ISC quantified here and by 

Walling et al. (2014). Estimates were also arguably imprecise, but since the current study and 

the one of Walling et al. (2014) were based on two of the world’s largest datasets for wild 

pedigreed populations, similarly or even less precise results are to be expected as researchers 

work toward quantifying the impacts of ISC in other systems. This is perhaps not surprising 

given that the estimation of genetic covariances is known to require large sample sizes (Lynch, 

1999) and that selection analyses in wild populations are often underpowered (Hersch & 

Phillips, 2004). In that context, the joint publication of B matrices and sex-specific selection 

gradients should be encouraged, even in the absence of significant results, as compiling results 

from a large number of studies will be necessary to contextualize results and gain a broader 
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understanding of the importance of ISC in constraining contemporary evolution in natural 

populations (Cox & Calsbeek, 2009; Poissant et al., 2010; Wyman et al., 2013).  

 

 

Table 1. Number of individuals, raw trait means (in millimetres), sexual dimorphism index (SDI) 

and univariate quantitative genetic parameters for sex-specific morphological traits in a wild 

population of great tits. Phenotypic variances after having accounted for fixed effects (Vp) and 

additive genetic variances (Va) were estimated using a multivariate animal model. Heritability (h2 

= Va / Vp), coefficient of variation (CVa) and mean-standardized additive genetic variance (Ia) are 

also presented. Standard errors are presented in parentheses. Statistical significance of Va was 

tested using likelihood ratio tests.  

trait n mean (sd)  SDI Vp Va h
2
 CVa Ia * 10000 

males    

wing length 1207 75.86 (1.32) -0.039 1.663 (0.072) 1.255 (0.132)*** 0.75 (0.06) 1.48 (0.08) 2.18 (0.23) 

tarsus length 1171 23.71 (0.52) -0.033 0.259 (0.012) 0.164 (0.022)*** 0.63 (0.07) 1.71 (0.11) 2.91 (0.38) 

bill depth 1167 4.59 (0.14) -0.035 0.017 (0.001) 0.010 (0.001)*** 0.57 (0.07) 2.15 (0.16) 4.63 (0.69) 

bill length 1167 13.46 (0.41) 0.016 0.156 (0.007) 0.082 (0.013)*** 0.53 (0.08) 2.13 (0.17) 4.54 (0.74) 

females   

wing length 1367 73.05 (1.30) - 1.603 (0.066) 1.247 (0.121)*** 0.78 (0.06) 1.53 (0.07) 2.34 (0.23) 

tarsus length 1321 22.95 (0.53) - 0.264 (0.011) 0.204 (0.022)*** 0.77 (0.06) 1.97 (0.11) 3.87 (0.41) 

bill depth 1322 4.44 (0.14) - 0.018 (0.001) 0.011 (0.001)*** 0.64 (0.07) 2.40 (0.16) 5.78 (0.75) 

bill length 1322 13.68 (0.47) - 0.222 (0.009) 0.136 (0.018)*** 0.61 (0.07) 2.69 (0.18) 7.25 (0.98) 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 2. Additive genetic (co)variances and correlations for sex-specific morphological traits in wild great tit population. Genetic 

variances are on the diagonal (shaded), genetic covariances are below the diagonal, and genetic correlations are above the 

diagonal. All traits were measured in millimeters (mm). Statistical significance of (co)variance components was determined using 

likelihood ratio tests. Standard errors generated by ASReml are presented in parentheses.  

sex   males       females       

  trait wing length tarsus length bill depth bill length wing length tarsus length bill depth bill length 

males wing length 1.255 (0.132)*** 0.124 (0.082) 0.074 (0.088) 0.117 (0.092) 0.925 (0.071)
†
 0.180 (0.082) 0.237 (0.088) 0.133 (0.089) 

tarsus length 0.056 (0.039) 0.164 (0.022)*** -0.027 (0.101) 0.163 (0.102) 0.213 (0.083) 0.923 (0.082)
†
 0.039 (0.096) 0.293 (0.098) 

bill depth 0.008 (0.010) -0.001 (0.004) 0.010 (0.001)*** 0.163 (0.107) 0.203 (0.090) 0.152 (0.096) 0.961 (0.101)
†
 0.429 (0.103) 

bill length 0.037 (0.030) 0.019 (0.012) 0.005 (0.003) 0.082 (0.013)*** 0.166 (0.092) 0.340 (0.098) 0.325 (0.103) 0.837 (0.100)
†
 

females wing length 1.157 (0.097)*** 0.096 (0.038) 0.022 (0.010)* 0.053 (0.030) 1.247 (0.121)*** 0.314 (0.064) 0.359 (0.078) 0.156 (0.081) 

tarsus length 0.091 (0.042) 0.169 (0.016)*** 0.007 (0.004) 0.044 (0.013)*** 0.158 (0.039)*** 0.204 (0.022)*** 0.243 (0.080) 0.454 (0.082) 

bill depth 0.028 (0.011)* 0.002 (0.004) 0.010 (0.001)*** 0.010 (0.003)** 0.043 (0.010)*** 0.012 (0.004)* 0.011 (0.001)*** 0.508 (0.082) 

  bill length 0.055 (0.037) 0.044 (0.014)** 0.016 (0.004)*** 0.088 (0.011)*** 0.064 (0.034) 0.075 (0.014)*** 0.020 (0.004)*** 0.136 (0.018)*** 

* p < 0.05, ** p < 0.01, *** p < 0.001.  

† identifies genetic correlations that were not significantly smaller than 1. 
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Table 3. Sex-specific directional selection coefficients for morphological traits in a wild population of great tits. Mean and variance 

standardized selection differentials (Su and Sı) were obtained by dividing unstandardized differentials (S) by trait means and 

standard deviations, respectively. Mean and variance standardized selection gradients (ȕu and ȕı) were obtained by multiplying 

unstandardized selection gradients (ȕ) by trait means and standard deviations, respectively. Trait means and standard deviations 

were those from the larger dataset used to estimate quantitative genetic parameters presented in Table 1. Note that while Sı is 

equivalent to ȕı obtained from a model including a single trait, there is no such correspondence for unstandardized and mean-

standardized selection differentials and gradients. Lifetime reproductive success (LRS), longevity and mean annual reproductive 

success (MRS) were used as the fitness metrics. Analyses were based on phenotypic values obtained during each bird’s first nesting 

season (May-June). All traits were in millimeters (mm). Standard errors (SE) and p-values were obtained using 10000 parametric 

bootstraps. Quadratic and correlational selection coefficients are presented in Appendix S1.  

Trait 

Fitness 

metric S (× 100) Su (× 100) Sı (× 100) p ȕ ȕu ȕı p 

males 

Wing length LRS -0.561 (5.134) -0.007 (0.068) -0.424 (3.882) 0.89 -0.001 (0.034) -0.051 (2.545) -0.001 (0.044) 0.98 

Tarsus length -1.020 (1.819) -0.043 (0.077) -1.962 (3.502) 0.58 -0.044 (0.082) -1.048 (1.943) -0.023 (0.043) 0.58 

Bill depth -0.169 (0.561) -0.037 (0.122) -1.230 (4.088) 0.76 -0.127 (0.312) -0.581 (1.433) -0.017 (0.043) 0.67 

Bill length 1.766 (1.578) 0.131 (0.117) 4.325 (3.865) 0.27 0.121 (0.099) 1.628 (1.335) 0.049 (0.041) 0.23 

Wing length longevity -2.645 (2.752) -0.035 (0.036) -2.000 (2.081) 0.32 -0.016 (0.020) -1.230 (1.534) -0.021 (0.027) 0.43 

Tarsus length -0.048 (0.960) -0.002 (0.040) -0.093 (1.849) 0.95 -0.001 (0.050) -0.014 (1.193) -0.000 (0.026) 1.00 
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Bill depth -0.040 (0.307) -0.009 (0.067) -0.291 (2.240) 0.91 -0.042 (0.197) -0.194 (0.907) -0.006 (0.027) 0.82 

Bill length 1.619 (0.745) 0.120 (0.055) 3.966 (1.824) < 0.05  0.110 (0.064) 1.473 (0.867) 0.045 (0.026) 0.09 

Wing length MRS  -3.114 (4.925) -0.041 (0.065) -2.355 (3.724) 0.53 0.017 (0.030) 1.296 (2.285) 0.023 (0.040) 0.56 

Tarsus length -1.603 (1.965) -0.068 (0.083) -3.087 (3.782) 0.40 -0.059 (0.076) -1.406 (1.792) -0.031 (0.039) 0.44 

Bill depth -0.453 (0.559) -0.099 (0.122) -3.302 (4.074) 0.42 -0.074 (0.285) -0.338 (1.309) -0.010 (0.039) 0.80 

Bill length -0.609 (1.525) -0.045 (0.113) -1.490 (3.736) 0.70 0.002 (0.094) 0.022 (1.263) 0.001 (0.038) 1.00 

females 

Wing length LRS 2.474 (5.246) 0.034 (0.072) 1.903 (4.036) 0.63 0.012 (0.032) 0.853 (2.355) 0.015 (0.042) 0.71 

Tarsus length -1.517 (2.113) -0.066 (0.092) -2.877 (4.006) 0.48 -0.135 (0.084) -3.103 (1.927) -0.071 (0.044) 0.11 

Bill depth 1.361 (0.518) 0.307 (0.117) 9.723 (3.697) < 0.01 0.800 (0.296) 3.551 (1.314) 0.112 (0.041) < 0.01 

Bill length -1.199 (1.886) -0.088 (0.138) -2.529 (3.977) 0.53 -0.040 (0.092) -0.541 (1.261) -0.019 (0.044) 0.67 

Wing length longevity 4.032 (2.490) 0.055 (0.034) 3.102 (1.916) 0.10 0.012 (0.019) 0.869 (1.375) 0.016 (0.024) 0.52 

Tarsus length 1.398 (0.992) 0.061 (0.043) 2.651 (1.880) 0.15 0.014 (0.050) 0.331 (1.143) 0.008 (0.026) 0.75 

Bill depth 1.017 (0.267) 0.229 (0.060) 7.262 (1.908) < 0.001 0.588 (0.173) 2.611 (0.767) 0.082 (0.024) < 0.001 

Bill length -1.642 (0.847) -0.120 (0.062) -3.462 (1.786) 0.05 -0.109 (0.056) -1.493 (0.771) -0.052 (0.027) 0.05 

Wing length MRS  -2.224 (4.963) -0.030 (0.068) -1.710 (3.818) 0.67 0.001 (0.028) 0.079 (2.075) 0.001 (0.037) 0.97 

Tarsus length -3.526 (1.915) -0.154 (0.083) -6.685 (3.632) 0.06 -0.136 (0.075) -3.131 (1.717) -0.072 (0.039) 0.07 

Bill depth 0.053 (0.502) 0.012 (0.113) 0.379 (3.588) 0.92 0.245 (0.263) 1.085 (1.166) 0.034 (0.037) 0.34 

Bill length   -1.150 (1.614) -0.084 (0.118) -2.425 (3.404) 0.47 0.046 (0.081) 0.625 (1.111) 0.022 (0.039) 0.57 
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Table 4. Sex-specific and population-wide genetic variance in relative fitness accounted for by a set of morphological traits in a wild 

population of great tits ሺ ܸሺఉᇲ۵ఉሻሻ, as well as their associated heritability (h2), cross-sex genetic covariance (ܱܥ ܸሺఉᇲ۵ఉǡ	ఉᇲ۵ఉሻ), 
and correlation (rmf). Mean-standardized genetic variance Ia and coefficient of variation CVa are also presented. Fitness metrics 

considered were lifetime reproductive success (LRS), longevity and mean annual reproductive success (MRS). Estimates were 

obtained using sex-specific selection gradients while including (B ≠ 0) or excluding (B = 0) cross-sex genetic covariances. 95% CI 

are presented in parenthesis.  

 

dataset ܸሺఉᇲ۵ఉሻ ܱܥ ܸሺఉᇲ۵ఉǡ ఉᇲ۵ఉሻ  hݎ
2
 Ia CVa 

LRS  

Male 0.0013 (0.0007, 0.0148) - - 0.0009 (0.0005, 0.0104) 0.0011 (0.0006, 0.0120) 3.28 (2.37, 10.97)

Female 0.0086 (0.0030, 0.0283) - - 0.0051 (0.0018, 0.0166) 0.0070 (0.0024, 0.0229) 8.36 (4.91, 15.12) 

Population (B т 0) 0.0025 (0.0008, 0.0110) -0.00001 (-0.00750, 0.00770) -0.003 (-0.827, 0.834) 0.0016 (0.0005, 0.0070) 0.0020 (0.0006, 0.0089) 4.49 (2.54, 9.43)

Population (B = 0) 0.0025 (0.0016, 0.0089) - - 0.0016 (0.0010, 0.0056) 0.0020 (0.0013, 0.0072) 4.49 (3.57, 8.47)

 

Longevity 

Male 0.0012 (0.0004, 0.0072) - - 0.0027 (0.0009, 0.0169) 0.0007 (0.0002, 0.0044) 2.69 (1.57, 6.67)

Female 0.0037 (0.0014, 0.0108) - - 0.0088 (0.0035, 0.0261) 0.0022 (0.0009, 0.0065) 4.68 (2.93, 8.05) 

Population (B т 0) 0.0008 (0.0003, 0.0036) -0.00089 (-0.00389, 0.00190) -0.430 (-0.859, 0.584) 0.0018 (0.0007, 0.0087) 0.0005 (0.0002, 0.0022) 2.15 (1.32, 4.71)

Population (B = 0) 0.0012 (0.0008, 0.0037) - - 0.0029 (0.0018, 0.0087) 0.0007 (0.0005, 0.0022) 2.71 (2.16, 4.71)

 

MRS 
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Male 0.0008 (0.0005, 0.0126) - - 0.0006 (0.0003, 0.0091) 0.0011 (0.0006, 0.0165) 3.33 (2.47, 12.85) 

Female 0.0035 (0.0010, 0.0171) - - 0.0025 (0.0007, 0.0121) 0.0049 (0.0014, 0.0241) 7.00 (3.68, 15.52)

Population (B т 0) 0.0016 (0.0004, 0.0084) 0.00102 (-0.00376, 0.00654) 0.594 (-0.780, 0.907) 0.0011 (0.0003, 0.0060) 0.0022 (0.0006, 0.0115) 4.65 (2.49, 10.71)

Population (B = 0) 0.0011 (0.0007, 0.0059) - - 0.0008 (0.0005, 0.0042) 0.0015 (0.0010, 0.0080) 3.83 (3.20, 8.96) 
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Figure legends 

Figure 1. Predicted mean-standardized sex-specific responses (ǻzu) for morphometric traits in a 

wild population of great tits. Predictions were obtained while excluding and including cross-sex 

genetic covariances (B = 0 and B ≠ 0, respectively). Male-specific responses are in black while 

female responses are in white. Circles depict responses expected from selection through LRS, 

while squares and triangles are for selection through longevity and mean annual reproductive 

success MRS), respectively. Error bars show 95% confidence intervals. 
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