
This is a repository copy of An Improved DCM-based Tunable True Random Number 
Generator for Xilinx FPGA.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/103707/

Version: Accepted Version

Article:

Johnson, Anju P. orcid.org/0000-0002-7017-1644, Chakraborty, Rajat Subhra and 
Mukhopadhyay, Debdeep (2016) An Improved DCM-based Tunable True Random Number
Generator for Xilinx FPGA. IEEE Transactions on Circuits and Systems II: Express Briefs. 
pp. 452-456. ISSN 1549-7747

https://doi.org/10.1109/TCSII.2016.2566262

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/TCSII.2016.2566262
https://eprints.whiterose.ac.uk/id/eprint/103707/
https://eprints.whiterose.ac.uk/


1

An Improved DCM-based Tunable True Random

Number Generator for Xilinx FPGA
Anju P. Johnson Member, IEEE, Rajat Subhra Chakraborty Senior Member, IEEE and

Debdeep Mukhopadyay Member, IEEE

Abstract—True Random Number Generators (TRNGs) play a
very important role in modern cryptographic systems. Field
Programmable Gate Arrays (FPGAs) form an ideal platform for
hardware implementations of many of these security algorithms.
In this paper we present a highly efficient and tunable TRNG
based on the principle of Beat Frequency Detection (BFD), specifi-
cally for Xilinx FPGA based applications. The main advantages of
the proposed TRNG are its on-the-fly tunability through Dynamic
Partial Reconfiguration (DPR) to improve randomness qualities.
We describe the mathematical model of the TRNG operations,
and experimental results for the circuit implemented on a Xilinx
Virtex-V FPGA. The proposed TRNG has low hardware footprint
and in-built bias elimination capabilities. The random bitstreams
generated from it passes all tests in the NIST statistical testsuite.

Keywords—Digital Clock Manager, Dynamic Partial Reconfigu-
ration, Field Programmable Gate Arrays, True Random Number
Generator.

I. INTRODUCTION

True Random Number Generators (TRNGs) have become
indispensable component in many cryptographic systems, in-
cluding PIN/password generation, authentication protocols,
key generation, random padding and nonce generation. TRNG
circuits utilize a non-deterministic random process, usually in
the form of electrical noise, as a basic source of randomness.
Along with the noise source, a noise harvesting mechanism
to extract the noise, and a post-processing stage to provide a
uniform statistical distribution are other important components
of the TRNG. Our focus is to design an improved FPGA
based TRNGs, using purely digital components. Using digital
building blocks for TRNGs has the advantage that the designs
are relatively simple and well-suited to the FPGA design
flow, as they can suitably leverage the CAD software tools
available for FPGA design. However, digital circuits exhibit
comparatively limited number of sources of random noise, e.g.
metastability of circuit elements, frequency of free running
oscillators and jitters (random phase shifts) in clock signals.
As would be evident, our proposed TRNG circuit utilizes the
frequency difference of two oscillators and oscillator jitter as
sources of randomness.

Reconfigurable devices have become an integral part of
many embedded digital systems, and predicted to become the
platform of choice for general computing in near future. From

The authors are with the Secured Embedded Architecture Labora-

tory (SEAL), Dept. of Computer Science and Engineering, Indian Insti-
tute of Technology Kharagpur, Kharagpur, West Bengal, INDIA – 721302.
Email:{anjupj,rschakraborty,debdeep}@cse.iitkgp.ernet.in.

being mainly prototyping devices, reconfigurable systems in-
cluding FPGAs are being widely employed in cryptographic
applications, as they can provide acceptable to high processing
rate at much lower cost and faster design cycle time. Hence,
many embedded systems in the domain of security require a
high quality TRNG implementable on FPGA as a component.
We present a TRNG for Xilinx FPGA based applications,
which has a tunable jitter control capability based on DPR
capabilities available on Xilinx FPGAs. The major contribution
of this paper is the development of an architecture which
allows on–the–fly tunabilty of statistical qualities of a TRNG
by utilizing DPR capabilities of modern FPGAs for varying the
DCM modeling parameters. To the best of our knowledge this
is the first reported work which incorporates tunability in a
TRNG. This approach is only applicable for Xilinx FPGAs
which provide programmable clock generation mechanism,
and capability of DPR.

DPR is a relatively new enhancement in FPGA technology,
whereby modifications to predefined portions of the FPGA
logic fabric is possible on–the–fly, without affecting the normal
functionality of the FPGA. Xilinx Clock Management Tiles
(CMTs) contain Dynamic Reconfiguration Port (DRP) which
allow DPR to be performed through much simpler means [1].
Using DPR, the clock frequencies generated can be changed
on–the–fly by adjusting the corresponding DCM parameters.
DPR via DRP is an added advantage in FPGAs as it allows
the user to tune the clock frequency as per the need. Design
techniques exist to prevent any malicious manipulations via
DPR which in other ways may detrimentally affect the security
of the system [2].

The goal of this paper is the design, analysis and implemen-
tation of an easy-to-design, improved, low-overhead, tunable
TRNG for the FPGA platform. The following are our major
contributions:

1) We investigate the limitations of the BFD–TRNG [3]
when implemented on a FPGA design platform. To solve
the shortcomings, we propose an improved BFD–TRNG
architecture suitable for FPGA based applications. To the
best of our knowledge this is the first reported work which
incorporates tunability in a fully digital TRNG.

2) We analyze the modified proposed architecture mathemat-
ically and experimentally.

3) Our experimental results strongly support the mathe-
matical model proposed. The proposed TRNG has low
hardware overhead, and the random bitstreams derived
from the proposed TRNG passes all tests in the NIST
statistical testsuite [4].



2

The rest of the paper is organized as follows: Section II
discusses the preliminaries, followed by the proposed TRNG
design in Section III. The mathematical model of the proposed
design is discussed in Section IV. Section V describes the
implementation and experimental results. We conclude in
Section VI.

II. BACKGROUND AND MOTIVATION

This section briefly describes the basic BFD–TRNG model
and the DPR methodology utilizing DRP ports available in
Xilinx CMTs.

A. Single Phase BFD-TRNG Model

The BFD-TRNG circuit [3] is a fully-digital TRNG, which
relies on jitter extraction by the Beat Frequency Detection
(BFD) mechanism, originally implemented as a 65-nm CMOS
ASIC. The structure and working of the (single phase) BFD-
TRNG can be summarised as follows, in conjunction with
Fig. 1:

1) The circuit consists of two quasi-identical ring oscillators
(let us term them as ROSCA and ROSCB), with similar
construction and placement. Due to inherent physical
randomness originating from process variation effects
associated with deep sub-micron CMOS manufacturing,
one of the oscillators (say, ROSCA) oscillates slightly
faster than the other oscillator (ROSCB). In addition,
the authors [3] proposed to employ trimming capacitors
to further tune the oscillator output frequencies.

2) The output of one of the ROs is used to sample the
output of the other, using a D flip-flop (DFF). Without
loss of generality, assume the output of ROSCA is fed
to the D-input of the DFF, while the output of ROSCB

is connected to the clock input of the DFF.
3) At certain time intervals (determined by the frequency

difference of the two ROCs), the faster oscillator signal
passes, catches up, and overtakes the slower signal in
phase. Due to random jitter, these capturing events happen
at random intervals, called “Beat Frequency Intervals”. As
a result, the DFF outputs a logic-1 at different random
instances.

4) A counter controlled by the DFF increments during the
beat frequency intervals, and gets reset due to the logic-1
output of the DFF. Due to the random jitter, the free-
running counter output ramps up to different peak values
in each of the count-up intervals before getting reset.

5) The output of the counter is sampled by a sampling clock
before it reaches its maximum value.

6) The sampled response is then serialized to obtain the
random bitstream.

B. Shortcoming of the BFD-TRNG

One shortcoming of the previous BFD-TRNG circuit is that
its statistical randomness is dependent on the design quality
of the ring oscillators. Any design bias in the ring oscillators
might adversely affect the statistical randomness of the bit-
stream generated by the TRNG. Designs with same number of

Fig. 1: Architecture of single phase BFD–TRNG [3].

inverters but different placements resulted in varying counter
maximas. Additionally the same ring-oscillator based BFD-
TRNG implemented on different FPGAs of the same family
shows distinct counter maxima. Unfortunately, since the ring
oscillators are free-running, it is difficult to control them to
eliminate any design bias. The problem is exacerbated in
FPGAs where it is often difficult to control design bias because
of the lack of fine-grained designer control on routing in the
FPGA design fabric. A relatively simple way of tuning clock
generator hardware primitives on Xilinx FPGAs, particularly
the Phase Locked Loop (PLL) or the Digital Clock Manager
(DCM) as used in this work, is by enabling dynamic reconfig-
uration via the Dynamic Reconfiguration Ports (DRPs). Once
enabled, the clock generators can be tuned to generate clock
signals of different frequencies by modifying values at the
DRPs [1] on–the–fly, without needing to bring the device off–
line.

We next describe the proposed tunable BFD-TRNG suitable
for FPGA platforms.

III. TUNABLE BFD–TRNG FOR FPGA BASED

APPLICATIONS

A. Design Overview

Fig. 2 shows the overall architecture of the proposed TRNG.
In place of two ring oscillators, two DCM modules generate the
oscillation waveforms. The DCM primitives are parameterized
to generate slightly different frequencies, by adjusting two
design parameters M (Multiplication Factor) and D (Division
Factor). In the proposed design, the source of randomness is
the jitter presented in the DCM circuitry. The DCM modules
allow greater designer control over the clock waveforms, and
their usage eliminates the need for initial calibration [3]. Tun-
ability is established by setting the DCM parameters on–the–
fly using DPR capabilities using DRP ports. This capability
provides the design greater flexibility than the ring oscillator
based BFD-TRNG. The difference in the frequencies of the
two generated clock signals is captured using a DFF. The DFF
sets when the faster oscillator completes one cycle more than
the slower one (at the beat frequency interval). A counter is
driven by one of the generated clock signals, and is reset when
the DFF is set. Effectively, the counter increases the throughput
of the generated random numbers. The last three LSBs of the
maximum count values reached by the count were found to
show good randomness properties.



3

Fig. 2: Overall architecture of proposed Digital Clock Manager
based tunable BFD–TRNG.

Fig. 3: Architecture of tuning circuity.

Additionally, we have a simple post-processing unit using a
Von Neumann Corrector (VNC) [5] to eliminate any biasing
in the generated random bits. VNC is a well-known low-
overhead scheme to eliminate bias from a random bitstream. In
this scheme, any input bit “00” or “11” pattern is eliminated;
otherwise, if the input bit pattern is “01” or “10”, only the first
bit is retained. The last three LSBs of the generated random
number is passed through the VNC. The VNC improves the
statistical qualities at the cost of slight decrease in throughput.

B. Tuning Circuitry

The architecture of the tuning circuitry is shown in Fig. 3.
The target clock frequency is determined by the set of pa-
rameter values actually selected. The random values reached
by the counter, as well as the jitter are related to the chosen
parameters M and D (details are discussed in Section IV).
This makes it possible to tune the proposed TRNG using the
predetermined stored M and D values. As unrestricted DPR
has been shown to be a potential threat to the circuit [6],
the safe operational value combinations of the D and M
parameters for each DCM are predetermined during the design
time, and stored on an on-chip Block RAM (BRAM) memory
block in the FPGA.

There are actually two different options for the clock gen-
erators – one can use the Phase Locked Loop (PLL) hard
macros available on Xilinx FPGAs, or the DCMs. We next
describe analytical and experimental results which compelled
us to choose DCM in favor of the PLL modules for clock
waveform generation.

IV. MATHEMATICAL MODEL OF PROPOSED TRNG

A. Circuit Behavior with PLL as Clock Generator

We first consider the operational principle for the PLL, and
its feasibility as a component of the proposed TRNG. The
Xilinx PLL synthesizes a clock signal whose frequency is given
by:

FCLKFX = FCLKIN ·
M

D
(1)

where FCLKIN is the frequency of input clock signal, and M
and D are the multiplication and division factors previously
mentioned. Values of M and D can be varied to generate the
required clock frequency. The two PLLs can be parametrized
with the necessary set of (M,D) values to generate two
slightly different clock frequencies. Without loss of generality,
assume PLLA is set up to be slightly faster than PLLB , i.e.
the time periods are related by TA < TB . On reaching the beat
frequency interval (say, n clock cycles), by definition, PLLA

completes one cycle more than the slower one. The following
equation depicts this simple model:

TA

TB

=
N

N + 1
(2)

N = 2.n, where n is the estimated maximum counter value.
For the first n clock cycles, the counter does not increment,
and then increments by one for each of the next n clock
cycles. Hence, the maximum counter values reached is n.
Then, Eqn. (2) leads to:

n =

⌊

TB

2(TB − TA)

⌋

(3)

Using design configuration parameters (M and D) one of
the oscillators is made to run faster than the other. This is
done in order to limit the range of counter values produced.
If both the oscillators were configured to run at the same
frequency we may get random numbers, but the maximum
counter value produced will be very high (theoretically infinite)
as per Eqn. (3). In other words, the latency of the circuit will be
very high, since the counter sets and resets only after reaching
a very large count value. When the Xilinx PLLs are used as
clock generators, the predicted and observed counter values
for all combinations of (M,D) values remain the same. This
confirms that the Xilinx PLL instances demonstrate close-to-
ideal behavior and are quasi-identical, and have negligible jitter
between the waveforms generated by them. Since the BFD-
TRNG is critically dependent on the presence of jitter between
the two generated clock waveforms, PLLs seem unsuitable as
components of the proposed TRNG. Hence, next we examine
the DCM as clock generators.

B. Circuit Behavior with DCM as Clock Generator

Without loss of generality, the clock signals produced by
one of the DCM (say, DCMA) is slightly faster than the
other (DCMB), implying TA < TB . This is ensured by
assigning the design parameters M and D as in Eqn. (7). More
details are discussed in Section IV-C. Timing diagrams of the
DCM clock outputs and the resultant DFF response is shown
in Fig. 4. Let N be the number of clock cycles of the slower
clock signal in which the faster clock signal completes exactly
one cycle more. Then,

tA[N + 1] = (N + 1)TA + ǫA (4)

and
tB [N ] = NTB + ǫB (5)

where ǫA and ǫB are the uncertainties due to jitter in DCMA

and DCMB respectively. The uncertainties due to jitter in



4

Fig. 4: Timing diagram of DCM output waveforms and the
corresponding and DFF response.

TABLE I: Hardware Footprint of the Proposed TRNG‡ and
the Ring Oscillator based TRNG

Design Module Name Slice SliceReg LUTs BUFG DCM ADV PLL ADV

Oscillators 4 0 4 4 2 0
DCM-based TRNG DFF 1 1 0 0 0 0

Counter 9 25 15 30 0 0
Total 14 26 19 34 2 0

Oscillators 23 0 90 0 0 0
Ring Oscillator DFF 1 1 0 0 0 0
-based TRNG Counter 9 25 15 30 0 0

Sampler 0 0 0 1 0 1
Total 33 26 15 31 0 1

‡
The hardware footprint excludes the MicroBlaze soft processor necessary for overall control and data acquisition from

the TRNG, and 46 bytes of memory required in the BRAM module to store the 23 feasible (M,D) calculations.

TABLE II: On-Chip Power Dissipation⋆ of the Proposed
TRNG and the Ring Oscillator based TRNG‡

On-Chip Clock Logic Signal BRAM PLL DCM IO Leakage Total

DCM 0.098 0.001 0.002 0.003 0.134 0.136 0.034 1.062 1.470
-based TRNG

Ring Oscillator 0.053 0.000 0.002 0.000 0.268 0.000 0.000 1.061 1.384
-based TRNG

⋆

Power dissipation in watt.
‡

Sampling clock frequency is 103.1992 kHz.

DCMA and DCMB are different, this is because the DCMs
are designed with distinct modeling parameters M and D. The
corresponding jitter for each of the DCMs used in the proposed
design is presented in Table III. For example, consider the
configuration presented in Sl.No. 1. In this case, DCMA is
configured with M=15 and D=31 and DCMB is configured
with M=14 and D=29. This results in peak-to-peak jitter of
0.600 ns and 0.568 ns for DCMA and DCMB respectively.
Of course, we also have: tA[N + 1] = tB [N ]. Assuming
there is no metastability for the DFF if signal transitions
occur in the setup-hold timing window around its driving clock
edge (the metastability issue can be avoided by cascaded DFF
combination), the transition time (td) of the DFF, the time
interval after which it sets (i.e. the counter driven by the DFF
resets), is estimated by:

td =
tA[N + 1] + tB [N ]

2
=

(N + 1)TA +NTB + ǫA + ǫB

2
(6)

From Eqn. (6), the transition time of DFF is a random process.
The output of the DFF, i.e. the time interval (td) after which
the counter resets, is thus a random function. As a result, the
count value obtained when the counter resets is also a random
quantity. The counter resets automatically when the DFF sets,
and the operation continues. The DFF resets approximately n
cycles after it sets, and the counter starts counting again.

C. Tuning Parameter Value Ranges

Eqns.(1)–(2) also holds true for DCM based beat frequency
detection also. Hence, we have the following relationships:

D1 ·M2

D2 ·M1
=

N

N + 1















2 ≤ Mi ≤ 33,

1 ≤ Di ≤ 32,

400 ≤ N ≤ 1000,

Mi, Di, N ∈ Z.

(7)

where, M and D values are as per the Xilinx DCM specifica-
tion [1]. The count value to be sampled was set to be between
200 and 500, hence the values of N are as per Eqn. (7).
Higher value of count is not desired, as it leads to higher power
dissipation. As per Eqn. (7), there are 23 sets of (M,D) value
combinations for the two DCMs, which satisfy the required
count range. These values are stored in a BRAM , and for 23
distinct pairs we require 5 bit address line for selecting one of
the combinations of M and D values, and if the BRAM is con-
figured to hold 16-bit words, we require 46 bytes of memory.
The address increments to the required BRAM location where
the corresponding values of the DCMB is stored on demand,
using a simple address generation module. In this way, using a
restricted DPR methodology, the designer has control over the
DCM configuration to choose the best combination generating
random numbers with the best statistical quality. In order to
avoid malicious modifications via DPR, we have enabled DPR
restrictively by storing the allowable modelling parameters. In
order to implement this secure tunable design slightly higher
hardware overhead and power dissipation is required. The
DCM-DRP controller initiates DPR in DCMA and DCMB

using standard Xilinx design methodology [1].

V. EXPERIMENTAL RESULTS

The proposed circuit was designed using Verilog HDL,
and implemented using Xilinx ISE (v 14.5) CAD software
platform targeting the Xilinx Virtex-V FPGA platform. The
DCM-DRP controller was implemented using the MicroBlaze
soft processor directly core directly instantiable in a Xilinx
FPGA. Table-I shows the hardware resource requirements
results of the proposed TRNG, excluding the soft processor
and the BRAM memory. This table also compares the hardware
resource incurred in the design of ring oscillator-based BFD-
TRNG which configured with target (nominal) time period of
38.00 ns (89 inverters). The clock signals produced by the
DCMs are sets of values of the design parameters M and
D as per Eq.(1). DCM is more controllable because there is
control over the two parameters M and D which is set by the
designer, no such parameters exist for the RO based conven-
tional BFD-TRNG. Additionally, it was observed that same
hard macro based conventional BFD-TRNG implemented on
different FPGAs show different counter maximas. In ASIC-
based designs, trimming capacitors are used to adjust the
frequencies of the clock generator circuitry; however, it is
difficult to have such a mechanism on FPGA implementations.
A Microblaze processor is used in this design to collect the
generated random numbers back to the computer. Due to the
process variation effects, a frequency difference of 0.1959%



5

TABLE III: Experimental and Estimated Results of Counter Value Distribution

Sl.No. DCM -1 DCM -2 Counter

M D Output Freq. Period Jitter Period Jitter M D Output Freq. Period Jitter Period Jitter Estimated Experimental

(MHz) (unit interval) (ns) (pk-to-pk) (ns) (MHz) (unit interval) (ns) (pk-to-pk) (ns) Max. Count Mean Relative Std. Dev. (%)

1 15 31 48.3871 0.029 0.600 14 29 48.2759 0.027 0.568 217 215 0.7683
2 21 22 95.4545 0.043 0.453 20 21 95.2381 0.042 0.436 220 218 1.1735
3 17 21 80.9534 0.035 0.436 21 26 80.7692 0.042 0.518 220 217 3.0310
4 20 27 74.0741 0.040 0.535 17 23 73.9130 0.035 0.469 229 224 6.3010
5 15 29 51.7241 0.029 0.568 16 31 51.6129 0.031 0.600 232 225 5.4424
6 17 25 68.0000 0.034 0.502 19 28 67.8571 0.037 0.551 237 236 1.2370
7 22 23 95.6522 0.045 0.469 21 22 95.9545 0.043 0.453 241 239 3.3484
8 19 29 65.5172 0.037 0.568 17 26 65.3846 0.034 0.518 246 241 5.0744
9 19 32 59.3750 0.037 0.617 16 27 59.2593 0.032 0.535 256 254 1.0534
10 22 31 70.9677 0.043 0.600 17 24 70.8333 0.034 0.486 268 263 0.8939
11 23 24 95.8333 0.047 0.486 22 23 95.6522 0.045 0.469 269 257 4.6929
12 19 25 76.0000 0.038 0.502 22 29 75.8621 0.043 0.568 275 271 1.0690
13 24 25 96.0000 0.048 0.502 23 24 95.8333 0.047 0.486 287 283 1.9877
14 21 32 65.6250 0.040 0.617 19 29 65.5172 0.037 0.568 304 302 0.9336
15 23 31 74.1936 0.045 0.060 20 27 74.0741 0.040 0.535 310 308 1.2826
16 25 26 96.1538 0.050 0.518 24 25 96.0000 0.048 0.502 312 300 5.3238
17 21 26 80.7692 0.042 0.518 25 31 80.6452 0.048 0.600 325 317 5.0382
18 26 27 96.2963 0.052 0.535 25 26 96.1538 0.050 0.518 337 333 1.8000
19 27 28 96.4286 0.053 0.551 26 27 96.2963 0.052 0.535 364 387 1.5485
20 28 29 96.5517 0.055 0.568 27 28 96.4286 0.053 0.551 391 388 1.7102
21 29 30 96.6667 0.056 0.584 28 29 96.5517 .055 0.568 420 398 14.3593
22 30 31 96.7742 0.058 0.600 29 30 96.6667 0.056 0.584 449 446 3.8755
23 31 32 96.8750 0.060 0.6170 30 31 96.5542 0.058 0.600 480 468 3.6902

was observed between the two ring oscillators. Additionally,
hardware resource and power consumption varies with differ-
ent clock frequency of the ring oscillator. Also, this design
is vulnerable to Hardware Trojan Horse (HTH) insertions
imposed on sampling clocks [7]. Table-II shows the power
analysis report of the proposed TRNG and the Ring Oscillator
based BFD-TRNG, the proposed design has about 6% power
overhead compared to BFD-TRNG. Assuming an average
TRNG count of 271 (corresponding to memory location 12),
counter operating at 75.8621 MHz (corresponding to DCMB),
50% bits rejected by the Von Neumann Corrector, and 3 bits
per random number retained, the Power-delay Product (PDP)
of the proposed TRNG is 3.50 mJ per kilobit.

The tunable sets of DCM parameters, and the resultant
theoretical and experimental random numbers are shown in
Table-III. To understand the results, consider the configuration
presented in Sl.No. (1) in the table. In this case, DCMA

is configured with M = 15 and D = 31, and DCMB is
configured with M = 14 and D = 29. This results in peak-to-
peak jitter of 0.600 ns and 0.568 ns for DCMA and DCMB

respectively. The resulting clock frequencies synthesized are
48.3871 MHz and 48.2759 MHz respectively. The estimated
counter values as per Eqn. (3) is 217, and the corresponding
mean of the counter value distribution obtained experimentally
is 215. Hence, there is a relative deviation of 0.7683.

The statistical performance of the design is shown in Table-
IV. This table presents the p-values and proportions corre-
sponding for the individual NIST tests on the generated ran-
dom numbers with mean 217, 275 and 480 respectively (corre-
sponding to results for three separate cases: (Sl. No. 1,12, and
23 considered in Table III). From the results, it is evident that
the proposed TRNG exhibits excellent randomness properties
at low hardware footprint and low power dissipation.

VI. CONCLUSION

We have presented an improved fully digital tunable TRNG
for FPGA based applications, based on the principle of Beat
Frequency Detection and clock jitter, and with in-built error-
correction capabilities. The TRNG utilizes this tunability fea-
ture for determining the degree of randomness, thus providing

TABLE IV: NIST Statistical Test Results‡

Max. Count 217 275 480
∆f = 0.1112 ∆f = 0.1379 ∆f = 0.3208

Test p-value prop. p-value prop. p-value prop.

Frequency 0.9114 1.0 0.5341 1.0 0.0669 1.0
BlockFrequency 0.9114 1.0 0.2133 1.0 0.7399 1.0

CumulativeSums* 0.3505 1.0 0.52133 1.0 0.1223 1.0
Runs 0.0089 0.8 0.7399 1.0 0.1223 0.8

LongestRun 0.7400 1.0 5341 1.0 0.2133 1.0
Rank 0.3505 1.0 5341 1.0 0.5341 1.0
FFT 0.0089 1.0 0.0352 1.0 0.5341 1.0

NonOverlappingTemp.* 0.0043 1.0 0.0089 0.8 0.0089 0.8
OverlappingTemplate 0.2133 0.8 0.3505 1.0 0.5341 1.0
ApproximateEntropy 0.7399 1.0 0.7399 1.0 0.5341 0.9

Serial* 0.5341 1.0 0.1223 1.0 0.7399 1.0
LinearComplexity 0.9114 1.0 0.5341 1.0 0.7399 1.0

‡
For tests with more than one subtest, the p-value and proportion shown are the

smaller values.

a high degree of flexibility for various applications. The
proposed design successfully passes all NIST statistical tests.

REFERENCES

[1] Xilinx, Inc., “Virtex-5 FPGA Configuration User Guide UG 191
(v3.11)”, [Online]. Available: www.xilinx.com/support/documentation/
user guides/ug191.pdf, Accessed: May 2016.

[2] A. P. Johnson, R. S. Chakraborty and D. Mukhopadhyay, “A PUF-
Enabled Secure Architecture for FPGA-Based IoT Applications,” in IEEE

Transactions on Multi-Scale Computing Systems, vol. 1, no. 2, pp. 110-
122, April-June 1 2015.

[3] Q. Tang, B. Kim, Y. Lao, K. K. Parhi and C. H. Kim, “True Random
Number Generator circuits based on single- and multi-phase beat fre-
quency detection,” Proceedings of the IEEE 2014 Custom Integrated

Circuits Conference, pp. 1-4, September 2014.

[4] A. Rukhin, J. Soto, J. Nechvatal, M. Smid and E. Barker, “A Statistical
Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications”, DTIC Document, Tech. Rep., 2001.

[5] J. Von Neumann, “Various Techniques used in Connection with Random
Digits.”, National Bureau of Standards Applied Mathematics Series, vol.
12, pp. 36-38, 1951.

[6] A. P. Johnson, S. Saha, R. S. Chakraborty, D. Mukhopadyay and
Sezer Gören ,“Fault Attack on AES via Hardware Trojan Insertion by
Dynamic Partial Reconfiguration of FPGA over Ethernet”, 9th Workshop

on Embedded Systems Security (WESS 2014), October 2014.

[7] A. P. Johnson, R. S. Chakraborty and D. Mukhopadhyay, “A Novel
Attack on a FPGA based True Random Number Generator”, 10th

Workshop on Embedded Systems Security (WESS 2015), October 2015.


