

This is a repository copy of *Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103694/

Version: Accepted Version

Article:

Lucek, K., Lemoine, M. and Seehausen, O. (2014) Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression. Journal of Evolutionary Biology, 27 (10). pp. 2233-2248. ISSN 1010-061X

https://doi.org/10.1111/jeb.12475

This is the peer reviewed version of the following article: Lucek, K., Lemoine, M. and Seehausen, O. (2014), Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression. Journal of Evolutionary Biology, 27: 2233–2248, which has been published in final form at http://dx.doi.org/10.1111/jeb.12475. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)

(http://olabout.wiley.com/WileyCDA/Section/id-828039.html)

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Contemporary ecotypic divergence during a recent range expansion was facilitated
2	by adaptive introgression
3	
4	Kay Lucek ^{1,2,4} , Mélissa Lemoine ³ , Ole Seehausen ^{1,2}
5	
6	¹ Institute for Ecology & Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern,
7	Switzerland
8	² Department of Fish Ecology, EAWAG Center for Ecology, Evolution and Biogeochemistry,
9	CH-6047 Kastanienbaum, Switzerland
10	³ Institute of Evolutionary Biology and Environmental Studies, University of Zurich,
11	Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
12	
13	⁴ kay.lucek@eawag.ch
14	
15	
16	Key words: Biological invasion, P matrix, adaptive introgression.
17	
18	

19 Abstract

20 Although rapid phenotypic evolution during range expansion associated with colonization 21 of contrasting habitats has been documented in several taxa, the evolutionary 22 mechanisms that underlie such phenotypic divergence have less often been investigated. 23 A strong candidate for rapid ecotype formation within an invaded range is the threespine 24 stickleback in the Lake Geneva region of central Europe. Since its introduction only ~ 140 25 years ago it has undergone a significant expansion of its range and its niche, now forming 26 phenotypically differentiated parapatric ecotypes that occupy either the pelagic zone of 27 the large lake or small inlet streams respectively. By comparing museum collections from 28 different times with contemporary population samples, we here reconstruct the evolution 29 of parapatric phenotypic divergence through time. Using genetic data from modern 30 samples we infer the underlying invasion history. We find that parapatric habitat-31 dependent phenotypic divergence between the lake and stream was already present in 32 the first half of the twentieth century, but the magnitude of differentiation increased 33 through time, particularly in anti-predator defense traits. This suggests that divergent 34 selection between the habitats occurred and was stable through much of the time since 35 colonization. Recently increased phenotypic differentiation in anti-predator defense traits 36 likely results from habitat dependent selection on alleles that arrived through 37 introgression from a distantly related lineage from outside the Lake Geneva region. This 38 illustrates how hybridisation can quickly promote phenotypic divergence in a system 39 where adaptation from standing genetic variation was constrained.

40

41

Page 3 of 106

42	Introd	luction

43	The colonization of new habitats combined with natural selection favouring different
44	phenotypes in new environments can quickly lead to the formation of new ecotypes that
45	are distinct from their ancestral population (Schluter, 2000; Carroll et al., 2007; Nosil,
46	2012). Subsequent adaptive phenotypic evolution can be rapid (Thompson, 1998;
47	Palumbi, 2001; Hairston et al., 2005; Carroll et al., 2007; Dlugosch & Parker, 2008; Hendry
48	et al., 2008), especially when measured over short time scales (Hairston et al., 2005) and
49	if selection acts on standing genetic variation (Facon et al., 2006; Arnold et al., 2008;
50	Barrett & Schluter, 2008). The rate and extent of adaptive change depends moreover on
51	the genetic and environmental constraints as well as the time that is available for
52	selection to act (Johnston & Selander, 1964; Hendry <i>et al.</i> , 2000; Koskinen <i>et al.</i> , 2002;
53	Nosil et al., 2009; Matesanz et al., 2012). Rapid phenotypic changes that allow individuals
54	to match their environment the best may similarly occur instantaneously through
55	adaptive phenotypic plasticity, wherein identical genotypes can express different
56	phenotypes in different environments (Hairston et al., 1999; West-Eberhard, 2003; Keller
57	& Taylor, 2008; Badyaev, 2010; Calsbeek <i>et al.</i> , 2011).
58	
59	Although rapid ecotype formation has been frequently studied (e.g. Johnston & Selander,
60	1964; Hendry et al., 2000; Koskinen et al., 2002; Matesanz et al., 2012), the evolutionary
61	changes through time have only rarely been investigated due to rarity of historical data
62	documenting these evolutionary shifts (but see Hairston <i>et al.</i> , 1999; Badyaev, 2010;
63	Calsbeek et al., 2011 for examples). It is furthermore less clear whether ecotype formation

64 commonly occurs through a gradual process, where genetic constraints may lead towards

a novel adaptive optimum over time (Schluter, 1996) or rapidly through selection on

66	standing genetic variation (Barrett & Schluter, 2008) and/or phenotypic plasticity (West-
67	Eberhard, 2003). Adaptive phenotypic evolution is indeed thought to be constrained along
68	so called "lines of least resistance" or $m{g}_{ ext{max}}$ i.e. the leading eigenvector of the $m{G}$ matrix,
69	which summarizes the additive genetic variances and covariances (Lande, 1979; Lande $\&$
70	Arnold, 1983; Schluter, 1996; see Steppan <i>et al.</i> , 2002 for a review). Biologically, this axis
71	accounts for the largest proportion of genetic variance and is shaped by selection and drift
72	(Lande & Arnold, 1983; Steppan <i>et al.</i> , 2002; Marroig & Cheverud, 2005; Facon <i>et al.</i> ,
73	2006; Arnold <i>et al.</i> , 2008; Barrett & Schluter, 2008). In the absence of quantitative genetic
74	data, the G matrix and $m{g}_{ ext{max}}$ may be surrogated by the P matrix an $m{p}_{ ext{max}}$ respectively, which
75	are based on phenotypic data from wild populations (Cheverud, 1988). This is especially
76	valid when phenotypic traits are relatively heritable (Lande, 1979), as has been found for
77	many taxa (Cheverud, 1988; Leinonen <i>et al.</i> , 2011a; Kolbe <i>et al.</i> , 2011).
78	
79	Here we study a case of recent ecotype formation in the threespine stickleback
80	(Gasterosteus aculeatus species complex) from the Lake Geneva region in Switzerland,
81	where stickleback was introduced only ${\sim}140$ years ago and form now ecologically and
82	phenotypic distinct parapatric lake and stream ecotypes (Lucek et al., 2010; 2013; 2014a).
83	Lake dwelling stickleback differ from their stream counterparts in both feeding and

84 defence related phenotypes. Specifically, they have longer gill rakers allowing them to

feed on a more planktonic diet (Gross, 1977; Berner et al., 2010; Lucek et al., 2013) and

86 extended defense structures, i.e. elongated spines and an increased number of lateral

85

87 plates, protecting them from gape-limited piscivorous predators (Lucek *et al.*, 2010;

88 2013). Historically, however, only a single lateral plate morph with few lateral plates was

89 documented in the Lake Geneva region, which is consistent with the phenotypes in the

90	native range of the introduced South European lineage (Lucek et al., 2010 and references
91	therein). Phenotypic divergence between lake and stream stickleback occurs commonly
92	for feeding and defence related traits, suggesting that they reflect the major divergent
93	selective pressures between the distinct habitats that work on external phenotypes.
94	However, evidence stems mainly from evolutionarily much older stickleback populations
95	elsewhere in the world that emerged shortly after the retreat of the glaciers $\sim \! 12'000$
96	years ago (e.g. Reimchen <i>et al.,</i> 1985; Berner <i>et al.,</i> 2009; Kaeuffer <i>et al.,</i> 2012; Ravinet <i>et</i>
97	<i>al.</i> , 2013, but see Hendry <i>et al.</i> , 2013).

99 By comparing the **P** matrices of historical museum and contemporary collections from 100 several lake and stream stickleback populations, we ask if we can demonstrate gradual 101 changes through time towards the currently observed phenotypic differentiation during a 102 recent biological invasion (Lucek et al., 2013). We focus on traits related to anti-predator 103 defence and feeding ecology, two independent trait categories that have previously been 104 found to experience distinct selective regimes and which are furthermore heritable 105 (Reimchen, 1994; Walker, 1997; Lucek *et al.*, 2013). We predict the angle between p_{max} 106 and the common line of least resistance to either change gradually, increasing over time 107 (Schluter, 1996) if genetic constraints restrict ecotypic divergence. Alternatively, p_{max} of 108 different populations from the same habitat type should align independently of time if 109 habitat dependent ecotypic differentiation was completed rapidly, within the first few 110 decades after colonization. In a second step, we infer the genetic history of this biological 111 invasion using contemporary populations. We test if the contemporary phenotypic 112 differentiation between ecotypes was a result of repeated colonization and secondary 113 contact, where distinct habitats may have been colonized by genetically and

114	phenotypically different colonizing lineages (Taylor & McPhail, 2000), or rather reflects in
115	situ evolution. Finally, we test if both lateral plates and the Ectodysplasin (Eda) locus,
116	which controls the lateral plate phenotype (Colosimo et al., 2004; 2005) show patterns of
117	habitat dependent selection and/or reflect patterns of adaptive introgression from an East
118	European lineage that got introduced in the eastern part of Switzerland (Lucek et al.,
119	2010; Rieseberg, 2011; Pardo-Diaz <i>et al.</i> , 2012).
120	
121	Material and methods
122	Sample collection
123	Eight historical populations from 1921-1979 with ≥ 20 individuals each were available
124	from the Natural History Museums in Geneva and Lausanne (Table 1), with a total of 438
125	individuals originating from both lake and stream habitats. Due to the type of
126	preservation used and legislative restrictions, none of the museum specimens were
127	available for DNA extraction. In addition, a total of 659 individuals from sixteen
128	contemporary populations within the Lake Geneva system were collected between 2007
129	and 2013 using hand nets and minnow traps (Figure 1). Hereafter we refer to these two
130	categories of samples as either of "historical" or of "contemporary" origin, where we use
131	the term "population" to refer to a single sampling event for a geographic site at a given
132	point in time. Some contemporary populations were collected during an earlier study of
133	the invasive range of stickleback in Switzerland (Lucek et al., 2010). Further effort was
134	then made to sample the same sites as those from which historical populations were
135	available. However, only at five of these sites could stickleback be observed and collected
136	(Table 1). For the population GEL3, only juvenile individuals were caught. Consequently

137 only genetic data was generated for this population. Populations were assigned to be

Journal of Evolutionary Biology

138 either lake or stream dwelling based on the habitat where they were sampled.

139 Contemporary individuals were preserved in 70% ethanol after taking a fin clip, which

140 was stored in absolute ethanol for genetic analysis.

141

142 Morphological analysis

143 Sixteen linear morphological traits were measured to the nearest 0.01 mm using a digital

144 calliper. These traits were either related to anti-predator defense, feeding ecology or

145 general body shape and swimming performance (Mori & Takamura, 2004; Lucek *et al.*,

146 2013; see Figure 2). Because all linear traits were significantly correlated with standard

147 length (results not shown), a size correction was applied. Each trait was first scaled by the

148 average trait value separately for each population as suggested by Houle (1992).

149 Subsequently, a linear regression of each trait against standard length was performed

150 separately for each population, retaining the residuals for further analysis (Berner *et al.*,

151 2010b). In addition to the linear measurements, the number of lateral plates on the left

152 flank was counted using a dissection microscope and then separately analysed.

153

154 Pairwise phenotypic comparisons between historical and contemporary populations from

the same site were performed for the five cases where such data was available: GES2,

156 VDL4, VDL6, VDS6, VSS3 (Table 1). The degree of phenotypic divergence was estimated

using pairwise *P*_{ST} based on principal component scores, following Kaeuffer et al. (2012),

where the 95% confidence interval of each P_{ST} was calculated using a resampling

approach with 1000 replicates. *P*_{ST} is used as a unit-less and scale-free proportional

160 measure of pairwise phenotypic divergence. In addition to *P*_{ST}, divergence between the

161 historical and contemporary p_{max} within a sampling site was estimated as the angle

162 between them. The significance of these angles to deviate from zero was determined using 163 a bootstrap resampling procedure with 1000 replicates following Berner (2009). This 164 approach calculates the probability of obtaining an angle between p_{max} that is equal to or 165 greater than our observed angle given the resampling variance if the true angle was zero. 166 For each iteration, the observed angle was subtracted from the bootstrapped angle for 167 each iteration. *P* values were subsequently calculated as the proportion of iterations 168 where the absolute angle difference is equal or greater than the observed angle. The 169 occupied morphospace of each population was additionally estimated as the ellipse size of 170 the 95% confidence interval based on the two leading PC axes. The same PC axes were 171 then used to estimate the shape of the **P** matrix, measured by its eccentricity – the ratio of 172 its two leading eigenvectors – where for example increased directional selection can 173 result in higher eccentricity (Jones et al., 2003). These calculations were performed using 174 all linear traits combined. In addition, feeding and defence related traits were separately 175 analysed because habitat dependent phenotypic divergence between parapatric lake and 176 stream stickleback populations occurs repeatedly in these trait categories whose selective 177 regime is relatively well understood (Lucek *et al.*, 2013). Both feeding and defence related 178 traits are furthermore known to be associated with high heritabilities (Leinonen *et al.*, 179 2011b; Lucek *et al.* 2014b). To account for multiple testing of the same hypothesis, the p 180 values for the angles between p_{max} were corrected using a Benjamini & Yekutieli 181 correction (Narum, 2006). 182 183 The overall multivariate phenotypic changes between *habitat* (lake and stream) or *time*

The overall material phenotypic enanges between nablaat (lake and scream) of time

184 (historical and contemporary) were estimated by calculating the angles between the

185 leading eigenvectors p_{max} of each population against the overall p_{max} , where all individuals

186	were pooled. The overall $oldsymbol{p}_{ ext{max}}$ may consequently capture the major evolutionary
187	constraints in the entire data set, which may be similar for some populations but not
188	others. Following Schluter (1996), the angle between two $p_{ m max}$ was calculated as the
189	inversed cosine of their dot product that is divided by the summed length of both $m{p}_{ m max}$.
190	The statistical significance of each comparison was established using 1000 bootstrap
191	replicates and then corrected for multiple comparisons using a Benjamini & Yekutieli
192	correction. Obtained angles were subsequently tested for a significant association with
193	either <i>habitat, time</i> or their interaction using linear models, where the best fitting model
194	was determined using a stepwise backward procedure.
195	
196	Lastly, a linear model was used to test if the lateral plate counts differ significantly
197	between historical and contemporary populations (i.e. <i>time</i>) as well as between lake and
198	stream populations (i.e. <i>habitat</i>). Because lateral plate counts do not follow a normal
199	distribution (Shapiro test: W = 0.422, $p < 0.001$) and because the variance in the number
200	of plates differed between historical and contemporary populations (Fligner-Killeen test:
201	χ_{21} = 8.26, <i>p</i> = 0.004) the number of plates were boxcox-transformed to meet the
202	assumptions of normality. Moreover, a variance function structure was included in the
203	model to allow for different variances between historical and contemporary populations
204	using the "varIdent" function in the R package "nlme" (Pinheiro and Bates 2000).
205	Population was included as a random effect. A stepwise backward deletion procedure was
206	then used to remove non-significant terms ($p > 0.05$). Fixed effects were subsequently
207	tested for significance using two-tailed, Type II F values (Fox, 2002). Model selection was
208	done using maximum likelihood while parameter estimates of mixed models were

209	obtained via restricted maxi	mum likelihood	(Pinheiro and	Bates 2000). A	All statistical
-----	------------------------------	----------------	---------------	----------------	-----------------

analyses were performed in R 2.15.1 (R Core Team, 2012).

211

212 *Genetic analysis*

213	In total, 403 individuals from 16 contemporary sites within the Rhone drainage were	

214 genotyped at nine microsatellites (Table 1), of which three markers (Stn26, Stn96,

Stn130) are putatively linked to QTLs related to spine lengths (Peichel *et al.*, 2001). In

addition, 147 individuals from five populations within the invasive range of stickleback in

217 Switzerland outside the Rhone drainage system were included to test for potential gene

218 flow between drainage systems. DNA for all individuals was extracted using a 10% Chelex

solution, following the manufacturers protocol (Biorad, California, USA). All

220 microsatellites were amplified in one multiplex kit. Detailed information on the marker

identity, the multiplexing setup and the PCR protocol can be found in Lucek *et al.* (2014a).

Alleles were visualized on an ABI 3130XL and scored with GENEMAPPER 4.0 (Applied

223 Biosystems, Switzerland).

224

Pairwise genetic F_{ST} were calculated with GENODIVE 2.0B22 (Meirmans & Van Tienderen,

226 2004) using 100,000 bootstrap replicates to assess significance. The pairwise F_{ST} values

227 were subsequently adjusted for multiple comparisons using a Benjamini & Yekutieli

228 correction. To test for an isolation-by-distance pattern of genetic differentiation within

the Lake Geneva drainage, the pairwise F_{ST} values were correlated with pairwise minimal

230 waterway distances using a Mantel test with 10,000 bootstrap replicates to assess

231 significance. The genetic structure was further assessed using an admixture model

implemented in STRUCTURE 2.3.4 (Falush *et al.*, 2007) with 30,000 burn in steps followed

233	by 300,000 MCMC steps. The analysis was performed assuming any number of genetic
234	clusters (K) between 1 and 15, with 10 replicates for each assumed K. The optimal
235	number of clusters was determined based on the log likelihood of each run and its
236	variation among runs for the same K, following Evanno et al. (2005). To further infer the
237	genetic relationships among populations, a neighbour joining tree, based on Cavalli-Sforza
238	distances among populations was constructed. Statistical support for each node of the
239	inferred tree was obtained using a bootstrap procedure with 1000 replicates in PHYLIP
240	3.69 (Felsenstein 2012).
241	
242	In addition, 639 individuals from all contemporary populations within the Rhone drainage
243	were genotyped for <i>Stn382</i> , following the protocols of Colosimo et al. (2005). The primers
244	flank a 60 bp indel in intron 1 of the <i>Eda</i> gene, yielding either a 158 bp allele – Eda_{L} ,
245	associated with the low plated phenotype or a 218 bp allele – Eda_{C} , associated with the
246	fully plated phenotype (Colosimo et al., 2005). PCR products were separated on a 1.5 $\%$
247	agarose gel, and genotypes were scored by eye. Because the <i>Eda</i> gene and its associated
248	marker Stn382 are potentially under strong selection (Barrett et al., 2008), Stn382 was
249	excluded from the abovementioned population based analyses. To test for an association
250	between the presence of the Eda_{C} allele and <i>habitat</i> , a generalized linear mixed model was
251	used, treating population as a random factor and assuming a binomial error distribution.
252	The significance of the differences between groups was assessed using a likelihood ratio
253	test.
254	

Finally, assuming that the presence of the *Eda*_C allele in the Lake Geneva region coincides
with the presence of other alleles from the Lake Constance region (Lucek *et al.*, 2010), the

257	frequency of both Eda_{C} and Lake Constance specific microsatellite alleles were compared
258	between habitats. The latter were defined as the private alleles of both Constance
259	populations combined in comparison to the population from the Lake Geneva system that
260	showed the lowest degree of introgression in the STRUCTURE analysis, i.e. VDS6. The
261	frequency of these Constance private alleles was subsequently estimated for all other
262	populations in the Lake Geneva region. To further test for habitat-specific and potentially
263	adaptive introgression of the Eda_{C} allele within the Lake Geneva system, the difference
264	between the allele frequencies of both marker types was calculated for each population.
265	Comparisons between habitats were performed using <i>t</i> tests.
266	
267	Results
268	Morphology
269	Within a sampling site, ${f P}$ matrices commonly changed through time both in their shape
269 270	Within a sampling site, P matrices commonly changed through time both in their shape and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix
270	and their leading eigenvector p_{\max} (Table 2, Figure 3). However, changes in the P matrix
270 271	and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix and the levels of pairwise phenotypic divergence (P_{ST}) varied among sites and trait
270 271 272	and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix and the levels of pairwise phenotypic divergence (P_{ST}) varied among sites and trait combinations. Combining all traits, the 95% confidence interval of the P_{ST} s between
270 271 272 273	and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix and the levels of pairwise phenotypic divergence (P_{ST}) varied among sites and trait combinations. Combining all traits, the 95% confidence interval of the P_{STS} between historical and contemporary samples from the same site exceeded zero in four (Table 2)
270 271 272 273 274	and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix and the levels of pairwise phenotypic divergence (P_{ST}) varied among sites and trait combinations. Combining all traits, the 95% confidence interval of the P_{STS} between historical and contemporary samples from the same site exceeded zero in four (Table 2) and p_{max} differed within sites over time, i.e. showed a significant angle between historical
270 271 272 273 274 275	and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix and the levels of pairwise phenotypic divergence (P_{ST}) varied among sites and trait combinations. Combining all traits, the 95% confidence interval of the P_{STS} between historical and contemporary samples from the same site exceeded zero in four (Table 2) and p_{max} differed within sites over time, i.e. showed a significant angle between historical and contemporary p_{max} in all but one case. Using either only feeding or defence related
270 271 272 273 274 275 276	and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix and the levels of pairwise phenotypic divergence (P_{ST}) varied among sites and trait combinations. Combining all traits, the 95% confidence interval of the P_{ST} s between historical and contemporary samples from the same site exceeded zero in four (Table 2) and p_{max} differed within sites over time, i.e. showed a significant angle between historical and contemporary p_{max} in all but one case. Using either only feeding or defence related traits, p_{max} did not differ between historical and contemporary populations except for
270 271 272 273 274 275 276 277	and their leading eigenvector p_{max} (Table 2, Figure 3). However, changes in the P matrix and the levels of pairwise phenotypic divergence (P_{ST}) varied among sites and trait combinations. Combining all traits, the 95% confidence interval of the P_{STS} between historical and contemporary samples from the same site exceeded zero in four (Table 2) and p_{max} differed within sites over time, i.e. showed a significant angle between historical and contemporary p_{max} in all but one case. Using either only feeding or defence related traits, p_{max} did not differ between historical and contemporary populations except for VSS3 for both trait categories and GES2 for feeding related traits. The size and shape of

Journal of Evolutionary Biology

- variation increased however in three of five populations for feeding related traits (VDS6,
 VDL4, VDL6) and eccentricity changed over time in many sites.
- 283

284 When comparing the p_{max} of each sampled population against the overall p_{max} combining 285 all traits, the best model explaining the angles between them retained only *time* as a 286 significant factor when all traits were used: Historical populations have a significantly 287 smaller angle against the overall p_{max} than contemporary populations ($F_{1,18}$ = 10.4, p = 288 0.005, Table 3, Figure 4a and d). When defence related traits were analysed on their own, 289 the retained best model included only *habitat*, with lake populations having significantly 290 larger angles against the overall p_{max} ($F_{1,18}$ = 25.2, p < 0.001, Figure 4b and e). Considering 291 feeding related phenotypic traits on their own, the best statistical model showed a 292 significant interaction between *habitat* and *time* ($F_{1,16} = 5.53$, p = 0.032), where historical 293 lake populations had larger angles than contemporary ones against the overall p_{max} . 294 whereas this difference was inversed for the stream populations (Figure 4c and f, Table 295 3). *Habitat* was furthermore marginally significant ($F_{1,16}$ = 4.53, p = 0.049) with lake 296 populations showing relatively larger angles than stream populations. 297

298 Genetic structure

The global F_{ST} values within the Lake Geneva system, calculated separately for each microsatellite marker, did not statistically differ between putatively QTL linked and neutral markers (Wilcoxon W = 9, p = 0.999). Consequently all microsatellite markers were pooled for the subsequent analyses. When analysing the contemporary samples from Lake Geneva together with those from France and the Swiss Rhine catchment, two genetic clusters (K=2) was the best supported K in STRUCTURE as inferred by the method of

305	Evanno et al. (Evanno et al., 2005). The two clusters separate the Rhone drainage from
306	populations in the Aare/Rhine drainage (Bern, Constance) except for Neuchatel (VDS2;
307	Figure 5a), which was mainly assigned to the Rhone drainage cluster with clear
308	indications of genetic admixture with the Aare/Rhine drainage stickleback. Low levels of
309	introgression from the Rhone drainage into the Aare/Rhine drainage were moreover
310	observed in the Bern populations. STRUCTURE suggests that introgression also occurred
311	from the Aare/Rhine drainage into the Lake Geneva catchment, particularly into the lake
312	populations. The neighbour joining tree further suggests a single genetic clade for all
313	populations from the Rhone drainage. The Neuchatel and Bern populations are resolved
314	as intermediate between Geneva and Constance, consistent with a hybrid origin (Figure
315	5b; Lucek et al. 2010).

317 Populations within the Lake Geneva region were generally genetically differentiated from 318 populations in the Aare/Rhine drainage (all $F_{ST} > 0.200$ and p < 0.001; Table S1). The only 319 exception was the population VDS2 from Lake Neuchatel, which was not significantly 320 differentiated from five of our populations in the Lake Geneva region, where the lowest 321 F_{ST} was observed between this population and its geographically closest population in 322 Lake Geneva (VDS2-VDL2: $F_{ST} = 0.008$, p = 0.129). The southern Rhone population (FrAS) 323 showed increased genetic differentiation from all populations in the Lake Geneva region 324 (all pairwise $F_{ST} \ge 0.098$ and p = 0.001). Within the Lake Geneva region, considerable 325 genetic structure was observed (global F_{ST} = 0.030, p < 0.001), which was not explained by 326 geographic distance (Mantel r = 0.199, p = 0.069). The overall genetic differentiation 327 between lake and stream populations within the Lake Geneva region, pooling all

Journal of Evolutionary Biology

- individuals from either habitat, was not significant ($F_{ST} = 0.002$, p = 0.696), speaking
- 329 against a colonization of the two habitats by distinct stickleback lineages.
- 330

331 Lateral plate phenotype/genotype-environment associations

332 In concordance with historical reports and consistent with the genetic lineage that 333 dominates the lake, (Lucek et al., 2010 and references therein), fully plated individuals 334 were absent from Lake Geneva in all historical populations (Figure 6). Nevertheless few 335 historical individuals had some additional plates close to their structural plates. Such a 336 phenotype is however not necessarily associated with the presence of the Eda_{C} allele, 337 which commonly underlies highly plated phenotypes (Lucek et al., 2012b). In contrast, 338 fully and intermediately plated individuals were numerous among contemporary 339 populations. The best statistical model that explained the overall variation in lateral plate 340 number included significant contributions of both *time* and *habitat* with a non-significant 341 interaction ($F_{1,19} = 0.8$, p = 0.380). Overall, stream dwelling populations had a significantly 342 lower number of plates than lake dwelling populations ($F_{1,20} = 22.1, p < 0.001$), while contemporary populations had more plates than historical populations ($F_{1,20} = 8.1, p =$ 343 344 0.010; Figure 6). The presence of highly plated individuals among contemporary samples 345 coincides with the occurrence of the *Eda*_C allele, where *Eda* was significantly correlated 346 with the number of lateral plates ($R^2 = 0.838$, p < 0.001). In accordance with the observed 347 habitat dependent differences in lateral plate numbers, the presence of the Eda_{C} allele was 348 significantly higher in the lake than in the stream habitats for contemporary individuals 349 (likelihood ratio test = 4.24, p < 0.001), suggesting habitat dependent selection. 350

351	The frequency of Lake Constance private alleles did not statistically differ between
352	habitats within the Lake Geneva system ($t_{1,13}$ = 1.84, p = 0.089; Figure 7). In contrast, the
353	population based Eda_{C} allele frequency was significantly higher among lake populations
354	($t_{1,13}$ = 2.88, p = 0.027). The frequency of Eda_{C} was moreover significantly higher than
355	expected from the frequency of Constance derived alleles in the lake ($t_{1,13}$ = 2.82, p =
356	0.029).
357	
358	Discussion
359	
360	Whereas empirical evidence suggests that rapid phenotypic evolution during the
361	colonization of contrasting habitats occurs frequently (e.g. Johnston & Selander, 1964;
362	Hendry et al., 2000; Koskinen et al., 2002; Matesanz et al., 2012), the role of genetic
363	constraints (Schluter, 1996), gene flow and adaptive introgression are far less understood
364	(e.g. Lavergne & Molofsky, 2007; Rieseberg, 2011). Combining phenotypic and population
365	genetic data, we explored the evolutionary changes that underlie the rapid emergence of
366	parapatric ecotypes in stickleback in the Lake Geneva region (Lucek et al., 2013). We had
367	access to preserved individuals from museum collections starting in 1921, \sim 50 years after
368	stickleback were introduced, and had our own collections from about 90 years later.
369	Hence, we studied phenotypic evolution over the second half of the 140 years since
370	colonization. Consistent with other studies on multivariate phenotypic evolution in
371	recently colonized habitats in different taxa (Badyaev, 2010; Eroukhmanoff & Svensson,
372	2011; Calsbeek et al., 2011), we find phenotypic shifts through time at a given site, where
373	the phenotypic covariance (P) matrices changed in their shape, size and in some cases
374	their orientation (Table 2, Figure 3). Overall habitat dependent phenotypic divergence in

375	ecologically relevant morphology seems to have already evolved in the first ${\sim}50$ years of
376	this biological invasion as lake and stream populations had a consistently different line of
377	least resistance ($m{p}_{ ext{max}}$). For lateral plates, the extent of habitat dependent phenotypic
378	differentiation has increased from the historical to the contemporary samples (Figure 6).
379	This is likely a result of recent introgression of alleles from a distantly related lineage,
380	outside the Lake Geneva region, that experience divergent selection between habitats
381	(Figure 5 & 7). Thus, introgression of adaptive variation through hybridisation may have
382	contributed to the increased parapatric phenotypic divergence over the last decades
383	(Rieseberg, 2011; Pardo-Diaz et al., 2012).
384	
385	Evidence for consistent parapatric ecotypic differentiation
386	Both the occurrence and extent of parapatric ecotype formation depends among other
387	things on the underlying environmental and selective gradients (Endler, 1977; Doebeli $\&$
388	Dieckmann, 2003). Parallel and consistent evolutionary divergence is therefore only
389	expected when the selective regimes are very similar among populations (Langerhans $\&$
390	DeWitt, 2004; Kaeuffer et al., 2012) and adaptive genetic variation is not limiting (Barrett
391	& Schluter, 2008). Cases of parapatric lake-stream stickleback systems provide both
392	evidence for parallelism and nonparallelism in the realized trait-specific divergence that
393	occur both on smaller geographical scales and between continents (Hendry & Taylor,
394	2004; Berner <i>et al.</i> , 2009; 2010a; Kaeuffer <i>et al.</i> , 2012; Ravinet <i>et al.</i> , 2013; Lucek <i>et al.</i> ,
395	2013; 2014a). Parallel habitat dependent selection in stickleback occurs especially in
396	feeding and defence-related traits (Reimchen <i>et al.</i> , 1985; Hendry <i>et al.</i> , 2002; Kaeuffer <i>et</i>
397	al., 2012; Ravinet et al., 2013; Lucek et al., 2013), where stream populations feed
398	predominantly on benthic food and experience a macroinvertebrate dominated predation

regime. In contrast, lake populations feed predominantly on zooplankton and have more
numerous and elongated gill rakers to filter small prey items (Reimchen *et al.*, 1985;
Hendry *et al.*, 2002; Berner *et al.*, 2008; Lucek *et al.*, 2012a; 2014b). They moreover have
elongated spines and an increased number of lateral plates, likely as a consequence of a
predation regime dominated by piscivorous fishes and birds (Reimchen, 1980; 1994;
Lucek *et al.*, 2013).

405

406 Although previous studies on Lake Geneva stickleback that focused on single lake-stream 407 pairs found habitat dependent phenotypic divergence that is comparable to other systems 408 (Berner *et al.*, 2010a; Lucek *et al.*, 2013), the evolutionary history and the degree of 409 parallelism within the Lake Geneva system was not assessed. In line with our predictions 410 and the results of the abovementioned studies, we find that p_{max} for the same trait 411 categories differs significantly and consistently between lake and stream habitats when 412 comparing population based p_{max} with the overall p_{max} (sensu Schluter, 1996; Figure 4, 413 Table 3). Stickleback within the Lake Geneva system form a distinct genetic cluster 414 (Figure 5), where lake and stream populations do not differ genetically overall. This 415 suggests that habitat dependent phenotypic divergence likely evolved *in situ*, rather than 416 resulting from two distinct colonization events. The p_{max} for feeding and defence related 417 traits are moreover comparable within each habitat (Figure 4, Table 3), indicating parallel 418 and consistent ecotypic divergence within the Lake Geneva region. Ecotype formation 419 may consequently be similarly constrained across our studied populations where the 420 overall divergent selective regime was likely stable through time.

421

Journal of Evolutionary Biology

422 However, phenotypic changes also occur within sites, i.e. between historical and 423 contemporary populations even a hundred years after the initial colonization of the Lake 424 Geneva region (Figure 3, Table 2), where **P** matrices differ in terms of their morphospace 425 size, eccentricity and to some extent their directionality (p_{max}). Overall, we find decreased 426 phenotypic variation in defence-related traits among contemporary samples in 427 comparison to their historical counterparts (Figure 3, Table 2). Moreover, both P_{ST} and the 428 angle between p_{max} are significant between historical and contemporary populations in 429 only few cases and not for defence-related traits. Consequently, phenotypic evolution or 430 divergence that would change p_{max} seems to rarely occur at a given site for linear 431 morphology. This may suggest that adaptation to a local environment can occur rapidly 432 after its colonization especially for adaptive traits (e.g. feeding and defence-related traits 433 in stickleback), whereafter the average phenotype remains relatively stable over time and 434 may experience stabilizing selection (Jones *et al.*, 2004). 435 436 *On the tempo and mode of ecotype formation* 437 Adaptive phenotypic evolution can be rapid and emerge through phenotypic plasticity,

438 selection on standing genetic variation or a combination of both (Robinson & Wilson,

439 1996; Thompson, 1998; Hairston *et al.*, 2005; Carroll *et al.*, 2007; Dlugosch & Parker,

440 2008). Concomitantly, the **P** matrix and its axis p_{max} should rapidly and consistently

441 diverge if new adaptive phenotypes are mainly produced by phenotypic plasticity (Lande,

- 442 2009; Draghi & Whitlock, 2012) or adaptation from standing genetic variation (Lande &
- 443 Shannon, 1996; Barrett & Schluter, 2008), which can be facilitated by introgression or
- 444 hybridization (Guillaume & Whitlock, 2007). Conversely, a gradual increase in divergence
- between divergently adapted populations over many generations is expected if adapted

446	phenotypes need to evolve, where the P matrix is realigning itself slowly towards a new
447	adaptive peak on the adaptive landscape (Schluter, 1996; Steppan et al., 2002).
448	
449	We find that habitat-dependent divergence may occur rapidly and may lead quickly to
450	some phenotypic differentiation between the populations inhabiting these habitats as \pmb{p}_{\max}
451	differed already consistently between habitats among our historical samples (Figure 4).
452	However, we cannot tell from our data whether this early change was achieved by
453	phenotypic plasticity or fast but gradual evolution because our data series only starts ${\sim}50$
454	years post colonization. Phenotypic plasticity may, in principle, promote the colonization
455	of distinct habitats and subsequent ecotype formation (Smith & Skúlason, 1996;
456	Ghalambor <i>et al.</i> , 2007). In such cases p_{\max} may shift rapidly and p_{\max} from different
457	populations may moreover align if they experience similar selective regimes (Lande,
458	2009; Draghi & Whitlock, 2012). However, the fact that we still observe changes in the
459	population specific ${f P}$ matrix even a hundred years after the colonization of the Lake
460	Geneva system may suggest a gradual differentiation over time and concordantly a
461	heritable component of ecotypic divergence (Schluter, 1996) as has been found for other
462	stickleback populations in Switzerland that evolved over a similar time scale (Lucek et al.
463	2014b). The relatively recent introgression from the differentiated stickleback lineage
464	dominating the East of Switzerland may have introduced additional adaptive genetic
465	variation that facilitated the observed phenotypic changes.
466	
467	Evidence for adaptive introgression

468 Because the potential of a population to colonize and adapt to a new environment

469 depends on the availability of adaptive standing genetic variation (Sakai *et al.*, 2001;

470 Barrett & Schluter, 2008), it can potentially be fuelled by gene flow, introducing novel 471 beneficial alleles followed by introgression or hybridization (Lavergne & Molofsky, 2007; 472 Guillaume & Whitlock, 2007; Rieseberg, 2011; Pardo-Diaz et al., 2012). Using nuclear 473 markers, we indeed find indications for a secondary introduction and subsequent 474 introgression from the Aare/Rhine system into the Lake Geneva system (Figure 5), where 475 stickleback are thought to derive from a single introduction event about 140 years ago. 476 Based on mitochondrial haplotypes, they originate from a genetic lineage of the Southern 477 Rhone that is fixed for both the low plated phenotype and the *Eda*_L allele (Lucek *et al.*. 478 2010). In contrast, we find highly plated individuals and concomitantly the $Eda_{\rm C}$ allele to 479 be present among our contemporary populations, where the *Eda* genotype is associated 480 with the number of lateral plates. The Eda_{C} allele was likely introduced from the 481 Aare/Rhine system given the pattern observed for the microsatellite markers (Figure 5). 482 This is further supported by the fact that *Eda*_C haplotypes in the Lake Geneva region are 483 shared with the Aare/Rhine system (Berner et al., 2010a). 484 485 Both the different lateral plate phenotypes as well as the different *Eda* alleles themselves 486 are known to experience divergent habitat-dependent selection (Reimchen, 1994; Barrett 487 et al., 2008; Zeller et al., 2012 and references therein), where even small changes in the 488 average lateral plate number can be adaptive (Reimchen, 1994; 2000). A more fully plated 489 body, and hence the presence of the Eda_{C} allele, is thought to be beneficial to protect 490 against attacks from piscivorous predators by increasing the probability of surviving an 491 attack (Reimchen, 1994). A lower number of plates and the associated *Eda*₁ allele, on the 492 other hand may increase the rate of handling failures by macroinvertebrate predators 493 (Reimchen, 1994; Marchinko, 2009). Consistent with these predictions, we find lake

494	populations in the Lake Geneva region to have a slightly yet significantly increased
495	number of plates compared to stream populations already in the first half of the 20^{th}
496	century (Figure 6), with phenotypes that can be expressed in the absence of the Eda_{C}
497	allele (Colosimo <i>et al.</i> , 2005; Cano <i>et al.</i> , 2006; Le Rouzic <i>et al.</i> , 2011; Lucek <i>et al.</i> , 2012b).
498	Coinciding with the presence of the Eda_{C} allele, the phenotypic differentiation is much
499	increased among contemporary populations, mainly due to the presence of many highly
500	plated individuals in lake populations. The frequency of Eda_{C} moreover significantly
501	exceeds that of other Lake Constance derived alleles within the lake environment (Figure
502	7). This is overall consistent with adaptive introgression (Rieseberg, 2011; Pardo-Diaz et
503	al., 2012), where positive selection leads to the disproportionate increase in the frequency
504	of an adaptive allele as for Eda_{C} in the lake environment.
505	

506 Conclusions

507 Taken together, our results provide a case of rapid and repeated ecotype formation that is 508 associated with consistent evolutionary divergence among populations through time. 509 Moreover, parapatric ecotype formation has resulted in similar and hence predictable 510 phenotypic axes for ecologically relevant trait categories. Divergent habitat-dependent 511 selection appears to have led to some spatially consistent phenotypic differentiation 512 among populations inhabiting these habitats early on. More recent adaptive introgression 513 may then have facilitated further adaptive differentiation among ecotypes in anti-514 predator related traits. Our study thus provides evidence on the role of evolutionary 515 constraints, gene flow and adaptive introgression during the colonization of novel 516 environments and subsequent ecotype formation.

517

518 Acknowledgement

- 519 We thank Sonia Fisch-Muller from the Muséum d'histoire naturelle de la Ville de Genève
- 520 (NHMG) and Olivier Glaizot from the Musée Cantonal de Zoologie de Lausanne (NHML)
- 521 for their support obtaining the historical samples. We are indebted to Irene Keller, Arjun
- 522 Sivasundar, Bänz Lundsgaard-Hansen, Joana Meier, David Marques for comments on
- 523 earlier versions of the manuscript. This research was supported by Swiss National Science
- 524 Foundation (SNSF) grant 31003A-118293 to OS. ML was supported by a SNSF Marie
- 525 Heim-Vögtlin grant (PMPDP3_151361).

526 **References**

- Arnold, S.J., Bürger, R., Hohenlohe, P.A., Ajie, B.C. & Jones, A.G. 2008. Understanding the
 evolution and stability of the G-matrix. *Evolution* 62: 2451–2461.
- 529 Badyaev, A.V. 2010. The beak of the other finch: coevolution of genetic covariance
- 530 structure and developmental modularity during adaptive evolution. *Philos T R Soc B*
- **365**: 1111–1126.
- 532 Barrett, R.D.H. & Schluter, D. 2008. Adaptation from standing genetic variation. *Trends*
- 533 *Ecol Evol* **23**: 38–44.
- 534 Barrett, R.D.H., Rogers, S.M. & Schluter, D. 2008. Natural selection on a major armor gene
- in threespine stickleback. *Science* **322**: 255–257.
- Berner, D. 2009. Correction of a bootstrap approach to testing for evolution along lines of
 least resistance. *J Evol Biol* 22: 2563–2565.
- 538 Berner, D., Adams, D.C., Grandchamp, A.-C. & Hendry, A.P. 2008. Natural selection drives
- patterns of lake-stream divergence in stickleback foraging morphology. *J Evol Biol* **21**:
- 540 1653–1665.
- 541 Berner, D., Grandchamp, A.-C. & Hendry, A.P. 2009. Variable progress toward ecological
- speciation in parapatry: stickleback across eight lake-stream transitions. *Evolution* 63:
 1740–1753.
- 544 Berner, D., Roesti, M., Hendry, A.P. & Salzburger, W. 2010a. Constraints on speciation
- 545 suggested by comparing lake-stream stickleback divergence across two continents.
- 546 *Mol Ecol* **19**: 4963–4978.

547	Berner, D., Stutz, W.E. & Bolnick, D.I. 2010b. Foraging trait (co)variances in stickleback
548	evolve deterministically and do not predict trajectories of adaptive diversification.
549	<i>Evolution</i> 64 : 2265–2277.
550	Calsbeek, B., Lavergne, S., Patel, M. & Molofsky, J. 2011. Comparing the genetic
551	architecture and potential response to selection of invasive and native populations of
552	reed canary grass. Evol Appl 4: 726–735.
553	Cano, J.M., Matsuba, C., Mäkinen, H.S. & Merilä, J. 2006. The utility of QTL-Linked markers
554	to detect selective sweeps in natural populations - a case study of the EDA gene and a
555	linked marker in threespine stickleback. <i>Mol Ecol</i> 15 : 4613–4621.
556	Carroll, S.P., Hendry, A.P., Reznick, D.N. & Fox, C. 2007. Evolution on ecological time-scales.
557	<i>Funct Ecol</i> 21 : 387–393.
558	Cheverud, J.M. 1988. A comparison of genetic and phenotypic correlations. <i>Evolution</i> 42 :
559	958–968.
560	Colosimo P.F. Hosemann K.F. Balabhadra S. Villarreal C. Dickson M. Grimwood I. at

- 560 Colosimo, P.F., Hosemann, K.E., Balabhadra, S., Villarreal, G., Dickson, M., Grimwood, J., *et*
- *al.* 2005. Widespread parallel evolution in sticklebacks by repeated fixation of *Ectodysplasin* alleles. *Science* **307**: 1928–1933.
- 563 Colosimo, P.F., Peichel, C.L., Nereng, K., Blackman, B.K., Shapiro, M., Schluter, D., et al. 2004.
- 564 The genetic architecture of parallel armor plate reduction in threespine sticklebacks.
- 565 *Plos Biol* **2**: 635–641.
- 566 Dlugosch, K.M. & Parker, I.M. 2008. Founding events in species invasions: genetic
- 567 variation, adaptive evolution, and the role of multiple introductions. *Mol Ecol* **17**: 431–

568 449.

- 569 Doebeli, M. & Dieckmann, U. 2003. Speciation along environmental gradients. *Nature* 421:
 570 259–264.
- 571 Draghi, J.A. & Whitlock, M.C. 2012. Phenotypic plasticity facilitates mutational variance,
- 572 genetic variance, and evolvability along the major axis of environmental variation.

573 *Evolution* **66**: 2891–2902.

574 Endler, J.A. 1977. *Geographic variation, speciation, and clines*. Princeton University Press,

575 Princeton, NY, USA.

- Eroukhmanoff, F. & Svensson, E.I. 2011. Evolution and stability of the G-matrix during the
 colonization of a novel environment. *J Evol Biol* 24: 1363–1373.
- 578 Evanno, G., Regnaut, S. & Goudet, J. 2005. Detecting the number of clusters of individuals

using the software STRUCTURE: a simulation study. *Mol Ecol* **14**: 2611–2620.

- 580 Facon, B., Genton, B.J., Shykoff, J., Jarne, P., Estoup, A. & David, P. 2006. A general eco-
- evolutionary framework for understanding bioinvasions. *Trends Ecol Evol* 21: 130–
 135.
- 583 Falush, D., Stephens, M. & Pritchard, J. 2007. Inference of population structure using
- multilocus genotype data: dominant markers and null alleles. *Mol Ecol Notes* 7: 574–
 578.
- 586 Ghalambor, C.K., McKay, J., Carroll, S.P. & Reznick, D.N. 2007. Adaptive versus non-
- adaptive phenotypic plasticity and the potential for contemporary adaptation in new

588	environments.	Funct Ecol	21:	394-40	07.

- 589 Gross, H.P. 1977. Adaptive trends of environmentally sensitive traits in the three-spined
- 590 stickleback, *Gasterosteus aculeatus* L. *Z Zool Syst Evolutionsforsch* **15**: 252-278.
- 591 Guillaume, F. & Whitlock, M.C. 2007. Effects of migration on the genetic covariance matrix.

592 *Evolution* **61**: 2398–2409.

Hairston, N.G., Jr, Ellner, S.P., Geber, M.A., Yoshida, T. & Fox, J.A. 2005. Rapid evolution and

the convergence of ecological and evolutionary time. *Ecol Lett* **8**: 1114–1127.

- Hairston, N.G., Lampert, W., Cáceres, C.E., Holtmeier, C.L., Weider, L.J., Gaedke, U., et al.
- 596 1999. Lake ecosystems rapid evolution revealed by dormant eggs. *Nature* 401: 446597 446.
- Hendry, A.P. & Taylor, E.B. 2004. How much of the variation in adaptive divergence can be
- explained by gene flow? An evaluation using lake-stream stickleback pairs. *Evolution*58: 2319–2331.
- 601 Hendry, A.P., Farrugia, T.J. & Kinnison, M.T. 2008. Human influences on rates of

602 phenotypic change in wild animal populations. *Mol Ecol* **17**: 20–29.

- 603 Hendry, A.P., Hendry, A.S. & Hendry, C.A. 2013. Hendry Vineyard Stickleback: testing for
- 604 contemporary lake-stream divergence. *Evol Ecol Res* **15**: 1–32.
- Hendry, A.P., Taylor, E.B. & McPhail, J.D. 2002. Adaptive divergence and the balance
- between selection and gene flow: lake and stream stickleback in the Misty system.

607 *Evolution* **56**: 1199–1216.

608	Hendry, A.P., Wenburg, J.K., Bentzen, P., Volk, E.C. & Quinn, T.P. 2000. Rapid evolution of
609	reproductive isolation in the wild: evidence from introduced salmon. <i>Science</i> 290 :
610	516–519.

- Houle, D. 1992. Comparing evolvability and variability of quantitative traits. *Genetics* 130:
 195–204.
- Johnston, R.F. & Selander, R.K. 1964. House sparrows: rapid evolution of races in North
 America. *Science* 144: 548–550.
- Jones, A.G., Arnold, S.J. & Borger, R. 2003. Stability of the G-matrix in a population

616 experiencing pleiotropic mutation, stabilizing selection, and genetic drift. *Evolution*617 **57**: 1747–1760.

Jones, A.G.A., Arnold, S.J.S. & Bürger, R.R. 2004. Evolution and stability of the G-matrix on a

619 landscape with a moving optimum. *Evolution* **58**: 1639–1654.

- 620 Kaeuffer, R., Peichel, C.L., Bolnick, D.I. & Hendry, A.P. 2012. Parallel and nonparallel
- 621 aspects of ecological, phenotypic, and genetic divergence across replicate population

622 pairs of lake and stream stickleback. *Evolution* **66**: 402–418.

- 623 Keller, S.R. & Taylor, D.R. 2008. History, chance and adaptation during biological invasion:
- separating stochastic phenotypic evolution from response to selection. *Ecol Lett* 11:
 852–866.
- 626 Kolbe, J.J., Revell, L.J., Szekely, B., Brodie, E.D. & Losos, J.B. 2011. Convergent evolution of
- 627 phenotypic integration and its alignment with morphological diversification in
- 628 Caribbean Anolis ecomorphs. *Evolution* **65**: 3608–3624.

629	Koskinen, M.T., Haugen, T.O. & Primmer, C.R. 2002. Contemporary fisherian life-history
630	evolution in small salmonid populations. <i>Nature</i> 419 : 826–830.
631	Lande, R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic
632	plasticity and genetic assimilation. <i>J Evol Biol</i> 22 : 1435–1446.
633	Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain -
634	body size allometry. <i>Evolution</i> 33 : 402–416.
635	Lande, R. & Arnold, S.J. 1983. The measurement of selection on correlated characters.
636	<i>Evolution</i> 37 : 1210–1226.
637	Lande, R. & Shannon, S. 1996. The role of genetic variation in adaptation and population
638	persistence in a changing environment. <i>Evolution</i> 50 : 434–437.
639	Langerhans, R.B. & DeWitt, T.J. 2004. Shared and unique features of evolutionary
640	diversification. <i>Am Nat</i> 164 : 335–349.
641	Lavergne, S. & Molofsky, J. 2007. Increased genetic variation and evolutionary potential
642	drive the success of an invasive grass. <i>P Natl Acad Sci Usa</i> 104 : 3883–3888.
643	Le Rouzic, A., Ostbye, K., Klepaker, T.O., Hansen, T.F., Bernatchez, L., Schluter, D., et al.
644	2011. Strong and consistent natural selection associated with armour reduction in
645	sticklebacks. <i>Mol Ecol</i> 20 : 2483–2493.
646	Leinonen, T., Cano, J.M. & Merilä, J. 2011a. Genetics of body shape and armour variation in
647	threespine sticklebacks. <i>J Evol Biol</i> 24 : 206–218.
648	Leinonen, T., Herczeg, G., Cano, J.M. & Merilä, J. 2011b. Predation-imposed selection on

- 649 threespine stickleback (Gasterosteus aculeatus) morphology: a test of the refuge use
 650 hypothesis. *Evolution* 65: 2916–2926.
- Lucek, K., Roy, D., Bezault, E., Sivasundar, A. & Seehausen, O. 2010. Hybridization between
- distant lineages increases adaptive variation during a biological invasion: stickleback
- 653 in Switzerland. *Mol Ecol* **19**: 3995–4011.
- Lucek, K., Sivasundar, A. & Seehausen, O. 2012a. Evidence of Adaptive Evolutionary
- Divergence during Biological Invasion. *PLoS ONE* **7**: e49377.
- Lucek, K., Haesler, M.P. & Sivasundar, A. 2012b. When phenotypes do not match
- 657 genotypes--unexpected phenotypic diversity and potential environmental constraints
- in Icelandic stickleback. *J Hered* **103**: 579–584.
- Lucek, K., Sivasundar, A., Roy, D. & Seehausen, O. 2013. Repeated and predictable patterns
- of ecotypic differentiation during a biological invasion: lake-stream divergence in
- 661 parapatric Swiss stickleback. *J Evol Biol* **26**: 2691–2709.
- Lucek, K., Sivasundar, A., Kristjánsson, B.K., Skúlason, S. & Seehausen, O. 2014a. Quick
- divergence but slow convergence during ecotype formation in lake and stream
- stickleback pairs of variable age. *J Evol Biol*, doi: 10.1111/jeb.12439.
- Lucek, K., Sivasundar, A. & Seehausen, O. 2014b. Disentangling the role of phenotypic
- 666 plasticity and genetic divergence in contemporary ecotype formation during a
- biological invasion. *Evolution*, doi: 10.1111/evo.12443.
- 668 Marchinko, K.B. 2009. Predation's role in repeated phenotypic and genetic divergence of
- armor in threespine stickleback. *Evolution* **63**: 127–138.

670	Marroig, G. & Cheverud, J.M. 2005. Size as a line of least evolutionary resistance: diet and
671	adaptive morphological radiation in New World Monkeys. <i>Evolution</i> 59 : 1128–1142.
672	Matesanz, S., Horgan-Kobelski, T. & Sultan, S.E. 2012. Phenotypic plasticity and population
673	differentiation in an ongoing species invasion. <i>PLoS ONE</i> 7 : e44955.
674	Meirmans, P.G. & Van Tienderen, P. 2004. GENOTYPE and GENODIVE: two programs for
675	the analysis of genetic diversity of asexual organisms. <i>Mol Ecol Notes</i> 4 : 792–794.
676	Wiley Online Library.
677	Mori, S. & Takamura, N. 2004. Changes in morphological characteristics of an introduced
678	population of the threespine stickleback Gasterosteus aculeatus in Lake Towada,
679	northern Japan. <i>Ichthyol Res</i> 51 : 295–300.
680	Narum, S.R. 2006. Beyond Bonferroni: less conservative analyses for conservation
681	genetics. <i>Conserv Genet</i> 7 : 783–787.
682	Nosil, P. 2012. <i>Ecological Speciation</i> . Oxford University Press, Oxford, UK.
683	Nosil, P., Harmon, L.J. & Seehausen, O. 2009. Ecological explanations for (incomplete)
684	speciation. <i>Trends Ecol Evol</i> 24 : 145–156.
685	Palumbi, S.R. 2001. Humans as the world's greatest evolutionary force. <i>Science</i> 293 :
686	1786–1790.
687	Pardo-Diaz, C., Salazar, C., Baxter, S.W., Merot, C., Figueiredo-Ready, W., Joron, M., et al.
688	2012. Adaptive introgression across species boundaries in <i>Heliconius</i> butterflies. <i>PLoS</i>
689	<i>Genet</i> 8 : e1002752.

690	Peichel, C.L., Nereng, K.S., Ohgi, K.A., Cole, B.L., Colosimo, P.F., Buerkle, C.A., et al. 2001. The
691	genetic architecture of divergence between threespine stickleback species. Nature
692	414 : 901–905.

- 693 Ravinet, M., Prodöhl, P.A. & Harrod, C. 2013. Parallel and nonparallel ecological,
- 694 morphological and genetic divergence in lake-stream stickleback from a single
- 695 catchment. J Evol Biol 26: 186-204.
- 696 Reimchen, T.E. 2000. Predator handling failures of lateral plate morphs in Gasterosteus
- 697 aculeatus: Functional implications for the ancestral plate condition. *Behaviour* **137**:
- 698 1081-1096.
- 699 Reimchen, T.E. 1994. Predators and morphological evolution in threespine stickleback. In:
- 700 The Evolutionary Biology of the Threespine Stickleback. Oxford University Press, Oxford,
- 701 UK. 240–276.
- 702 Reimchen, T.E. 1980. Spine deficiency and polymorphism in a population of *Gasterosteus*

703 aculeatus: an adaptation to predators? Can J Zool 58: 1232–1244.

- 704 Reimchen, T.E., Stinson, E.M. & Nelson, J.S. 1985. Multivariate differentiation of parapatric
- 705 and allopatric populations of threespine stickleback in the Sangan River Watershed,
- 706 Queen-Charlotte-Islands. Can J Zool 63: 2944–2951.
- 707 Rieseberg, L. 2011. Adaptive introgression: the seeds of resistance. *Curr Biol* **21**: R581–3.
- 708 Robinson, B.W. & Wilson, D.S. 1996. Genetic variation and phenotypic plasticity in a
- 709 trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol
- 710 *Ecol* **10**: 631–652.

711	Sakai, A., Allendorf, F., Holt, J., Lodge, D., Molofsky, J., With, K., et al. 2001. The population
712	biology of invasive species. <i>Annu Rev Ecol Evol S</i> 32 : 305–332.
713	Schluter, D. 1996. Adaptive radiation along genetic lines of least resistance. <i>Evolution</i> 50 :
714	1766–1774.
715	Schluter, D. 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford, UK.
716	Smith, T.B. & Skúlason, S. 1996. Evolutionary significance of resource polymorphisms in
717	fishes, amphibians, and birds. <i>Annu Rev Ecol Evol S</i> 111–133.
718	Steppan, S., Phillips, P.C. & Houle, D. 2002. Comparative quantitative genetics: evolution of
719	the G matrix. <i>Trends Ecol Evol</i> 17 : 320–327.
720	Taylor, E.B. & McPhail, J.D. 2000. Historical contingency and ecological determinism
721	interact to prime speciation in sticklebacks, <i>Gasterosteus</i> . <i>P R Soc B</i> 267 : 2375–2384.
722	Thompson, J.N. 1998. Rapid evolution as an ecological process. <i>Trends Ecol Evol</i> 13 : 329–
723	332.
724	Walker, J.A. 1997. Ecological morphology of lacustrine threespine stickleback Gasterosteus
725	aculeatus L (Gasterosteidae) body shape. Biol J Linn Soc 61 : 3–50.
726	West-Eberhard, M.J. 2003. Developmental Plasticity and Evolution. Oxford University
727	Press, Oxford, UK.
728	Zeller, M., Lucek, K., Haesler, M.P., Seehausen, O. & Sivasundar, A. 2012. Signals of
729	predation-induced directional and disruptive selection in the threespine stickleback.
730	<i>Evol Ecol Res</i> 14 : 193–205.
	33

Figure 1: Map of Switzerland (© SwissTopo 2012) with all Swiss sampling sites indicated
(see table 1 for details). The colors of waterways represent the two major drainage
systems of western Switzerland, i.e. Rhone (blue) and the Aare/Rhine system (green).

735

736	Figure 2: Linear measurements that were taken either from the left flank a) or the ventral
737	side b) of each specimen. Traits were categorized as either anti-predator defence (red),
738	feeding ecology (green) or body shape and swimming performance (blue). Trait
739	abbreviations are as follow: FSL -length of the first dorsal spine; SSL - length of the second
740	dorsal spine; PSL - length of the pelvic spine; PGL - length of the pelvic girdle; HL - head
741	length; UJL - upper jaw length; SnL - snout length; ED - eye diameter; SL - standard length;
742	PGW - width of the pelvic girdle; BD1 - body depth measured after the first dorsal spine;
743	BD2 - body depth measured after the second dorsal spine; caudal peduncle length; BLA -
744	basal length of the anal fin; BLD - basal length of the dorsal fin; TLP - total length of the
745	pelvic fin.

746

Figure 3: Principal component scores based on either all linear morphological traits (left),
defense related traits (middle) or feeding related traits only (right) for the two leading
principal component axes. Only sites are shown where both historical and contemporary
populations were available. Ellipsoids represent the 95% CI with contemporary samples
in red and historical samples in blue and green. The relative changes between historical

752	and contemporary samples (Δ) in eccentricity and phenotypic variation, i.e. the size of the
753	95% CI ellipsoid, are indicated (see Table 2 for details).

755	Figure 4: The angle against a common p_{\max} for each population and year for either all
756	traits combined or defense or feeding related traits only (see Table S1). The major axis of
757	phenotypic variation ($p_{ m max}$) for each population is given for lake (a - c) and stream (d - f)
758	populations, separating historical (dashed) and contemporary (continuous line) sampling
759	events. P values are calculated from bootstrapping with 1000 replicates. Boldfaced
760	populations indicate cases where p_{\max} differed significantly after applying a Benjamini &
761	Yekutieli correction for multiple comparisons (see main text for details).
762	
763	Figure 5: Genetic relationship among individuals and populations within Lake Geneva and
763 764	Figure 5: Genetic relationship among individuals and populations within Lake Geneva and Switzerland (Constance, Bern and Neuchatel) as well as a population from the Rhone river
764	Switzerland (Constance, Bern and Neuchatel) as well as a population from the Rhone river
764 765	Switzerland (Constance, Bern and Neuchatel) as well as a population from the Rhone river downstream of Lake Geneva (France) based on nine microsatellites. a) Individual based
764 765 766	Switzerland (Constance, Bern and Neuchatel) as well as a population from the Rhone river downstream of Lake Geneva (France) based on nine microsatellites. a) Individual based assignments using STRUCTURE for the best supported number of clusters, K = 2. The
764 765 766 767	Switzerland (Constance, Bern and Neuchatel) as well as a population from the Rhone river downstream of Lake Geneva (France) based on nine microsatellites. a) Individual based assignments using STRUCTURE for the best supported number of clusters, K = 2. The respective habitat where populations were samples is indicated (L = Lake, S = Stream). b)
764 765 766 767 768	Switzerland (Constance, Bern and Neuchatel) as well as a population from the Rhone river downstream of Lake Geneva (France) based on nine microsatellites. a) Individual based assignments using STRUCTURE for the best supported number of clusters, K = 2. The respective habitat where populations were samples is indicated (L = Lake, S = Stream). b) Unrooted neighbour joining tree based on Cavalli-Sforza distances calculated from

773	Figure 6: Number of lateral plates in each population for both historical and
774	contemporary stream and lake populations. <i>P</i> values for significance of differences
775	between habitats are based on <i>post hoc t</i> tests associated with fixed-effect parameters in a
776	linear model that included the non-significant interaction between time (historical and
777	contemporary) and <i>habitat</i> (lake and stream; see main text for details). The average
778	number of plates for each habitat is reported above the boxplots. Pie plots indicate the
779	allele frequency of the two <i>Stn382</i> alleles (white – L allele, black – C allele). No phenotypic
780	data was available for the GEL3 population (see Table 1 for details).
781	
782	Figure 7: Frequency of the Eda_{C} allele (circles) and other alleles that introgressed from the
783	Lake Constance region (triangles) for each contemporary population within the Lake

784 Geneva region. Sites are ordered according to the minimal waterway distance,

785	downstream of VSS3. Stream site	s are depicted in black, lake sites in grey.
-----	---------------------------------	--

1 Table 1: Summary of the threespine stickleback populations studied, where population refers to a single sampling event (one point in

2 time) per site. For each site the ID, the catchment, the habitat where individuals were caught are indicated. The coordinates for each

3 location are additionally provided. For historical populations the year of collection, the number of individuals available for morphology

4 (N_{Morphology}) and the respective museum ID (NHMG=Natural History Museum Geneva, NHML= Natural History Museum Lausanne) are

5 given. For contemporary populations, the year of collection, the number of individuals available for morphology ($N_{Morphology}$), 6 microsatellites (N_{usat}) and the *Eda* linked marker *Stn382* (N_{Stn382}) are indicated. Site IDs consist of two letters for Swiss sites, w

microsatellites (N_{µsat}) and the *Eda* linked marker *Stn382* (N*_{Stn382}*) are indicated. Site IDs consist of two letters for Swiss sites, which are
 consistent with a prior study (Lucek *et al.* 2010) and three letters for the French site, followed by the habitat type (L, lake; and S, stream)

and by a serial number.

						Hist	orical	Contemporary						
Site ID	Catchment	Habitat	Coord	Coordinates Yea		N _{Morphology}	Museum ID	Year	N _{Morphology}	$N_{\mu sat}$	N _{Stn382}			
VSS3	Geneva	Stream	46°16'45" N	7°30'55" E	1921	84	NHMG-816	2009	96	26	96			
VDS6	Geneva	Stream	46°20'52" N	6°54'38" E	1958	36	NHML-163	2012	32	32	32			
					1964	28	NHML-4216, -4772							
GES2	Geneva	Stream	46°11'48" N	6°11'30" E	1979	35	NHMG-2063, -2064	2009	42	32	42			
VSS1	Geneva	Stream	46°12'50" N	7°18'53" E	-	-		2007	102	30	96			
VSS2	Geneva	Stream	46°23'07" N	6°51'30" E	-	-		2007	59	32	59			
GES1	Geneva	Stream	46°10'47" N	6°00'32" E	-	-		2008	36	32	36			
GES3	Geneva	Stream	46°18'09" N	6°14'51" E	-	-		†2009	6	6	6			
VSS4	Geneva	Stream	46°20'20" N	6°53'20" E	-	-		†2012	48	29	48			
VDL4	Geneva	Lake	46°18'18" N	6°10'55" E	1967	20	NHML-6520	2010	30	32	23			
VDL6	Geneva	Lake	46°23'45" N	6°53'18" E	1967	70	NHML-6465	2012	37	30	32			
GEL1	Geneva	Lake	46°12'14" N	6°08'02" E	1978	34	NHMG-1592	-	-	-	-			
GEL2	Geneva	Lake	46°12'10" N	6°07'54" E	1979	131	NHMG-2009	-	-	-	-			
VDL2	Geneva	Lake	46°31'02" N	6°34'41" E	-	-		2008	40	30	40			
VDL3	Geneva	Lake	46°23'38" N	6°55'18" E	-	-		2010	34	19	32			
VDL5	Geneva	Lake	46°27'12" N	6°20'11" E	-	-		2010	30	16	30			
VSL1	Geneva	Lake	46°23'09" N	6°51'29" E	-	-		†2012	36	28	37			

GEL3	Geneva	Lake	46°17'57" N	6°14'32" E	-	-		2013	-	29	30
FrAS	Southern Rhone	Stream	45°58'04" N	5°17'40" E				2012	32	32	32
VDS2	Neuchatel	Stream	46°38'30" N	6°37'36" E				2008	-	31	-
BEL1	Bern	Lake	46°57'59" N	7°21'09" E				2007	-	30	-
BES4	Bern	Stream	46°59'31" N	7°24'42" E				2008	-	28	-
SGL1	Constance	Lake	47°29'08" N	9°32'38" E				2007	-	30	-
SGS1	Constance	Stream	47°19'33" N	9°34'41" E				2007	-	28	-

11 [†] Only the number of lateral plates was counted.

12 Table 2: Pairwise *P*_{ST} with its 95% confidence interval (CI) and angle between the leading eigenvectors of the *P* matrix for each historical

13 vs. contemporary samples within the same site are given for either all traits combined or subsets using either only defense or only feeding

related traits. In addition, the relative ellipse size and eccentricity for both the historical and contemporary population samples are given

with the respective percentage difference. See table 1 for details of each population. *P*_{ST} values whose 95% CI does not include zero and significantly differentiated angles after a Benjamini and Yekutieli correction that was performed for site separately are highlighted in bold.

Site	Habitat	Year range	Traits	P _{ST}	95% CI	Angle	p_{Angle}	R	elative ellipse size		Eccentricity		
								Historical	Contemporary	Δ%	Historical	Contemporary	Δ%
VSS3	Stream	1921-2009	All	0.000	0.000-0.227	55.9°	<0.001	0.398	0.327	-17.8	2.660	1.369	-48.5
			Defense	0.000	0.000-0.041	16.8°	< 0.001	0.246	0.099	-59.8	6.432	5.305	-17.5
			Feeding	0.218	0.120-0.340	11.1°	0.016	0.120	0.091	-24.2	3.110	8.321	+167.6
VDS6	Stream	1958-1964	All	0.359	0.138-0.506	51.8°	<0.001	0.569	0.690	+21.3	1.557	1.490	-4.3
			Defense	0.041	0.000-0.175	11.5°	0.158	0.248	0.221	-10.9	4.868	11.535	+137.0
			Feeding	0.000	0.000-0.128	6.3°	0.409	0.239	0.149	-37.7	4.333	5.651	+30.4
VDS6	Stream	1958-2012	All	0.384	0.119-0.519	82.9°	<0.001	0.527	0.426	-19.2	1.557	2.115	+35.8
			Defense	0.000	0.000-0.059	3.8°	0.714	0.249	0.173	-30.5	4.868	2.947	-39.5
			Feeding	0.075	0.000-0.288	28.0°	0.165	0.229	0.276	+20.5	4.333	1.790	-58.7
VDS6	Stream	1964-2012	All	0.000	0.000-0.110	81.0°	< 0.001	0.781	0.460	-41.1	1.490	2.115	+42.0
			Defense	0.000	0.000-0.075	7.7°	0.297	0.220	0.171	-22.3	11.535	2.948	-74.4
			Feeding	0.000	0.000-0.122	24.6°	0.222	0.137	0.279	+103.6	5.651	1.790	-68.3
GES2	Stream	1979-2009	All	0.326	0.041-0.709	10.9°	<0.001	0.460	0.221	-52.0	1.664	1.870	+12.4
			Defense	0.215	0.071-0.390	9.2°	0.062	0.185	0.095	-48.6	2.680	4.022	+50.1
			Feeding	0.000	0.000-0.163	4.4°	0.001	0.180	0.082	-54.4	5.394	6.278	+16.4
VDL4	Lake	1967-2010	All	0.000	0.000-0.139	41.7°	0.048	0.519	0.271	-47.8	3.188	1.469	-53.9
			Defense	0.000	0.000-0.108	12.4°	0.189	0.437	0.102	-76.7	5.776	3.599	-37.7
			Feeding	0.004	0.000-0.226	5.9°	0.773	0.112	0.136	+21.4	6.208	1.453	-76.6
VDL6	Lake	1967-2012	All	0.109	0.013-0.251	74.4 °	< 0.001	0.421	0.422	+0.2	1.247	1.761	+41.2
			Defense	0.010	0.000-0.088	3.8°	0.486	0.187	0.110	-41.2	5.310	6.028	+13.4
			Feeding	0.016	0.000-0.120	7.7°	0.092	0.101	0.199	+97.0	5.479	5.057	-7.7

19 Table 3: Angle between the leading eigenvector of the P matrix for each population and the leading eigenvector for all populations pooled

20 using either all linear measurements or a subset with defense or feeding related traits only. *P* values are based on bootstrapping with 1000

replicates. Significant values after a Benjamini and Yekutieli correction that was performed for each trait group separately are highlighted

in bold (see main text for details). See Table 1 for details of each population.

			All traits		Defen	se traits	Feeding traits		
Site	Habitat	Year	Angle °	р	Angle °	р	Angle °	р	
VSS3	Stream	1921	18.4	0.057	9.8	0.023	1.2	0.139	
VDS6	Stream	1958	63.3	<0.001	6.0	0.003	1.8	0.032	
VDS6	Stream	1964	22.7	0.192	6.0	0.107	2.1	0.019	
GES2	Stream	1979	66.3	<0.001	13.5	<0.001	2.2	0.033	
VSS1	Stream	2007	75.7	<0.001	7.3	0.001	3.0	<0.001	
VSS2	Stream	2007	51.4	<0.001	1.3	0.855	4.0	0.002	
GES1	Stream	2008	73.3	<0.001	8.1	0.015	3.3	0.017	
GES2	Stream	2009	38.4	0.027	10.2	0.005	2.9	0.013	
VSS3	Stream	2009	65.0	<0.001	12.1	0.002	2.1	0.002	
VDS6	Stream	2012	64.5	<0.001	3.2	0.390	12.2	0.086	
FrAS	Stream	2012	51.2	<0.001	7.6	0.018	1.2	0.403	
VDL4	Lake	1967	31.5	0.204	20.0	0.060	5.4	0.027	
VDL6	Lake	1967	22.0	0.285	14.2	0.007	8.9	0.002	
GEL1	Lake	1978	22.3	0.075	24.4	0.004	12.5	0.094	
GEL2	Lake	1979	11.0	0.171	14.1	0.027	5.8	<0.001	
VDL2	Lake	2008	16.6	0.136	9.7	0.030	3.2	0.042	
VDL3	Lake	2010	86.0	<0.001	17.7	0.001	3.5	0.015	
VDL4	Lake	2010	63.4	<0.001	25.3	<0.001	2.7	0.357	
VDL5	Lake	2010	87.6	<0.001	22.5	<0.001	7.1	0.011	

VDL6 Lake 2012	86.4 <0.001	13.5 0.001	5.2 0.001
Average Stream (± 1 SD)	53.9 (± 20.6)	7.8 (± 3.8)	3.5 (± 3.2)
Average Lake (± 1 SD)	47.4 (± 32.9)	17.9 (± 5.4)	6.0 (± 3.1)

Table S1: Pairwise F_{ST} values for all genotyped contemporary populations based on nine microsatellites (lower triangle). Significant comparisons after a Benjamini and Yekutieli correction, based on 100,000 bootstrap replicates are highlighted in bold, with the actual p values given in the upper triangle. See Table 1 for details of each population.

		Lake Geneva system													Other populations							
		GES1	GES2	GES3	GEL3	VDL4	VDL5	VDL2	VDL3	VDL6	VSL1	VSS2	VDS6	VSS4	VSS1	VSS3	FrAS1	VDS2	BEL1	BES4	SGL1	SGS1
	GES1	-	0.001	0.026	0.161	0.003	0.003	0.195	0.262	0.042	0.051	0.005	0.178	0.017	0.001	0.001	0.001	0.003	0.001	0.001	0.001	0.001
	GES2	0.079	-	0.002	0.001	0.001	0.002	0.001	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	GES3	0.056	0.214	-	0.071	0.021	0.042	0.030	0.246	0.009	0.019	0.184	0.021	0.046	0.001	0.001	0.001	0.046	0.001	0.001	0.001	0.001
	GEL3	0.006	0.068	0.034	-	0.762	0.141	0.450	0.294	0.208	0.165	0.636	0.403	0.158	0.001	0.001	0.001	0.004	0.001	0.001	0.001	0.001
_	VDL4	0.027	0.069	0.057	-0.006	-	0.246	0.027	0.011	0.083	0.061	0.751	0.019	0.115	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001
system	VDL5	0.043	0.067	0.068	0.011	0.007	-	0.086	0.291	0.570	0.320	0.339	0.079	0.672	0.236	0.002	0.001	0.005	0.001	0.001	0.001	0.001
	VDL2	0.006	0.049	0.048	0.000	0.017	0.018	-	0.246	0.146	0.294	0.070	0.094	0.108	0.001	0.005	0.001	0.129	0.001	0.001	0.001	0.001
Geneva	VDL3	0.005	0.075	0.020	0.003	0.024	0.006	0.006	-	0.571	0.117	0.065	0.765	0.114	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.001
e Ge	VDL6	0.015	0.041	0.071	0.005	0.010	-0.004	0.007	-0.002	-	0.721	0.152	0.628	0.490	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001
Lake	VSL1	0.015	0.050	0.070	0.007	0.013	0.004	0.003	0.012	-0.005	-	0.231	0.175	0.693	0.014	0.006	0.001	0.011	0.001	0.001	0.001	0.001
	VSS2	0.024	0.092	0.019	-0.004	-0.006	0.003	0.014	0.015	0.007	0.005	-	0.043	0.800	0.003	0.003	0.001	0.009	0.001	0.001	0.001	0.001
	VDS6	0.006	0.065	0.063	0.001	0.021	0.022	0.010	-0.008	-0.003	0.007	0.017	-	0.041	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	VSS4	0.021	0.088	0.044	0.007	0.009	-0.007	0.010	0.010	-0.001	-0.005	-0.007	0.015		0.143	0.007	0.001	0.010	0.001	0.001	0.001	0.001
	VSS1	0.077	0.115	0.090	0.058	0.047	0.007	0.053	0.048	0.031	0.021	0.030	0.065	0.008	-	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	VSS3	0.057	0.102	0.112	0.046	0.043	0.052	0.030	0.072	0.049	0.035	0.032	0.072	0.029	0.050	-	0.001	0.012	0.001	0.001	0.001	0.001
	FrAS1	0.098	0.222	0.135	0.121	0.116	0.153	0.127	0.141	0.140	0.112	0.105	0.154	0.105	0.127	0.117	-	0.001	0.001	0.001	0.001	0.001
tions	VDS2	0.024	0.075	0.038	0.025	0.030	0.039	0.008	0.027	0.028	0.020	0.023	0.045	0.020	0.045	0.022	0.083	-	0.001	0.001	0.001	0.001
populations	BEL1	0.257	0.335	0.232	0.255	0.268	0.229	0.234	0.230	0.264	0.259	0.251	0.296	0.236	0.238	0.234	0.266	0.175	-	0.584	0.001	0.001
bot	BES4	0.262	0.337	0.246	0.259	0.272	0.237	0.240	0.236	0.274	0.272	0.262	0.302	0.251	0.254	0.242	0.269	0.185	-0.002	-	0.001	0.001
Other	SGL1	0.338	0.394	0.295	0.344	0.363	0.331	0.303	0.299	0.349	0.352	0.352	0.379	0.341	0.343	0.346	0.396	0.245	0.144	0.157	-	0.040
0	SGS1	0.357	0.413	0.312	0.359	0.378	0.347	0.327	0.313	0.364	0.370	0.368	0.393	0.358	0.360	0.370	0.417	0.265	0.149	0.163	0.014	-

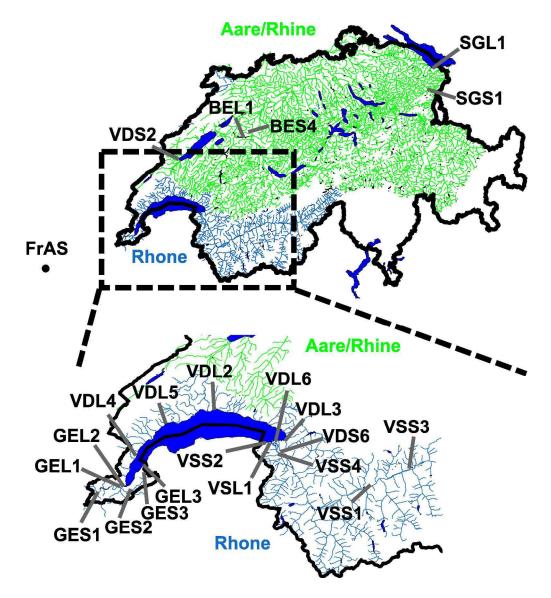


Figure 1: Map of Switzerland (© SwissTopo 2012) with all Swiss sampling sites indicated (see table 1 for details). The colors of waterways represent the two major drainage systems of western Switzerland, i.e. Rhone (blue) and the Aare/Rhine system (green).

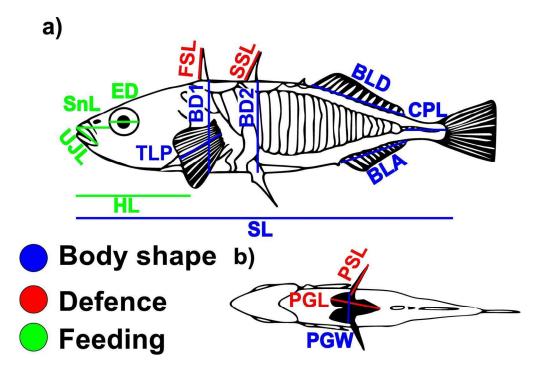


Figure 2: Linear measurements that were taken either from the left flank a) or the ventral side b) of each specimen. Traits were categorized as either anti-predator defence (red), feeding ecology (green) or body shape and swimming performance (blue). Trait abbreviations are as follow: FSL -length of the first dorsal spine; SSL - length of the second dorsal spine; PSL - length of the pelvic spine; PGL - length of the pelvic girdle; HL - head length; UJL - upper jaw length; SnL - snout length; ED - eye diameter; SL - standard length; PGW - width of the pelvic girdle; BD1 - body depth measured after the first dorsal spine; BD2 - body depth measured after the second dorsal spine; caudal peduncle length; BLA - basal length of the anal fin; BLD - basal length of the dorsal fin; TLP - total length of the pelvic fin. 163x110mm (300 x 300 DPI)

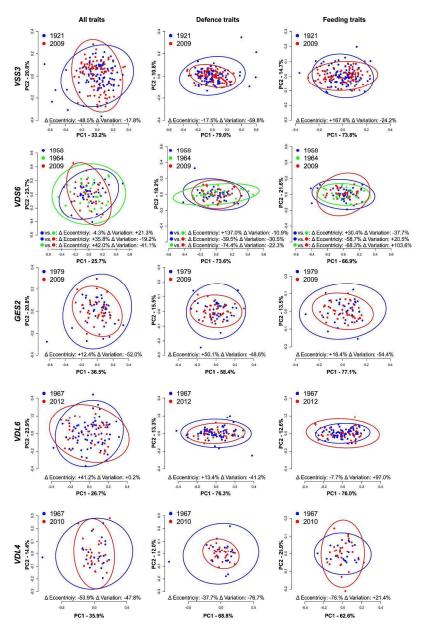


Figure 3: Principal component scores based on either all linear morphological traits (left), defense related traits (middle) or feeding related traits only (right) for the two leading principal component axes. Only sites are shown where both historical and contemporary populations were available. Ellipsoids represent the 95% CI with contemporary samples in red and historical samples in blue and green. The relative changes between historical and contemporary samples (Δ) in eccentricity and phenotypic variation, i.e. the size of the 95% CI ellipsoid, are indicated (see Table 2 for details). 513x776mm (300 x 300 DPI)

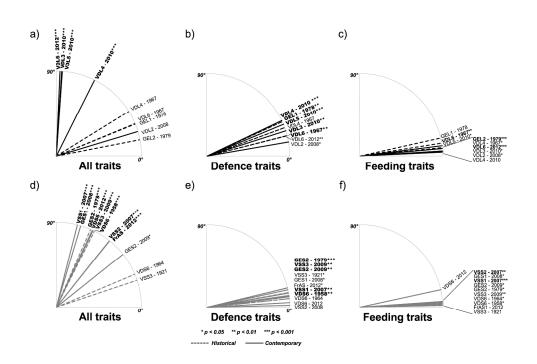


Figure 4: The angle against a common pmax for each population and year for either all traits combined or defense or feeding related traits only (see Table S1). The major axis of phenotypic variation (pmax) for each population is given for lake (a - c) and stream (d - f) populations, separating historical (dashed) and contemporary (continuous line) sampling events. P values are calculated from bootstrapping with 1000 replicates. Boldfaced populations indicate cases where pmax differed significantly after applying a Benjamini & Yekutieli correction for multiple comparisons (see main text for details). 292x199mm (300 x 300 DPI)

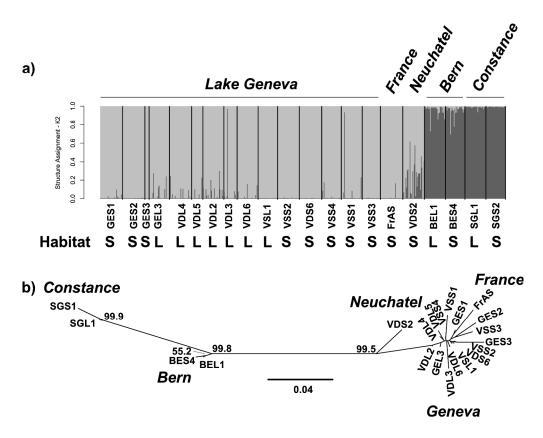


Figure 5: Genetic relationship among individuals and populations within Lake Geneva and Switzerland (Constance, Bern and Neuchatel) as well as a population from the Rhone river downstream of Lake Geneva (France) based on nine microsatellites. a) Individual based assignments using STRUCTURE for the best supported number of clusters, K = 2. The respective habitat where populations were samples is indicated (L = Lake, S = Stream). b) Unrooted neighbour joining tree based on Cavalli-Sforza distances calculated from population allele frequencies. Bold numbers indicate the support for each node based on 1000 bootstrap replicates. Only values with more than 50% bootstrap support are given. See table 1 for details of each population.

265x209mm (300 x 300 DPI)

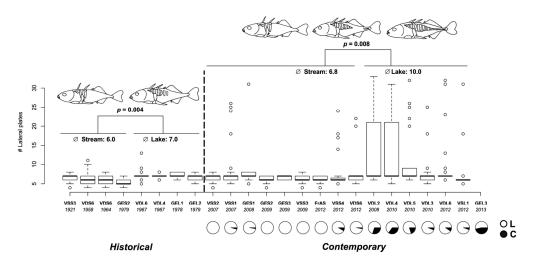


Figure 6: Number of lateral plates in each population for both historical and contemporary stream and lake populations. P values for significance of differences between habitats are based on post hoc t tests associated with fixed-effect parameters in a linear model that included the non-significant interaction between time (historical and contemporary) and habitat (lake and stream; see main text for details). The average number of plates for each habitat is reported above the boxplots. Pie plots indicate the allele frequency of the two Stn382 alleles (white – L allele, black – C allele). No phenotypic data was available for the GEL3 population (see Table 1 for details).
171x80mm (300 x 300 DPI)