

This is a repository copy of Atomic Details of the Interactions of Glycosaminoglycans with Amyloid- β Fibrils.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103829/

Version: Accepted Version

Article:

Stewart, KL, Hughes, E, Yates, EA et al. (8 more authors) (2016) Atomic Details of the Interactions of Glycosaminoglycans with Amyloid-β Fibrils. Journal of the American Chemical Society, 138 (27). pp. 8328-8331. ISSN 0002-7863

https://doi.org/10.1021/jacs.6b02816

© 2016 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jacs.6b02816. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Atomic Details of the Interactions of Glycosaminoglycans with Amyloid-β Fibrils

Katie L. Stewart, [†] Eleri Hughes, [‡] Edwin A. Yates, [§] Teng-Yi Huang, [§] Marcelo A. Lima, [‡] Timothy R. Rudd, [#] Marco Guerrini, ^A Shang-Cheng Hung, [§] Sheena E. Radford, [†] and David A. Middleton [‡]

ABSTRACT: The amyloid plaques associated with Alzheimer's disease (AD) comprise fibrillar amyloid-β (Aβ) peptides as well as non-protein factors including glycosaminoglycan (GAG) polysaccharides. GAGs affect the kinetics and pathway of AB self-assembly and can impede fibril clearance and therefore may be accessory molecules in AD. Here we report the first high-resolution details of GAG-AB fibril interactions from the perspective of the saccharide. Binding analysis indicated that the GAG proxy heparin has a remarkably high affinity for AB fibrils with 3-fold cross-sectional symmetry (30). Chemical synthesis of a uniformly ¹³C-labeled octasaccharide heparin analog enabled magic-angle spinning solidstate NMR (SSNMR) of the GAG bound to 30 fibrils, and measurements of dynamics reveal a tight complex in which all saccharide residues are restrained without undergoing substantial conformational changes. Intramolecular ¹³C-¹⁵N dipolar dephasing is consistent with close (< 5 Å) contact between GAG anomeric position(s) and one or more histidine residues in the fibrils. These data provide a detailed model for the interaction between 3Q-seeded AB40 fibrils and a major non-protein component of AD plaques, and reveal that GAGamyloid interactions display a range of affinities that critically depend on the precise details of the fibril architecture.

Alzheimer's disease (AD) is characterized pathologically by the accumulation of insoluble plaques within the extracellular spaces of brain tissue. The main protein constituents of AD plaques are the 40- and 42-residue amyloid- β peptides, A β 40 and A β 42, derived from the amyloid precursor protein. The relationship between A β self-assembly and disease has not been elucidated, but the development of drugs that lower the propensity of A β peptides

to self-assemble or reduce the aggregate concentration is a therapeutic goal. 1 A β amyloid plaques in the brain are highly heterogeneous, comprising fibrous proteins of different structural organisations 2 , metal ions, nucleic acids and glycosaminoglycans (GAGs), 3 the linear sulfated polysaccharide components of proteoglycans. GAGs accelerate A β polymerization 4 and increase fibril resistance to proteolytic degradation. 5 The recent clinical failure of drugs that inhibit A β aggregation *in vitro* 6 may reflect, in part, the role of molecules such as GAGs in the development and stabilization of amyloid in the brain. Work focusing on GAGs has revealed a complicated picture of interactions with protein networks, with low binding specificity and high redundancy among heterogeneous saccharide units 7 .

We previously detected a GAG binding site at the surface of fibrillar MAβ40 (an Aβ40 homologue with an N-terminal methionine) from heparin-induced peptide chemical shift perturbations measured using cross-polarization magic-angle spinning (CP-MAS) solid-state NMR (SSNMR).8 In this and previous studies, heparin was employed as a proxy for the highly sulfated domain of heparan sulfate (HS) commonly associated with amyloid plaques and sharing the same disaccharide units as heparin.9. Aβ40 fibrils are polymorphic and fibril strains having approximate 2-fold (2A) or 3-fold (3Q) cross-sectional symmetry can be selected by seeding and morphologically confirmed by SSNMR. 8,10 Previously, we developed an assay to quantify heparin binding which involves sedimentation of bound heparin with fibrils, and quantifies unbound heparin by addition of heparinase enzyme, creating a spectroscopically active product.⁸ We found that heparin binds with surprisingly higher affinity to MAβ40 3Q fibrils than to MAβ40 2A fibrils, and the SSNMR data suggests that heparin recognizes the junctions of the triangular crosssection that is unique in the structures of 3Q fibrils (Figure S1).8

[†]Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom

[‡]Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, United Kingdom

[§]Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom

[⋄]Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, Taiwan

^bDepartment of Biochemistry, Federal University of Sao Paulo (UNIFESP), Rua Três de Maio, São Paulo, 40440-020 Brazil

^{*}National Institute of Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Hertfordshire EN6 3QC, United Kingdom

[△]Ronzoni Institute for Chemical and Biochemical Research, Via G. Colombo 81, Milano 20133 Italy Supporting Information Placeholder

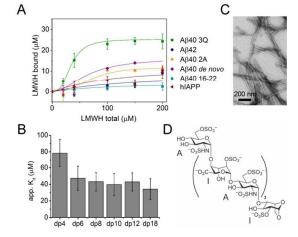


Figure 1. GAG binding to amyloid fibrils. (A) Binding affinities of fibrils to low molecular weight heparin (LMWH, dp16). Curves were obtained by non-linear least-squares fitting of a Hill function. (B) Apparent dissociation constants K_d for MAβ40 3Q fibrils binding heparin fragments of different degrees of polymerization (dp4-dp18). (C) TEM image of 3Q fibrils co-sedimented with [U- 13 C]OHA. (D) Chemical structure of [U- 13 C]OHA.

Here we show, in addition, that de novo MAB40 fibrils assembled without seeding, a peptide comprised of Aβ residues 16-22 (KLVFFAE), human amylin (hIAPP) which is 47% similar in sequence to Aβ40, and a uniform morphology of MAβ42 fibrils ¹¹ bind weakly to low-molecular weight heparin (LMWH) (Figure 1A, Figure S2). These binding differences suggest a unique relationship between 3Q fibrils in particular and heparin, but the origin of this specific relationship requires a full molecular-level understanding of the 3Q fibril-heparin interaction. Whether all heparin residues lie in contact with specific amino acids (Figure S1, top), or whether part of heparin lies away from the fibril surface (Figure S1, bottom) is not known. Here, synthesis of a uniformly ¹³C-labelled octasaccharide heparin analog ([U-¹³C]OHA) has enabled the detailed analysis of a GAG-amyloid interaction for the first time from the GAG perspective, using crosspolarization magic-angle spinning (CP-MAS) SSNMR to observe the GAG bound to insoluble 3Q MAβ40 fibrils.

We assessed the affinities of heparin-derived polysaccharides of different length (dp4-dp18) for 3Q-seeded MAβ40 fibrils, using the GAG binding assay described above and in Ref. 8 8 All heparin fragments show saturable binding consistent with specific GAG-fibril interactions, and an apparent B_{max} of < 20 μ M (Figure S3, Figure S4). Heparin tetrasaccharide (dp4) shows the lowest binding affinity ($K_d = 78 \mu M \pm 17 \mu M$) and, although the larger fragments show slight increases in binding affinity, there is no significant difference between the K_d values for dp6-dp18 (Figure 1B and Figure S3). An octasaccharide (dp8; $K_d = 43 \pm 11 \mu M$) was chosen therefore as a representative GAG to investigate amyloid binding in structural detail. [U- ¹³C]OHA (synthesized as in Ref. 12) consists of alternating 1-4 linked, 6-O-sulfated, Nsulfated α-D-glucosamine [amino sugar (A)] and 2-O-sulfated α-L-iduronic acid (I) units, with a 1,6-anhydro ether bridge in the terminal iduronate ring (Figure 1D) maintaining a closed ring at the former reducing terminus. A 2-fold molar excess of [U-¹³C]OHA was added to ¹⁵N-labelled MAβ40 fibrils prepared by seeding with the 3Q morphology. ¹⁰ ¹³C spectra of [U-¹³C]labeled seeded fibrils resembled previously published MAB40 3Q spectra⁸, verifying the fibril morphology. Transmission electron microscopy (TEM) confirms that the linear unbranched fibrils are maintained (Figure 1C). The fibrils were isolated by centrifuga-

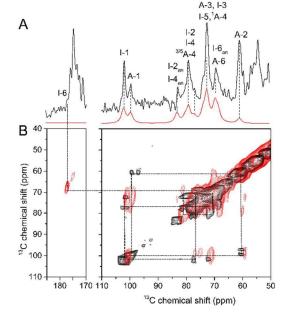


Figure 2. ¹³C CP-MAS SSNMR spectra of the [U-¹⁵N] 3Q fibril-[U-¹³C]OHA complex. (A) Experimental spectrum (black) at 4°C, with assignments, and a simulated spectrum from the solution chemical shifts (red). (B) 2D symmetrized ¹³C-¹³C spectrum recorded with a DARR mixing time of 20 ms (black) and an unsymmetrized spectrum at 50 ms mixing time (red).

tion and the pellet, estimated to contain 600 nmoles MAβ40 and 170 nmoles bound [U-¹³C]OHA, was analysed by ¹³C CP-MAS SSNMR, revealing signature peaks (60-102 ppm) from the octasaccharide. Under CP-MAS, signals are detected only from nuclei in environments where molecular dynamics are too slow (<10⁴ Hz) to average the ¹H-¹³C dipolar couplings (e.g. Ref. 14). Hence the observed [U-13C]OHA peaks must arise from octasaccharide associated with the insoluble fibrils. Although the peaks are too broad to resolve residue-specific detail, a two-dimensional ¹³C-¹³C SSNMR spectrum (Figure 2B) and tentative peak assignments from a HSQC solution spectrum (Figure S5) enabled resonances to be attributed to positions on the glucosamine and iduronate residues. The changes in chemical shifts upon binding are small (Table S1), which argues against major conformational perturbations that can result in significant changes in chemical shifts, particularly if hydrogen bonding is disrupted. 13

The bound saccharide dynamics were assessed further by CP-MAS NMR. A ¹³C refocused INEPT¹⁵ SSNMR spectrum at 4 °C, which detects only long-lifetime coherences from highly mobile groups, is dominated by peaks from MAβ40 (12-68 ppm), with very weak signals from 68-78 ppm that may arise from a small mobile fraction of bound or unbound [U-13C]OHA. The absence of peaks around 100 ppm from A-1 and I-1 implies that largescale motional fluctuations, involving the entire octasaccharide backbone, do not occur. Measurements of motionally-sensitive cross-polarization rates $R_{\rm HC}$ and rotating frame relaxation rates $R_{I\rho H}$. R_{HC} and $R_{I\rho H}$ values for the CH groups at 4°C (Figure 3B; original data in Figure S6) are typical of organic solids with restricted molecular dynamics.¹⁶ The rates remain essentially the same at -25°C, which suggests that the saccharide dynamics are similarly impaired in the frozen and non-frozen states. Increased dynamics from -25°C to 4°C (including faster rates of chemical exchange between free and bound states) would result in slower cross-polarization and relaxation rates (see SI and Figure S7 for further discussion).¹⁷ Order parameters S_{CH} determined from octasaccharide ¹³C-¹H dipolar couplings (Figure S8) are near the rigid-

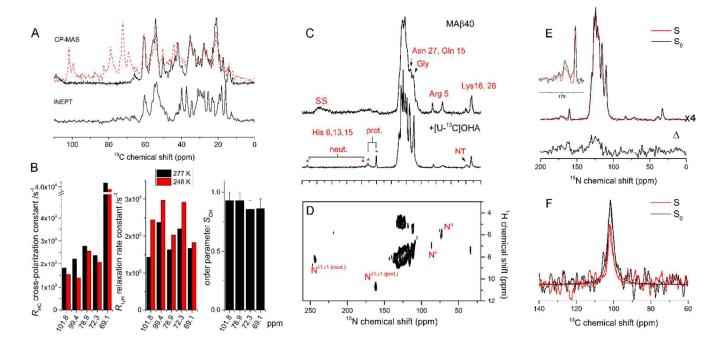


Figure 3. SSNMR analysis of $[U^{-13}C]OHA$ interactions with $[U^{-15}N]MA\beta40$ fibrils. (A) CP-MAS spectrum of fibrils alone (top) overlaid with the spectrum from Figure 2A (red) and a refocused INEPT spectrum of the complex of fibrils and $[U^{-13}C]OHA$ (bottom). (B) Crosspolarization rate constants R_{HC} and proton rotating frame relaxation rates R_{1pH} of $[U^{-13}C]OHA$ bound to the fibrils. (C) ^{15}N CP-MAS spectra of fibrils alone (top) and with $[U^{-13}C]OHA$ (bottom). Neut=neutral; prot.=protonated; SS= spinning sideband; NT = N-terminal amine. (D) $^{1}H^{-15}N$ HETCOR spectrum. (E, F) Measurements of dipolar couplings between fibrils and $[U^{-13}C]OHA$ at $^{-25}$ °C. (E) Full-echo (S₀) and dephased-echo (S) $^{15}N\{^{13}C\}REDOR$ spectra (8.3-ms dephasing) and difference (Δ). (F) $^{13}C\{^{15}N\}$ -FSR spectra (6.4-ms dephasing) obtained with selective refocusing applied at the frequencies of $^{15}N^{81/62}$ and C-1 of $[U^{-13}C]OHA$ (red) and a full-echo spectrum (black).

limit value of 1.0 and consistent with low-amplitude motions of ring C-H bonds on the sub-millisecond time scale. These data strongly suggest that all octasaccharide residues are restrained by intimate contact with MA β 40.

We next sought to identify close contacts between [U-15N]MAβ40 fibrils and [U-13C]OHA. The 15N CP-MAS spectrum of 3Q fibrils alone shows sharp peaks from Arg and Lys side-chains and His $^{15}N^{\delta1/\epsilon2}$ resonances (160-180 ppm) that are much broader, possibly due to proton exchange or tautomerisation. 11 The 15N 1D and 1H-¹⁵N HETCOR spectra of the [U-¹³C]OHA-fibril complex reveal the appearance of a new sharp peak at ~161 ppm (Figure 3, C and D), reveal several sharper peaks assigned to backbone and Asn/Gln amides, which suggests a general ordering of the fibrils in the presence of the GAG, and a new sharp peak at ~161 ppm attributed to His $N^{\epsilon 2}$. Histidine $^{15}N^{\epsilon 2}$ and $^{15}N^{\delta 1}$ chemical shifts for model tripeptides are 173-176 ppm for the acidic form (and ${}^{1}\mathrm{H}^{\epsilon 2}/{}^{1}\mathrm{H}^{\delta 1}$ shifts are > 10 ppm) and ~231 ppm and 181 ppm for the conjugate base. 18 Here the peak at 161 ppm may reflect the stabilization of protonated His ring(s) by the octasaccharide CO₂ and SO₃ groups. A non-selective ¹⁵N-observed, ¹³C-dephased rotational-echo double-resonance (15N{13C}REDOR) experiment (Figure 3E) showed weak dephasing of peptide amide resonances (112-130 ppm) and possibly also of His resonances, although the signal-to-noise is rather poor. Dipolar dephasing of resonances assigned to Arg, Lys and Gly was not observed above the noise. Dephasing was not quantified because of uncertainties arising from there being a 3-fold excess of fibrils over [U-13C]OHA and because of small contributions from ¹³C at natural abundance. A ¹³C-observed frequency-selective rotational-echo resonance (FSR) experiment¹⁹ was used to detect specific ¹⁵N-¹³C dipolar interactions between His side-group ¹⁵N^{δ1/ε2} sites and saccharide C-1 carbons in the 97-100 ppm region. The observed dipolar dephasing (S/S₀ = 0.72 ± 0.15), corresponds to a 13 C- 15 N

distance of 3.1-4.6 Å for a single spin pair, consistent with His-[U-¹³C]OHA interactions. The SSNMR measurements provide new clues about the selectivity of heparin-derived GAGs for MAβ40 fibrils with 3Q morphology, and highlight the role of saccharide interactions with histidines (H6, H13 and/or H14) in the formation of the GAG-3O fibril complex. We confirmed that GAG sulfate moieties are critically important for this interaction by showing that fully desulfated heparin does not bind to the fibrils (Figure S9A). GAG sulfate groups may thus interact with H6 and H13 if the GAG recognizes the junctions of the unique triangular crosssection of the 3Q morphology, whereas interactions with H14 would require binding to the outer surface common to both 2A and 3Q morphologies (Figures S10, S11). The higher affinity of heparin for 3Q than for 2A fibrils favors the preferential recognition of the unique junctions of 3Q. A 3Q-seeded variant of MAβ40, H6F, shows reduced heparin binding ($K_d = 100 \mu M \pm 14$ μM, compared to 43 μM for dp8, Figure S9B, S10), which implies that H6 is involved in, although not essential, for complex formation.[U-13C]OHA may bind tightly if its anionic groups are oriented approximately parallel to the fibril long axis, allowing interactions with polycationic ladders of residues from the repeating peptide units. Computational molecular docking of OHA in the cleft at the triangular junctions, restrained by a distance of <4.0 Å between $N^{\delta 1/\epsilon 2}$ sites of appropriate H6 rings in the flexible N-terminal region and octasaccharide C-1 positions, allows for ionic interactions between sulfate and imdazo groups of H6 and H13 on opposite faces (Figure 4A), as well as hydrogen bonding with N27 (which previously showed > 1 ppm chemical shift perturbations upon heparin binding⁸), acting in concert to strengthen the interaction between peptide and saccharide further. The presence of Asn residues alongside cationic residues has been posited recently as a characteristic of GAG binding sites in proteins.²⁰ The octasaccharide in a broadly linear conformation bears O- and Nlinked SO₃ groups that match approximately the periodicity of repeating side groups (~4.7 Å) (Figure 4B). This, and our binding data on other fibril types (Figure 1A) suggest that GAG-3Q interactions are more specific than mere electrostatic patterning. Instead, the structure of the 3Q fibril corners localizes multiple charged and hydrogen bonding residues in a favorable orientation, providing a tight and specific binding site for heparin (Figure S11). The involvement of histidine residues in this interaction suggests that disease states manifesting local pH changes could enhance GAG-fibril interactions, leading to altered rates of disease progression. Fibrils with different binding modes and affinities may rationalize the array of phenotypes that are present in AD and the range of timescales over which the disease progresses.

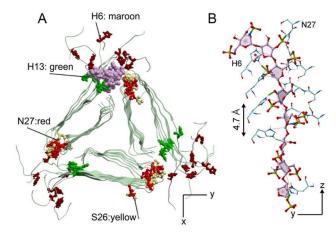


Figure 5. Model of [U-¹³C]OHA binding to MAβ40 fibrils. (A) Cross-sectional view of the 3Q fibril, from 2lmq.pdb (negative stagger, with 9 flexible N-terminal residues added) viewed down the fibril axis (z) and highlighting key binding residues and OHA (purple spheres) docked in one of the three cleft sites. (B) View of an octasaccharide molecule with repeating H6 and N27 residues.

The work presented provides the first glimpse of a GAG chain binding tightly and offers rationalization for the quantifiable and surprisingly specific affinity for a well-defined morphology of A β 40 fibrils. A three-fold conformation of A β 4 has been isolated and purified from human brain tissue, underscoring the relevance of this structural motif in disease². These results reveal that while GAGs are commonly found associated with amyloid plaques, GAG-fibril interactions show remarkable specificity which may influence the varied properties of amyloid fibrils in disease.

ASSOCIATED CONTENT

Supporting Information

Additional information as noted in the text and details of all preparative and experimental methods. This material is available free of charge via the Internet at http://pubs.acs.org.

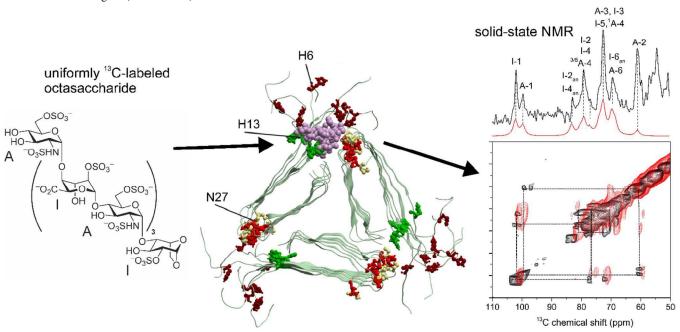
AUTHOR INFORMATION

Corresponding Authors

Email: d.middleton@lancaster.ac.uk; s.e.radford@leeds.ac.uk; schung@gate.sinica.edu.tw

Notes

The authors declare no competing financial interests.


ACKNOWLEDGMENT

The BBSRC (UK) for grants BB/K01451X/1 and BB/K015958/1. Academia Sinica and Ministry of Science and Technology (MOST 104-0210-01-09-02 & 104-2628-M-001-001). We thank Dr R. Tycko for providing the fibril seeds and Dr. G. Preston and

Prof. A. Wilson for Aβ40 16-22. The UK 850 MHz solid-state NMR Facility was funded by EPSRC, BBSRC, and the University of Warwick, including funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands and the European Regional Development Fund.

REFERENCES

- (1) (a) Hard, T.; Lendel, C. J. Mol. Biol. **2012**, 421, 441-465. (b) Amijee, H.; Madine, J.; Middleton, D. A.; Doig, A. J. Biochem. Soc. Trans. **2009**, 37, 692-696.
- (2) Lu, J-X.; Qiang, W.; Yau, W-M.; Schwieters, C. D.; Meredith, S. C.; Tycko, R. *Cell* **2013**, *154*, 1257-1268.
- (3) van Horssen, J.; Wesseling, P.; van den Heuvel, L.; de Waal, R. M. W.; Verbeek, M. M. *Lancet Neurology* **2003**, 2, 482-492.
- (4) (a) Abedini, A.; Raleigh, D. P. *Org. Lett.* **2005**, *7*, 693-696. (b) Castillo, G. M.; Lukito, W.; Ngo, C.; Snow, A. D. *Brain Pathology* **1997**, *7*, 1369-1369. (c) Castillo, G. M.; Lukito, W.; Wight, T. N.; Snow, A. D. *J. Neurochem.* **1999**, *72*, 1681-1687.
- (5) Valle-Delgado, J. J.; Alfonso-Prieto, M.; de Groot, N. S.; Ventura, S.; Samitier, J.; Rovira, C.; Fernandez-Busquets, X. *Faseb J.* **2010**, *24*, 4250-4261. (b) Guptabansal, R.; Frederickson, R. C. A.; Brunden, K. R. *J. Biol. Chem.* **1995**, *270*, 18666-18671.
- (6) Karran, E.; Mercken, M.; De Strooper, B. *Nat. Rev. Drug Discov.* **2011**, *10*, 698-U1600.
- (7) Meneghetti, M. C. Z.; Hughes, A. J.; Rudd, T. R.; Nader, H. B.; Powell A. K.; Yates, E. A.; Lima, M. A. J. R. Soc. Interface **2015**, 12, 20150589.
- (8) Madine, J.; Pandya, M. J.; Hicks, M. R.; Rodger, A.; Yates, E. A.; Radford, S. E.; Middleton, D. A. *Angew. Chem. Int. Ed.* **2012**, *51*, 13140-13143.
- (9) Lindahl, B.; Eriksson, L.; Lindahl, U. *Biochem. J.* **1995**, *306*, 177-184.
- (10) (a) Paravastu, A. K.; Leapman, R. D.; Yau, W. M.; Tycko, R. *Proc. Natl. Acad. Sci. U. S. A.* **2008**, *105*, 18349-18354. (b) Petkova, A. T.; Leapman, R. D.; Guo, Z. H.; Yau, W. M.; Mattson, M. P.; Tycko, R. *Science* **2005**, *307*, 262-265.
- (11) Colvin, M. T.; Silvers, R.; Frohm, B.; Su, Y.; Linse, S.; Griffin, R. G. J. Am. Chem. Soc. 2015, 137, 7509-7518.
- (12) Zulueta, M. M. L.; Lin, S.-Y.; Lin, Y.-T.; Huang, C.-J.; Wang, C.-C.; Ku, C.-C.; Shi, Z.; Chyan, C.-L.; Irene, D.; Lim, L.-H.; Tsai, T.-I.; Hu, Y.-P.; Arco, S. D.; Wong, C.-H.; Hung, S.-C. *J. Am. Chem. Soc.* **2012**, *134*, 8988-8995.
- (13) Yates, E. A.; Santini, F.; Guerrini, M.; Naggi, A.; Torri, G.; Casu, B. *Carbohydr. Res.* **1996**, 294, 15-27.
- (14) Patching, S. G.; Henderson, P. J. F.; Sharples, D. J.; Middleton, D. A. *Mol. Membr. Biol.* **2013**, *30*, 129-137.
- (15) Elena, B.; Lesage, A.; Steuernagel, S.; Bockmann, A.; Emsley, L. J. Am. Chem. Soc. **2005**, 127, 17296-17302.
- (16) (a) Portieri, A.; Harris, R. K.; Fletton, R. A.; Lancaster, R. W.; Threlfall, T. L. *Magn. Reson. Chem.* **2004**, *42*, 313-320. (b) Timonen, J. T.; Pohjala, E.; Nikander, H.; Pakkanen, T. T. *Pharm. Res.* **1998**, *15*, 110-115.
- (17) Liang, J. M.; Ma, Y.; Chen, B.; Munson, E. J.; Davis, H. T.; Binder, D.; Chang, H. T.; Abbas, S.; Hsu, F. L. *J. Phys. Chem. B* **2001**, *105*, 9653-9662.
- (18) Jaroniec, C. P.; Tounge, B. A.; Herzfeld, J.; Griffin, R. G. J. Am. Chem. Soc. **2001**, 123, 3507-3519.
- (19) Sarkar, A.; Desai, U. R. Plos One 2015, 10.

