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Using surface sensitivity from mesh adjoint solution

for transonic wing drag reduction

Benjamin L. Hinchliffe∗ and Ning Qin†

Department of Mechanical Engineering, University of Sheffield, Sheffield, S1 3JD, UK

Shock control bumps are a promising device for improving the aerodynamic efficiency

of transonic aircraft. From the literature, the peak location and bump height are the most

sensitive parameters, therefore the deployment position and size of the shock control bump

are key factors. When placing a flow control device it is highly dependent on the designers’

experience and their view of the area where the device will be most effective. In this paper,

the mesh adjoint approach is employed to identify the regions where the drag coefficient

is sensitive to a change of the wing surface. An array of shock control bumps are then

deployed in the areas of sensitivity and optimized using a gradient based approach. In

addition to the sensitivity in the shock regions a non-shock region is identified using the

sensitivity map on the wing. This region is not identified in other plots such as pressure or

skin friction and could be overlooked by a designer without the sensitivity map. The results

show that the mesh adjoint approach successfully identifies the drag sensitive areas on the

upper wing and assists in the deployment of the bump arrays quickly, and the class/shape

function transformation (CST) bump provides a highly flexible design space, with a large

number of design variables, to achieve an optimal solution.

Nomenclature

λflow Vector of flow adjoint variables

λmesh Vector of flow adjoint variables

ǫ Perturbation step

η Non-dimensional spacewise coordinate

D Design variables
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K Mesh deformation matrix

T Vector of mesh deformation residuals

W Conservative state vector

X Volume mesh

L Lagrangian operator

ψ Non-dimensional chordwise coordinate

ξ Non-dimensional coordinate in direction normal to chordwise

Bi,j Coefficients of Bernstein Polynomials

C(ψ) Class function

Cn Continuity to the nth order

Cd Drag coefficient

Cl Lift coefficient

I Objective function

Kr,n Binomial coefficient

S(ψ) Shape function

CST Class Shape function Transformation

I. Introduction

Modern civil transport aircraft normally fly in a high subsonic regime. At this flow condition, a local shock

wave can form on the surface of the aircraft wing. Due to the entropy difference across the shock, wave

drag is produced. Wave drag can dramatically affect the aircraft performance. Furthermore, the boundary

layer suffers from increasingly strong adverse pressure gradients as the shock wave strength grows and can

eventually cause separation. As a result, the lift-to-drag ratio is suddenly reduced, which limits the aircraft

range.

The reduction of wave drag is a key technique to improve the aircraft performance in terms of fuel economy.

Flow control techniques can be broken down into two subgroups: active and passive. The shock control

bump belongs in the passive group and has shown the capability to reduce shock strength and wave drag.

The shock control bump was proposed by Fulker et al1 and Ashill et al.2 The basic idea is to employ the

concave part of the bump upstream before the primitive shock to induce a series of isentropic compression

waves, which significantly weakens the shock strength and reduces wave drag without a large viscous drag

penalty.

The design and optimization of a 2D shock bump has been widely performed by academic researchers.3–6

The literature has asserted that the shock control bump will effectively provide a significant shock wave drag
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reduction for 2D airfoils when wave drag is present. Wong7 presented a 3D bump which is able to reduce

wave drag and proved more robust than the optimized 2D case. More recently, Qin et al8 has successfully

extended the shock control bump to a 3D un-swept NLF wing. The results show that the three-dimensional

bump reduces wave drag more than the 2D case. They have also applied the control bumps for a three-

dimensional blended-wing-body.7 In their work, the capability and feasibility of a shock control bump for

shock wave drag reduction in a three-dimensional practical case has been proven. In recent years, the shock

control bump technique is of more increasing interest to industry since it is able to be applied as a retrofit

device and has the potential to provide a significant drag reduction with slight surface distortion.

In previous research, the deployment position of a shock control bump is decided based on what is viewed as

the shock location. This can lead the designer to use a poor deployment position or an important area may be

missed due to the designers’ lack of experience. This could cause a detrimental effect on bump performance

which will be less than the expectation or the optimization may get stuck in a local extremum without

further reduction of wave drag. In the worst case, the bump can cause other issues, such as separation,

which will degenerate the wing performance. In addition to this there may also be regions which have an

effect on the drag with no descernable traces to indicate the area from the flow solution. It is desirable to

identify the sensitivity to changes in the geometry surface to drag. The shock control bump is then deployed

in the most sensitive areas. The adjoint approach for calculating gradients has been widely employed in

aerodynamic optimization.7–12 Qin et al8 and Wong7 have also employed the adjoint method for their shock

control bump optimization research. In this paper, an adjoint approach with the mesh adjoint, which is

proposed by Nielsen and Park,13 which introduces the mesh deformation residual, is applied to identify the

sensitive surface areas.

Qin et al8 proposed a three-dimensional bump using piecewise cubic polynomials, which is able to provide a

smooth geometry and key intuitive geometric parameters including the bump height, length, peak location,

bump location (relative to leading edge) and spanwise width. This cubic method only guarantees first order

geometric continuity (C1) at the interface between bump and wing. Industrial practice requires second order

geometric continuity (C2) of the surface. A parameterization method for a bump with C2 continuity is

necessary. In recent years, the class/shape function transformation (CST) parameterization method, which

was proposed by Kulfan,14 has been increasingly implemented in aerodynamic shape parameterisation. In

this paper, the CST method is extended to parameterise the shock control bump to provide high flexibility

with a C2 continuity requirement.
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II. Adjoint Approach

II.A. Discrete Adjoint Approach

Adjoint methods are derived from control theory, this was first proposed by Lions10 and continued by

Pironneau11 in Stokes’ flow. Jameson12 successfully developed this methodology for use with the Euler flow

equation. Consider the objective as a function of flow variable W, grid X and design variables D:

I = I(W(D),X(D),D) (1)

For a steady state flow, the vector of flow residuals (R(W,X,D)) is zero. One method to derive adjoint

methods is to multiply the flow residual vector by a Lagrangian multiplier λ, and add it to the objective

function, Eq (1).

L = I(W,X,D) + λ · R(W,X,D) (2)

Taking the derivative of equation (2) with respect to the design variables D gives:

dL

dD
=

(

∂I

∂W

)

dW

dD
+

(

∂I

∂X

)

dX

dD
+

∂I

∂D
+ λ

T

(

∂R

∂W

dW

dD
+
∂R

∂X

dX

dD
+
∂R

∂D

)

(3)

Equation (3) can be re-arranged as:

dL

dD
=

(

∂I

∂D
+ λ

T ∂R

∂D

)

+

(

∂I

∂W
+ λ

T ∂R

∂W

)

dW

dD
+

(

∂I

∂X
+ λ

T ∂R

∂X

)

dX

dD
(4)

In equation (4) the calculation of dW
dD

is computationally prohibitive. Since the choice of λ is arbitrary,

equation (4) can be simplified by choosing λ to satisfy:

(

∂R

∂W

)T

λ = −

(

∂I

∂W

)T

(5)

equation (5) is known as the adjoint equation. ∂R

∂W
represents the exact Jacobian of the flow field. With this

choice of λ the expensive term dW
dD

no longer needs to be calculated.

dL

dD
=

dI

dD
=

(

∂I

∂D
+ λ

T ∂R

∂D

)

+

(

∂I

∂X
+ λ

T ∂R

∂X

)

dX

dD
, ∀λ,D (6)
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equation (6) can be further simplified when the design variables describe purely geometric changes such that

there is no explicit dependence of I and R on D. (i.e. ∂I
∂D

= 0 and ∂R

∂D
= 0).

dL

dD
=

dI

dD
=

(

∂I

∂X
+ λ

T ∂R

∂X

)

dX

dD
, ∀λ,D (7)

This only requires to solve the adjoint equation once to obtain the sensitivity derivatives for each objective

function. The calculation of the sensitivity derivatives of the objective function is decoupled from the design

variables. The grid sensitivities dX
dD

could be calculated analytically if it is possible or through antoher method

such as finite difference. For a complex grid, especially unstructured grid, the analytical grid sensitivity is

difficult to obtain. Therefore, it could be calculated using finite differences, which are:

(

∂I

∂X

)

dX

dDk

≈
I(W,X(Dk + ǫ), Dk) − I(W,X(Dk), Dk)

ǫ
(

∂R

∂X

)

dX

dDk

≈
R(W,X(Dk + ǫ), Dk) −R(W,X(Dk), Dk)

ǫ
(8)

The above stated formulas are discrete adjoint formula since the flow governing equation is discretized before

it is differentiated. In this work, the discrete adjoint formula is solved using DLR TAU solver.15,16

II.B. Mesh Adjoint Approach

As presented in above subsection, the grid sensitivities dX
dD

could be calculated by finite difference or analyti-

cally. Le Moigne17 shows the grid sensitivities for an algebraic structured mesh deformation. The analytical

solution of entire grid sensitivities would be difficult (or impossible) to obtain for an unstructured mesh

deformation algorithm such as spring analogy, therefore finite differences could be used instead.

To perform the finite-difference, the number of calculations required is the number of design variables (NDV )

times the size of volume mesh. For a large NDV and/or a large mesh the finite difference form a bottleneck

in the optimisation procedure. The mesh deformation could also be time consuming. An additional issue,

which is the same with any finite difference approach, is that it is hard to determine the perturbation step

size to obtain accurate sensitivities. Nielsen and Park13 proposed the introduction of another adjoint equa-

tion, the mesh adjoint equation, to eliminate the need to calculate the grid sensitivities. In this approach,

the objective function shown in equation (1) will be minimised subject to:
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R(W,X,D) = 0

T(X,D) = 0 (9)

where T is the residual of the mesh deformation method. Then the two residual functions are added into the

objective function with two adjoint operators λflow and λmesh for flow and mesh variable vectors respectively:

L = I(W,X,D) + λflow · R(W,X,D) + λmesh · T(X,D) (10)

Taking the derivative of Equation (10) w.r.t. the design variables (D) and re-arranging gives:

dL

dD
=

(

∂I

∂D
+ λ

T
flow

∂R

∂D
+ λ

T
mesh

∂T

∂D

)

+

(

∂I

∂W
+ λ

T
flow

∂R

∂W

)

dW

dD

+

(

∂I

∂X
+ λ

T
flow

∂R

∂X
+ λ

T
mesh

∂T

∂X

)

dX

dD
(11)

As in the previous subsection the choice of the lagrangian variables is arbitrary. Therefore, it is appropriate

to choose values for λflow and λmesh such that the most expensive terms in equation (11) do not need to

be calculated. As before the most expensive terms are from the derivative dW
dD

. For cases where there are a

large number of design variables and/or a large computational grid (in terms of nodes/cells) the term dX
dD

will

also become computationally prohibitive. To eliminate these terms the following linear systems of equations

need to be solved:

(

∂R

∂W

)T

λflow = −

(

∂I

∂W

)T

(12)

(

∂T

∂X

)T

λmesh = −

(

∂I

∂X

)T

−

(

∂R

∂X

)T

λflow (13)

where equation (12) is solved first. equation (12) is the flow adjoint equation and equation (13) is the mesh

adjoint equation. When the flow and mesha djoint equations are satisfied, the gradients of the objective

function with respect to the design variables can be found using the following:
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dL

dD
=

dI

dD
=

(

∂I

∂D
+ λ

T
flow

∂R

∂D
+ λ

T
mesh

∂T

∂D

)

, ∀λflow,mesh,D (14)

Furthermore, for purely geometric changes, the terms ∂I
∂D

and ∂R

∂D
are zero. This gives a much simpler

derivative:

dL

dD
=

dI

dD
= λ

T
mesh

∂T

∂D
(15)

In this instance the derivatives are dependent entirely on the mesh adjoint operator derived in equations

(12) and (13) and the derivative of the mesh deformation residual ∂T

∂D
. In this paper linear elasticity is used

to deform the mesh but the derviation is the same for other implicit deformation methods.18–20 Using the

linear elasticity method the surface and volume mesh are related by:

KX = S (16)

where S represents the surface mesh points and K is the mesh deformation matrix. equation (16) can be

rearranged such that it is in the form of a residual so equation (9) is satisfied:

KX − S = 0 (17)

Substituting T = KX − S into equation (13) gives:

(

∂T

∂X

)T

λmesh =

(

K
∂X

∂X
−
∂S

∂X

)T

λmesh = −

(

∂I

∂X

)T

−

(

∂R

∂X

)T

λflow (18)

since S has no explicit dependence on X equation (18) can be rearranged as:

λ
T
mesh = −

(

∂I

∂X
+ λ

T
flow

∂R

∂X

)

[K]−1 (19)

Similarly, for equation (15):

v
dI

dD
= λ

T
mesh

∂T

∂D
= λ

T
mesh

(

K
∂X

∂D
−
∂S

∂D

)

(20)

since X has no explicit dependence on D:
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dI

dD
=
dI

dS

∂S

∂D
= −λ

T
mesh

∂S

∂D
(21)

An extra step was added in equation (21) (middle term) to highlight an interesting inference. This shows

that the vector of mesh adjoint variables, λmesh, will provide the sensitivity of the objective function to

changes in the surface ( ∂I
∂S

= −λmesh). This can be used to give the designer extra information when

designing/optimising a wing or flow control device.

III. Parameterisation of Bump Using CST method

The design parameterization used previously for a shock bump control is generally simple. In Qin et al8

and Wongs work,9 the 2D bump is represented by splitting it into two piece-wise cubic curves joined at the

crest position. However, this bump parameterization equation only guarantees first derivative continuity at

the start, crest and end positions of the bump. With industrial manufacturing methods, the second order

continuity C2 is required. In order to satisfy C2 continuity, the order of piecewise polynomials has to be

increased to 5. Higher order polynomials will lead to a higher degree-of-freedom and contain more than one

peak in the curve; this will cause uncontrollable waviness in the bump.

A different shock control bump parameterization is proposed based on the CST parameterization method.

As presented in Kulfans paper,14 the CST method has two parts: the class function and the shape function.

The class function determines the basic type of geometry and the shape function is then employed to define

the details.

If the class parameters N1 and N2 are set to 3, and the shape function S(ψ) = 1, as in equation (22), a

bump like curve is obtained with 1st and 2nd derivatives of zero at starting and ending points. The curve

and 1st and 2nd derivative distribution are shown in Figure 1.

ξ(ψ) = ψ3.0
· (−1)ψ3.0 (22)

The above figures clearly show that the geometry, 1st and 2nd derivatives are all zero at the start and end

position of the bump. In addition, because the class parameters are exponential parameters of the class

function, if N1 and N2 are set to 3, the bump peak value reduces to 1/64 for the shape function S(ψ) = 1.

Because the bump maximum height and bump peak crest position parameters do not directly appear in

the CST function, the shape function parameter values should be a similar magnitude to bump height.

Multiplying by 64 in the CST equation moves the peak value back to 1 when S = 1. This is convenient
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Bump curve 1st derivative 2nd derivative

Figure 1: Bump curve and derivatives using the CST parameterisation method

for the user when setting up their design parameter range. The full description of the 2D CST bump with

shape function is:

ξ(ψ) =64 · C3.0
3.0 (ψ) ·

n
∑

i

Ai · Si(ψ)

CN1

N2
(ψ) =ψN1 · (1 − ψ)N2

Si(ψ) =

n
∑

r=0

Kr,nψ
r(1 − ψ)n−r

Kr,n =

(

n

r

)

=
n!

i!(n− i)!

x =ψ · xlength

z =ξ · xlength

The three-dimensional bump is the extension of two-dimensional bump using a second Bernstein polynomial.

Finally, the bump patch may not be strictly a rectangle, so the bump length distribution along spanwise is

a function of span. The definition of a three-dimensional bump with sweep angle is shown in the following

equations:

ξ(ψ, η) = 64 · C3.0
3.0 ·

Nx
∑

i

Ny
∑

j

[Bi,j · Sxi(ψ) · Syj(η)] ·H(η)

where
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H(η) =64 · C3.0
3.0 (η) ·

n
∑

i

Ai · Si(η)

x =xleading(y) + ψ · xlength(y)

y =η · ywidth

z =ξ

xlength(y) =(xleading(y) − xtrailing(y)

where xleading and xtrailing are the leading edge and trailing edge values of x at a given y, which can be

a higher polynomial function depending on the distribution shape. The CST bump equations can provide

higher flexibility of a local bump, and generate symmetric or asymmetric bumps in three-dimensional space.

The orders of Bernstien polynomials are recommended to be below 4, this allows the CST bump to provide

high flexibility with a reasonable number of design variables and produce the most realistic bump shapes. As

stated in the previous section, the flow solver and adjoint solver used is TAU developed by DLR. TAU is a

hexahedral dominant multi-grid solver.15 The meshes of all the geometries use hexahedral dominant hybrid

meshes which are generated using Solar which has been developed by the Aircraft Research Association, BAE

System and Airbus.16 Once the gradient is obtained, a SLSQP21,22 optimizer from the NLOPT package23

is employed to perform optimization.24 One test case, the M6 wing, is analysed throughout. This case has

been widely used in the area of aerodynamic research.25,26

IV. Three-dimensional Bump deployment and Optimization

IV.A. M6 Surface Sensitivity

In this case, the flow condition is chosen as Mach=0.84, Re=11.72 × 106 and Cl=0.2743. The mesh adjoint

is first to be calculated for a zero height bump, i.e. there is no deformation of the mesh. In bump design,

the surface points in the bump area are only moving along the z-direction. Therefore, only λmesh,z (also

referred to as lambda gz) is used. λmesh,z are the sensitivities of Cd respect to changes of the surface in the

z-direction. The contour of λmesh,z is plotted in Figure 2.

Figure 2 shows the negative surface sensitivity on the upper surface of the M6 wing. The green,blue and

yellow areas on the surface in figure 2 show regions where the derivative points in a positive z-direction.

The red regions show areas with negative or very small gradients. On the M6 wing the sensitivity makes

a clear lambda structure. The pressure plot confirms that the lambda structure can be attributed to the
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Figure 2: Surface sensitivity (λmesh) in the
z-direction

Figure 3: Pressure on the M6 wing upper surface

shock locations. In addition to this there is a non-shock region near the wing root which suggests moving

the surface in a positive z-direction in that region could also achieve a drag change.

Previous research27 has focussed on optimising a shock bump array on the rear shock line only (neglecting

near the tip); this paper takes this further by applying the bumps over the entire span of the wing. Further-

more, it explores surface changes in the front shock region and the sensitive non-shock region near the wing

root.

IV.B. Rear Shock Line

The surface mesh points with large negative λmesh value, shown in blue, green and yellow colour in Figure

2. The rear shock line shows the greatest potential for shock bump deployment as it shows the greatest

sensitivities of the two shock lines. The rear shock line is extracted then the points are fitted and smoothed

using 5th order polynomials. The sensitivities feature line is then obtained.

In this subsection only the rear shock line is considered, however, in later sections other areas will be analysed.

It is particularly important to involve the wing tip region where the sensitivity is strongest. The bump is

deployed starting at y=0.01m and ending at y=1.19m. 14 bumps are evenly distributed, which gives a bump

width of 0.084m. The optimisation region is defined by a front line and rear line. The distance between these

lines is defined by xlength(y) = 0.35×Chordwing(y). This means at any span position, the local length of the

bump is equal to 35% wing local chord. This is based on previous research by Wong7 and Qin et al,8 which

suggested that the shock control bump length should be between 20% to 40% chord length. Finally, the

bump has to be deployed with respect to the shock feature line. The EUROSHOCK II project6 suggested

that the peak of shock control bump should be between 5−10% downstream of the shock for an asymmetric

bump. The bump will be placed downstream in terms of shock feature line. In this case, it has 40% length

in front of shock feature line and 60% behind. Figure 4 shows the bounds of the optimisation region.
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Figure 4: Extraction of rear shock sensitivity data with curve fitting and subsequent front and rear
optimisation bounds

After the bump area is decided, the optimization can be carried out. In this case, the Bernstein polynomials

for each bump has 3rd order on chordwise, 3rd order on spanwise, and 3rd order to control shape function

of the height distribution. The length and width of the bumps are fixed, hence the total number of design

variables is 14 × ((4 × 4) + 4) = 280.

During the flow calculation the lift is fixed to guarantee Cl is matched with the requirement, the objective

function is then modified as:

minI = Cd −

(

∂Cd

∂α

)

(

∂Cl

∂α

) (Cl − Cl,target) (23)

Figure 5 shows the topology of the bumps on the M6 wing of the final iteration in the optimisation. It is

obvious that at the tip the bumps are the tallest, this is what we would expect since the sensitivities in the

positive z-direction at this location are very strong. It is also interesting to note that at the region where

the ‘legs’ of the λ-shock concatenate the shock bump height is very close to zero. In this region the possible

reduction of wave drag for one of the shocks is offset by an increase of drag elsewhere, therefore the optimiser

has driven the bump height to be smaller in this region. The highest bumps are found at the tip region on

the wing where the wave drag is largest. The wave drag has been reduced all across the span when bumps

are present, however at the tip there is still a significant amount of wave drag generated which could further

be reduced.

Figures 6 and 7 show the surface pressure distribution on the upper surface of the M6 wing. The M6 wing

with no bumps shows a very sharp change in pressure at the rear shock line which is not present in the

case with the optimised bumps included. When the optimised bumps are placed on the wing the pressure
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M6 wing with optimised bumps Percentage height distribution and spanwise wave
drag

Figure 5: Bump distribution and spanwise wave drag

change in the rear shock line region is much more gradual across the majority of the span. At the wing tip

the pressure change has been reduced in most of the tip area but there is still a small area in between the

bumps which contains a sharp change in pressure which is indicative of a small shock.

Figure 6: M6 wing upper surface pressue
distribution with no bumps

Figure 7: M6 wing pressure distribution with 14
bumps

Figure 8 shows spanwise slices along the M6 wing and the surace pressure distribution is plotted on each

slice. For the 1st through to the 11th bump the pressure distribution at the rear shock shows a much more

gradual change, this effect on the pressure distribution is typical of a well designed shock bump. The 12th

bump is in the region when the front and rear shocks join, there is still a positive effect on the rear shock

but it is much less significant in comparison to the bumps closer to the wing root. For bumps 13 and 14

at the wing tip there is a strong re-expansion of the flow after the initial compression, however the pressure

change after the re-expansion is not as severe. Between the 13th and 14th there is a strong re-expansion of

the flow and the gradient of pressure after the re-expansion is still large, indicative of a shock.

Table 1 shows a comparison of the drag decomposition using the far field drag analysis tool FFD72.28 When

the bumps are deployed the drag is reduced by just less than 19 drag counts. The table also shows that

the pressure drag reduces while the skin friction shows a slight increase which is common when using shock

bumps.
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1st bump 2nd bump

7th bump Between 7th and 8th bump

11th 12th bump

13th bump Between 13th and 14th bump

14th bump

Figure 8: Streamwise surface slices showing the pressure distribution on the surface
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Table 1: Far field drag comparison between optimised shock bump and no bump cases

(drag counts) Cd,total Cd,wave Cd,induced Cd,viscpres Cd,friction
Cl

Cd

NoBump 175.87 28.69 62.24 31.13 52.69 15.55

14 bumps 156.91 12.81 62.31 27.80 53.56 17.42

Reduction -10.78% -55.35% 0.11% -10.70% 1.65% 12.03%

Figures 9 and 10 show the surface sensitivity for the upper surface of the M6 wing with no bumps and

after the optimisation is applied. For most of the span the sensitivity of drag to changes in the surface has

been reduced significantly in the rear shock area. The only area to still show a strong sensitivity in the

optimisation region is between the two bumps at the tip of the wing. A possible explanation for this is that

the shock is so strong in this location that the bumps cannot grow high enough to treat it without incurring

a drag penalty elsewhere. This shows that there is a need to improve the parameterisation method such that

a shape can be found that will act directly on this region. It is intersting to note that in this comparison

the non-shock sensitivity region is reduced after the bump optimisation despite no optimisation taking place

in the local vacinity. This indicates that the surface in the rear shock and non-shock region are somehow

linked.

Figure 9: Surface sensitivity of M6 wing with no
bumps

Figure 10: Surface sensitivity for final iteration of
optimisation

IV.C. Leading Shock Line

The previous subsection focusses on the application of shock bumps in the rear shock region across the entire

wing span, this subsection will focus on the other shock line near the leading edge (LE). The future of this

research will look into combining all of these regions together into a unified optimisation, therefore the tip

region after the shock legs join is not considered as part of the LE optimisation region. A further limitation

to this case is that the mesh deformation scheme fails when adding bumps too close to the wing leading

edge. This is due to the fact that the clustering of nodes at the wing leading edge is dense and the change

from adding bumps can create poor quality cells at the leading edge.
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Figure 11 shows the optimisation region considered for this case. Due to the proximity of the leading edge

a much shorter bump is used compared to that of the previous section, the optimisation region is 25% local

chord in streamwise length, this is still within the suggested length. There will be 8 bumps deployed with a

bump width of 0.056m each. The optimisation region begins at y = 0.5m and ends at y = 0.95m. As with

the previous test case each bump will have 40% before the feature line and 60% after.

Figure 11: Extraction of leading edge shock sensitivity data with curve fitting and subsequent front and
rear optimisation bounds

Figure 12 shows the final optimised bump array on the leading shock edge. Although bumps have established

themselves in this region the height of the bump is small and therefore the effect on the wave drag is minimal.

M6 wing with optimised bumps Percentage height distribution from root (left) to tip
(right)

Figure 12: Bump distribution and spanwise wave drag distribution

Figures 13 and 14 show the pressure distributions with no bump and with optimised bumps. The bumps

here have had a small effect on weakening the pressure peak in the shock location but there still remains a

significant pressure change in the front shock line region.

Figure 15 shows spanwise slices of the wing with the surface pressure distribution plotted at each slice.

Between the 1st and 4th bumps there is little effect on the front shock. Bumps 5 through 8 shows a much

more gradual pressure change in the shock region. For the entire shock array there is no effect downstream
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Figure 13: M6 wing upper surface pressue
distribution with no bumps

Figure 14: M6 wing pressure distribution with
bumps placed on leading shock line

at the rear shock. The bottom two pressure distributions show that there is only a local effect of LE bump

array.

Table 2 shows the comparison of drag values for total, pressure and skin friction drag. This shows that the

application of the shock bumps in this region has only had a small change on the drag. The bumps were

placed in a region where the sensitivity was not as strong and due to the limitations on the placement, this

could explain why the drag has not reduced by a substantial amount.

Table 2: Far field drag comparison between optimised shock bump and no bump cases

(drag counts) Cd,total Cd,wave Cd,induced Cd,viscpres Cd,friction
Cl

Cd

NoBump 175.87 28.69 62.24 31.13 52.69 15.55

LE bumps 173.71 28.61 62.26 30.08 52.76 15.74

Reduction (%) -1.23% -0.28% 0.03% -3.37% 0.13% 1.22%

Figures 16 and 17 show the surface sensitivity in the z-direction with no bumps and with the optimised

bumps. The optimised bumps have had an effect on the sensitivity in the optimisation region, however the

stronger sensitivity regions are closer to the wing root.

IV.D. Non-Shock region

This paper so far has focussed on optimisations in the shock regions, the subsection will look into an area

where there is not a shock but the sensitivity map suggests that a change in the surface in the positive

z-direction will have a strong effect on the drag.

Figure 18 shows the optimisation region considered for this case. The optimisation region is 25% local chord

in streamwise length. There will be 4 bumps deployed with a bump width of 0.085m each. The optimisation

region begins at y = 0.01m and ends at y = 0.35m. As with the previous test case each bump will have 40%

before the feature line and 60% after.
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1st bump Between 1st and 2nd bump

3rd bump Between 3rd and 4th bump

5th bump 6th bump

7th bump 8th bump

1 bump width toward the wing root 2 bump widths toward the wing tip

Figure 15: Streamwise surface slices showing the pressure distribution on the surface
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Figure 16: Surface sensitivity of M6 wing with no
bumps

Figure 17: Surface sensitivity for final iteration of
optimisation

Figure 18: Extraction of non-shock sensitivity data (at the wing root) with curve fitting and subsequent
front and rear optimisation bounds

Figure 19 shows the topology of the optimised bumps. All 4 bumps have grown to a similar height at

approximately 0.5% local chord. When the bumps are present the wave drag is reduced from the root to

y = 0.9m. At y = 0.9m the the wave drag dramatically increases due to the concatenation of the leading

edge and rear shock lines. This concatenation point is further from the tip than in the no bump case and

causes the wave drag at the tip to be slightly stronger.

Figures 20 and 21 show the surface pressure distribution on the upper surface of the M6 wing. The in-

troduction of the optimised bumps has introduced an increase in pressure in the local region and directly

downstream of the bumps the pressure change is much less dramatic. In addition to this the bump furthest

down the span is acting slightly on the front shock line.

The surface pressure at various slices along the wing span in figure 22 show that there is a compression

then expansion caused by the placement of bumps 1, 2 and 3. The placement of bump 4 has forced extra

compression of the flow around the front shock line. The placement of these bumps has moved the rear
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M6 wing with optimised bumps Percentage height distribution and spanwise wave
drag

Figure 19: Bump distribution and spanwise wave drag

Figure 20: M6 wing upper surface pressue
distribution with no bumps

Figure 21: M6 wing pressure distribution with
bumps placed in the non-shock sensitvity region

shock line slightly upstream of its original location causing the two shock lines to join earlier and directly

downstream of the optimisation region the shock is weaker.

Table 3 shows the comparison of total, pressure and skin friction drag between the optimised and no bump

case. The drag reduction after the bumps are deployed is 4 drag counts and interestingly the skin friction

barely changes.

Table 3: Far field drag comparison between optimised shock bump and no bump cases

(drag counts) Cd,total Cd,wave Cd,induced Cd,viscpres Cd,friction
Cl

Cd

NoBump 175.87 28.69 62.24 31.13 52.69 15.55

Non-shock bumps 170.68 26.01 62.21 29.80 52.66 16.02

Reduction -2.95% -9.34% -0.05% -4.27% -0.057% 3.02%

Figures 23 and 24 show the surface sensitivity in the z-direction for the M6 wing with no bumps and the

M6 wing with optimised bumps. After the bumps are deployed the sensitivity downstream of the bumps at

the rear shock line has been reduced. The sensitivity in the non-shock region has been reduced significantly

but the sensitivity map does suggest that increasing the bump length may give even more drag reduction.

Since the front shock line and the non-shock region are so close a combined array may prouduce a better
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1st bump Between 1st and 2nd bump

2nd bump Between 2nd and 3rd bump

3rd bump Between 3rd and 4th bump

4th bump Half bump width after 4th bump

2 bump widths downstream 4 bump widths downstream

Figure 22: Streamwise surface slices showing the pressure distribution on the surface
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drag reduction over all.

Figure 23: Surface sensitivity of M6 wing with no
bumps

Figure 24: Surface sensitivity for final iteration of
optimisation

IV.E. Entire sensitivity region optimisation

This paper has looked at individual regions for optimisation of bumps. In this section bumps will be placed

and optimised in all the sensitivity regions.

Figure 25 shows the optimisation region considered for this case. The optimisation region for the leading

edge is 25% local chord in streamwise length and 35% for the rear region. There will be 26 bumps deployed,

9 bmps each in the front and rear regions and 7 in the concatenated region near the wing tip. The bumps

in the leading and rear regions have bump width 0.0826m and the bumps in the concatenated region have

bump width 0.0624m. The optimisation region begins at y = 0.01m and ends at y = 1.19m. As with the

previous test case each bump will have 40% before the feature line and 60% after. The concatenated region

begins at 0.753m from the root of the wing.

Figure 25: Extraction of sensitivity data with curve fitting and subsequent front and rear optimisation
bounds
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Figure 26 show the topology of the optimised bumps and the bump heights for each optimisation region and

the comparison of wave drag between the current case, the no bump case and the rear-shock line case. For

the LE region and rear optimisation region the bump patches in line in the spanwise direction, therefore the

bump heights are offset from each other in the bar chart for clarity. For the current case the wave drag is

reduced a little more in the mid span of the wing compared to the rear-shock line case however this will be

somewhat offset by the increase in wave drag toward the tip region.

M6 wing with optimised bumps Percentage height distribution and spanwise wave
drag

Figure 26: Bump distribution and spanwise wave drag

Figures 27 and 28 show the surface pressure distribution on the upper surface of the M6 wing. The introduc-

tion of the optimised bumps shows a much more gradual pressure change in the rear shock region, however

the bumps in the non-shock region have not had as large an effect as in section IV.D. This may be due to

the weakening of the sensitivity in this region shown in the final iteration of the rear shock line optimisation

in section IV.B.

Figure 27: M6 wing upper surface pressue
distribution with no bumps

Figure 28: M6 wing pressure distribution with
bumps placed in all the sensitvity regions

Figure 29 shows spanwise slices along the wing where the surface pressure has been plotted. For the 1st and

2nd bumps the effect from the non-shock region bump causes a small compression and expansion in the fluid.

The bumps further downstream act on the rear shock by making the pressure change much more gradual.

By the 4th bump, the effect of the bump in the non-shock region is negligible, this is due to the small height
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of the bump. From the 6th to the 11th bump the pressure distribution at the front and rear shock is either

much more gradual or the pressure peak before the shock is significantly reduced. For bumps 14 through

16 the pressure distribution exhibits a small re-expansion of the flow, however the pressure peak does not

return to the strength of the baseline case.

Table 3 shows the comparison of total, pressure and skin friction drag between the optimised and no bump

case. Comparing tables 4 and 2, the overall drag reduction is 1 drag count better than when using optimised

bumps in the rear-shock region alone.

Table 4: Far field drag comparison between optimised shock bump and no bump cases

(drag counts) Cd,total Cd,wave Cd,induced Cd,viscpres Cd,friction
Cl

Cd

NoBump 175.87 28.69 62.24 31.13 52.69 15.55

14 bumps 156.91 12.81 62.31 27.80 53.56 17.42

Reduction from NoBump -10.78% -55.35% 0.11% -10.70% 1.65% 12.03%

All region bumps 155.33 12.39 62.33 26.93 53.68 17.60

Reduction from NoBump -11.68% -56.81% 0.15% -13.49% 1.88% 13.18%

Figures 30 and 31 show the surface sensitivity in the z-direction for the M6 wing with no bumps and the

M6 wing with optimised bumps. After the bumps are deployed the sensitivity downstream of the bumps at

the rear shock line has been reduced. The sensitivity in the non-shock region has been reduced significantly

but the sensitivity map does suggest that increasing the bump length may give even more drag reduction.

Since the front shock line and the non-shock region are so close a combined array may prouduce a better

drag reduction over all.

V. Conclusion

The mesh adjoint method has been used throughout this paper as a design tool to aid in the placement

and optimisation of flow control device. For purely geometric optimisations a by-product of obtaining the

gradients of the objective function with respect to the design variables is finding the sensitivity of the

objective function with respect to surface changes. This value is the solution to the mesh adjoint equation

−λmesh.

This work has focused on the M6 wing test case. The sensitivity produced from this case is very diverse and

therefore shows how the mesh adjoint can aid a designer. The flow over the M6 produces a shock with a

front and rear shock leg, both of which have been analysed and shock bumps have been optimised to treat

the production of wave drag in these regions.
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1st bump 2nd bump

4th bump 6th bump

9th bump Between 9th and 10th bump

11th bump 14th bump

Between 14th and 15th bump 16th bump

Figure 29: Streamwise surface slices showing the pressure distribution on the surface
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Figure 30: Surface sensitivity of M6 wing with no
bumps

Figure 31: Surface sensitivity for final iteration of
optimisation

An interesting region of sensitivity was also discovered on the upper surface of the M6 wing. This region

was shock free but the sensitivity map indicated that a surface change in the positive z-direction would give

a change in the drag. Using the existing framework, bumps where added into the non-shock region. It was

found that the optimised bumps reduced the change in entropy at the shock directly downstream from the

optimisation region.

The final analysis considered placing bumps in all the sensitivity regions on the M6 wing upper surface and

optimising. In a comparison with the rear-shock region case, using all the sensitivity regions gained an extra

reduction in drag by 1 drag count.

A higher drag reduction could be found if the parameterisation was improved in the non-shock region and

the tip region such that all the sensitivity in those regions is reduced.
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