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Abstract

Ecological speciatiors the evolution of reproductive isolatias a consequence difect divergent
natural selection or ecologically mediated divergent sexual selection. Whilertbmnig signature of
the former has been extensively studied in recent years, only few exaxigtedergenomic
differentiationwhereenvironmenidependensexual selectiohas played an important roldere, we
describe a very youn@90 years oljlpopulation of threespine sticklebaakehibitingphenotypic and
genomicdifferentiationbetweertwo habitas within thesamepond Weshow thadifferentiation
amonghabitas is limited to male throat caland nest typeraitsknown to besubject tosexual
selection Divergencen thesetraits mirrorsdivergence inmuch older benthic and limnetic
sticklebackspeciegairsfrom North American Westcoakikes whichalsooccur in sympatrputare
stronglyreproductively isolated from each other. We demonstrate tlwar jpopulation, differences
in throatcolor andbreedinghave been stable over a decade, but in contrast to North American benthic
and limnetic sticklebackpeciesthese mating trait differencese not accompanied by divergence in
morphology related to feeding, predator defense or swimpenigrmanceUsinggenomewide SNP
datg we find multiple genomic islands with moderate differentiation spread across several
chromosomesyhereas the rest of the genomendifferentiated. The islanad®ntain potential
candidate genes involved in visy@rception of colorOur results suggest thalhenotypic and mukHi
chromosome genomic divergence of these morphs was drivemvbjpnmentdependent sexual

seleciton, demonstratingncipient speciatiomfter only a few decades divergenceén sympatry
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Introduction

Ecological speciation, the evolution of reproductive isolation between groups of individestis
adaptation to different environmerfRBundle & Nosil 2005)has received much attention in the last
decade. Howevethe contributionsof different evolutionary forcet® the initiationand completion of
speciation, their interactions and ttteronology in which they operatee notyetwell understood.
The rise of the genomics era has comith much promise in particular for ecological speciation
researchi{Riceet al. 2011; Nosil 2012; Seehausetral. 2014) as targets of divergent selection can be
detected at the genome level and insight iht@yenomicarchitecture of traits angenomic
differentiation may unravel some of the mysteries aldiyt some populations sphind others do
not, and why some lineages speciate najten or more rapidly than otheSonsequently, many
putativecases of ecologicalpeciatiorhave recently been the subject of genomic stbdymostof
these either arallopatricor parapatricecotypa that do nopersistin real sympatry(SoriaCarrascat
al. 2014)or of speces pairghat do persist in sympatry but are alretittyusands to millions of
generationslivergent(Jonest al. 2012a; Nadeasdt al. 2012; Renaugt al. 2013; Arnegarct al.

2014; Malinskyet al. 2015) Many of thebestdocumentedate stagesf ecological speciation with
now sympatric species haligely undergoneanextendedllopatricphase (Jonest al. 2012a; Martin
et al. 2013; Renaugt al. 2013) making it sometimes difficult to distinguisletweereffects of
divergent selection amather processeaffectinggenonic differentiationbecause these spechesre
complex histories with periods efrong isahtion (Cruickshank & Hahn 2014)ntil nowonly very
few studies haveharacterized genomdifferentiation in very young sympatric forrttsat exchange

geneqMichel et al. 2010; Malinskyet al. 2015)

The early stage of ecological speciatioa. when divergent or disruptive natural or environment
dependensexualselection are initiating reproductive isolatigmof particular interest because
barriersreducing gene flow early in the speciation prodesge a larger effect ahe origin of
repraductive isolatiorthan lateacting barriergCoyne & Orr 2004)Very early stages mafor

instancebe needetb investigate theelative importancef divergent natural and sexual selection
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initiating divergenceThis is becaus® most advanced stages of speciaboih types of selection
havealready been acting and may he® to character divergence, making it impossible to tell how
the process begdiMaan & Seehausen 201The beginning of ecological speciation or ‘incipient’
speciation ighoughtto be accompanied byenomic divergence in multiple sthgenomic regions
diverging despitgene flow(Wu 2001; Fedeet al. 2012; Marquegt al. 2016) a genomic signature

of divergent selectioreducing gene floMocally in the genomand therein causingsolation by

adaptation(Nosil et al. 2008; Nosil 2012)

Here, we characterize a case of very repaenhotypic and genomiivergence in sympatry observed
within apopulation of threespe sticklebacKGaster osteus aculeatus species complex) in a clear
water pond, the Jordeweiher, near Bern, Switzerl8tidklebackhave colonizedhe manmade
Jordeweihepondnot more than 90 years agthepopulationis nowpolymorphic for many traitthat
differ among sympatric limnetic and benthic sticklebapkciedrom lakes orthewest coast of
CanaddMcPhail 1994; Vines & Schluter 20Q6hcludingnest typebreedinghabitat, male throat
color, body shape and siZghis variation in phenotyig traits may have been facilitated by a hybrid
origin of the populationThe Jordeweiher was colonized by stickleback from an extensive hybrid
zone between divergestickleback lineagelsom WesternNorthernand Easterizurope that is
situated incentral Switzerland and formed within the last 150 yfauseket al. 2010; Royet al.
2015) Jordeweiher sticklebadpopulation 'EYM' in Royet al. 2015)show the typical mitochondrial
haplotype composition of Central Swiss populations, consisting of Rhine (Nor#merBaltic
(Eastern) haplotypgpopulation 'EYM' in Royet al. 2015; Lucek & Seehausen unpublished data)
Additionally haplotypes from the Rhone lineage were found in Lake Wohlen just ld6wknstream

from the drdeweiherLuceket al. 2010)

Stickleback in tis ~3,200 n? springfed clearwatepondbuild nestsn two distinctbut directly
adjacenhabitatsthat differ in multiple biotic and abiotic factorsffshore’ habitattheopen, flat
floor covered in fairly stable bot soft sediment of very light c@fég. 1a) and‘nearshore’ habitat,

thesteep claypankbelow overhanging trees withcreased stiatural compleiy (branches, tree
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roots,leaves, Fig. 1dBesides substrate, slope and habitat complexityhdbé#atsalsodiffer in light
regime offshore habitat receives direct and strong vergcal lightthroughout most of the daand
the sediment reflects brightly, while nearshore habitat is characterized by a margdreteus and
dynamic light mosaic due &haddrom overhanging trees, and the floor is covered in much darker
leaf litter (Fig. 1a & d) Furthermore, the habitatsay also differ in predator compositiconly two
avian predatorhave been recorded on the pond, none of which is likelyachdown to the bottom
in the deeper offshore habitabmmon kingfishersA{cedo atthis) and grey herongA\(dea cinerea).
Neither of thembreed in the nearest vicinitgndtheyare thus only occasional visitorthe
impoverishedgredator faun# indeed a unique feature of the Jordeweiher compared to other
stickleback habitats in Switzerlanohly invertebratgredators such as large dragonfly larvae
(suborder Anisopteraggre moderately abundafateller et al. 2012) while a single northern piké&gox
lucius) was the only fish predator repeatedly observed in a singleTfganow predation pressure
could have allowed stickleback to colonize most of the available pond habitats, inchedojpenh

pond with little shelter.

In 2007, OS discovered thaanation in malenuptial color, body shapeand nest morphologfan
extended phenotypélunter 2009)shown bybreedingmaleg, may be associated with thdsabitas.
This would bean example of multidimensiondifferentiationbetween phenotypébatmay have
evolved in sympatrynot known fromsticklebackanywhere else in central Europe this paper, we
guantify phenotypic, ecological and genomic differentiation betweales otthe different color
morphs and betweanales from differenbreeding habitats ange askwhether feedingelated,
defenserelated or sexudlsocialsignaling traitsare morestrongly differentiatedWe theninvestigate
genomic differentiation and identify genomic islandgedgingbetweermalecolor morphs and
betweemmales from differenhabitas. Finally, we identifygenomiccandidate targets fativergent
selection betweecolor morphs and habitat8ased orthe kind of traits showinghenotypic
divergence betweadtistinctbreeding habitats, we infer thikely involvement ofenvironment

dependent sexuaklection Thereby we ainto uncover the gemic landscape of very early
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ecological speciatiodriven byenvironmemdependent sexual selection, which has not yet been
studiedin contrast tdhe genomics of ecological speciation largely drivemdtyral selection such as

selection omresource user predator avoidance

M ethods

Sampling site and collection

The Jordeweihgpondnear Wohlen, Bern, Switzerland (46°57°'24” N, 7°23'21'viigs builtbetween
1901 and 193{Stengel & Lutz 1901; swisstopo 2018Ye collected male sticklebaclomn the pond
in four different years2007(June 12, rr 20), 2012(May 6, n=79), 2013(July 1823, n=21) and
2015(May 1825, n=20). In 2007 and 2012ye usedminnow trapgo collect fish whereasn 2013
and 2015ye captured breeding malastheir ness with hand netsvhile scuba divingUpon capture,
maleswereimmediatelyphotographed in a cuvette and subsequently anesthetized and euthanized
using a clove oil solutigrexcept for males in 2015, which wexlgotested in mate choice and nest
site choiceexperimers (Felleret al. 2016) Fish capture anduthanasiavasin accordance witthe
Swiss fisheries and veterinary legislation gnanted permitsssued by the cantonal veterinary office
in Bern(permit number8E66/.3, BE7/15)andby the owner othe Jordeweihefishery rights
(Augsburger AG, Hinterkappelen, Switzerlanish addition, between April and August 2008, we
surveyed th@opulation by snorkeling and photographiWge markedand mappedest locationsn

the fieldin 2008 andriangulatedand digitally mapped nekicationsin 2013 and 201%ith QGIS
v2.6.1(QGIS Development Team 201%Ye measured water depth at nest locatior)13 and 2015
as well as the following nest characters fomplete nests in 2018iameterslope,presence of
assembled vegetatippresence and depth of depression@mhness vs. concealmeBased on the
slope and substrate where the stickleback their nests, @ classified the pond habitatto two
breedinghabitat categorieshe ‘offshore’ habitat characterized by a thick layer of accumulated

substrate and a flat topograpligcfination <15°), andthe ‘nearshore’ habitat, characterizedchay-
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137 like substrate without accumulatifgpsesubstatebut covered in leave littemda steep topography

138 (inclination > 15, Fig. 3)

139 Color analysis

140 We measured alethroatcoloration fromcuvettephotographs taken in front aneutral greycard

141  Males were photographed in ambient light in 2007 and 2012 and in standardized ligtwdrom

142 externalflashes in a black velowoatedbox in 2013 and 2015, using a Nikon E8700 in 2007 and a
143  Canon EOS 7D in 2022015.Photographs wereolor-standardizeih Photoshop Lightroom v3.6

144  (Adobe Inc.)usingtheneutral greybackgroundor automatiovhite-balance adjustmemind male

145  throat coloration was measured in a 1 faircle without melanophoreselow the eygFig. SJ) using

146 ImageJd v1.49Schneidekt al. 2012) The median red, blue and green (RGB) values from these

147  sampled pixels were transformed into a median hue angle for each male (Preucil 1958;FReteals
148 etal. 2016) hereafter ‘throat colorBecauseaot all males haattainedtheir full nuptialcolors in

149 some years angecausdime in minnow traps may have caused males to lose color intensity in 2012
150 (Fig. 2c),one observer (DMassigned the photograptesthreenuptial coloration expressiolevels

151 ‘“fully colored’ males showed excessive yellow to red coloration on throat and sides of the head up to
152 the operculum,paleé males displayed the sandéstribution ofcolorsas fully colored maledut with

153 alower intensity, while ‘throabnly’ males showed coloration restricted to the lower throat, reflecting

154  pre-or postbreeding condition.

155 We tested the distributioof throat colorin the populatiorfor multimodality and assigned males to
156 the respective modes using a cluster anabesdsd on a Gaussian mixture modaplemented in the
157 R-library mclust (Fraley & Raftery 2002)Themclust algorithm fits mixture models witharying
158 numbers of normal mixture components to the data using the EM alg@Fthhlay & Raftery 2002)
159 We assumed both equal and unequabvaesfor each mixture componenith equal variance
160 models showing a better model fit judgedthgBayesian information criterion (BICYWe fittedup to

161 threemixture components to the data and performed likelihood ratio(td3%s) to find the best
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model, with significance estimated from 10’000 bootsttRT statisticsBased on the be#tting
mode| mclust assigned males two clustergeferred to asa ‘red’ andan‘orange’ cluster
correspondingo the twomixture components arftence the twonodes in the throat color

distribution.

We testedor a phenotypenvironment association betweameeding males’ throat color and
breedinghabitat.We first usedthroathueangleandwater depth athe nes{2013 and 2015ales
only) in alinear mixed-effect modebith color as response variable, depth as predictdableand
samplingyear as random effeclo test for temporal stability of tharoat color andhabitat
association, we included males from 2007 and 2012 and substep#ddby tle binary ‘nearshore’ /

‘offshore’ habitat categorin the linear mixeeeffect model.

Linear and geometric morphometrics

We measured 17 standard linear morphological traitpkoddl9 landmarks (Fig. S1) to study
morphological variation among Jordeweildckleback malem linear and shape trajtasing tpsDig
v2.17(Rohlf 2015) MorphoJ 1.06d (Klingenberg 2014)d custom R scripts. We sizerrected both
linear and geometric morphometric datadxyractingresiduals from linear regressions of single traits
and Procrustes coordinates respectively against standard length. We tested whettreredialp
habitat and color morph can be predictedvmrphometric distances or shape tragsglinear mixed
effed modelswith traits as predictors and sampling year as random effects. We tested standard
length, all sizecorrected linear traits separately and combined into principal componeriisgthe
leadingaxes) as well as the first five principal componentsvefrall shape, head and body shape and
with false discovery rate adjusted/plues to assess significance of predicteodlowing the

approach byKaeufferet al. 2012) we calculated §&, a scale€ree estimator of phenotypic
differentiation analogous tosk; for standard lengtleach sizecorrected traitfor each ofthe first

three principal components combining eitbBisize correctedraits, feeding morphology,

antipredatodefense morphologgr swimming performance trai{see Fig. S1 for grouping), difor
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each of the threfrst principal componentsf shape traitswghole body headandbody shape
respectively), between males grouped by color morph and by breeding habitat. Byappwoigtthe
data 1,000 times, we tested for significant differentratimong the groupse. whether thé5%
confidence intervdlor a Pst exceeded zeraising bootstrap-paluesadjusted for multiple testing

using the false discovery rate meti{@g&njamini & Hochberg 1995)

Somach content and stable isotope analyses

Stomachcontents oktickleback collected in 2007 were analyzed under a dissecting micrastbpe
we identified organisms in the ditd the level of order ofamily following (Luceket al. 2012) We
calculated the proportion of planktonic preg, the ratio ofCopepoda plus Cladocera overthe total
number of food itemd-or stable isotope analysis, muscle tissue from the 2007 males was dried in an
oven at 75°C for 48 h, pulverized, weighed to 8028 mg packed into tin capsules and sent to the
Environmental Isotope Laboratory (University of Waterloo, ON, Canada), ashesbm (Luceket

al. 2013) We tested whether mabeeedinghabitat and color morph can be predicted by §°C and

3'°N isotope ratios or the percentage of planktonic prey using Ime@d effecs models, with

isotope ratios and planktonic prey proportion as predictors and sampling year as effiedtsn
Analogous to Broutlined abovewe calculated ‘Er', a measure of ecological differentiation
(Kaeufferet al. 2012) for the percentage of planktonitey and the 5*°C and 5*°N isotope ratios
between male color morphs and breeding habitats and determined significance bydpiogstine

data 1,000 times.

Genomic data preparation

We sequenced 21 and Jd0rdeweiher malefsom 2013 and 201&sing therestrictionsite associated
DNA (RAD) sequencing protocdly Baird et al. (2008) with modifications described Marqueset
al. (2016) ThreeRAD libraries weresingleendsequenced on an lllumina HiSeq 2@Gahe Next
Generation Sequencing (NGS) Platform, University of Bern, Switzerland and ther Gent

Integrative Genomics (CIG), University bAusanneSwitzerland Each library was run on a single
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lanetogethemwith other stickleback samples ahd% bacteriophage PhiX genomic DNA (lllumina

Inc., San Diego CAUSA). The three librariegielded 175, 188and 142million 100bp long reads,
respectivelyWe removedPhiX-reads from raw sequencing reads by alignment to the PhiX reference
(accession: NC_001422; Sangeal. 1977) demultiplexed individualsnd filtered for an intacbfl
restriction site using process_radtags vi@étcheret al. 2011) We alignedstickleback reads

againsta reassembly of the stickleback geno(t&azeret al. 2015)using Bowtie 2 v2.2.6

(Langmead & Salzberg 201@jth default parametezndto-end alignment. As described (iMarques

et al. 2016) we recalibrated base quality scores using the fé@ds to empirically estimate

sequencing error with the GATK v2.7 tools BaseRecalibrator and PrintRdalennaet al. 2010)

We called variants and genotypes simultaneously using the GATK tool UnifiedGen@dtygdenna

et al. 2010) with the following parameters: base quality score minimum 20, SNPs andjami/pe
likelihood model, contamination ra8. Using vcftools v1.1.1#aneceket al. 2011)and custom
python scripts, we removed sites with quality below 30, with more than 50% missingges ot

indels and sites 3 bp upr downstream of indels, SNPs with more than 2 alleles and individuals with
more than 40% missing data. We also removed genotypes with quality below &&peimdébelow 30
reads Additionally, we excluded sites on the sex chromosome XIX from the dataset, due to
uncertainty in mapping and variant calling, as rohYomosome reference is available for stickleback
yet. Furthermorewe converted heterozygote genotypes with a strong read icolbalance for the

two alleles, i.e. genotypes with less than 25% reads of the rarer t@lleanozygotes for the more
common allele irorder to prevenincorrectheterozygote calls due pmtential PCR4inducederrors.
Forthedetection of genomic islands, we applied a minor allele frequeneayffcot 20% and

computed Fstatistics incorporating an inbreeding term, to prevent effegestehtialerroneously

called homozygotes due to PCR dupksapresent in singlend RAD sequencing daBaxteret al.

2011; Daveyet al. 2011; Daveyet al. 2013; Andrews & Luikart 2014; Puritt al. 2014; Marquest

al. 2016) We usedtustom basland python scripts for filtering steps as welP&DSpider v2.0.9.0

(Lischer & Excoffier 2012jor file conversion

10
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Population genomic analyses

We computed fstatistics (kr, Rt and ks) for all Jordeweiher malegrouped bycolor morph (orange
vs. red) or breeding habitat (neas. offshore), using a locts/-locus AMOVA as implemented in
Arlequin v3.5.2.3Excoffier & Lischer 2010)allowingfor within-individual variation and thus
inbreeding. We ran 1600 permutations to assess whether single |Betis are greater than zero, as
suggested bsuoand Thompson (1992). In order to identify genomic islahdsferentiation
defined here agenomic regions witlan accumulation of loci with elevated differentiatiore used a
Hidden Markov Mode(HMM) approachHoferet al. 2012; SoriaCarrascaet al. 2014; Marquest

al. 2016) First, wenormalizedFst valuesby transformingo logio(Fst+1) and applied an HMM with
three normally distributed states to this series of transforrgedakies, corresponding to ‘genomic
background’ differentiation, ‘low’ and ‘high’ differentiation, the latternmpigenomic islands of
differentiation’andreferred tosimply as‘genomic islands’ from now onwardSecond, we retained
genomic islands as duonlyif they contained locwith statistically significant differentiation after
correction for multiple testings assessed basedmwalues from AMOVA permutationsorrected

for a false discovery rate of 0.05, following (Sun & Cai 2009; #al. 2009; Hoferet al. 2012)

In order to detect putative signatures of selectiancalculated nucleotide diversity in ron
overlgping windows spanning multiple RACcI, so that a windoveontainedat leastL,500
sequenced base pairs (max. 1,802 bp) without splitting-R&Dacross windows. We used only sites
with maximal 50% missing data per group, grouped by color morph (orange vs. red) or breeding
habitat (nearvs. offshore). This resulted h823 and 1,82&indowsfor males grouped by habitat
and color morphrespectivelyspanningalong chromosomes meardistanceof 217 kb(median 181
kb, range 371,773kb) and 218 kb (median 192 kfange 292,159kb) respectivelyWe used

Arlequin v3.5.2.3 (Excoffier & Lischer 201®) estimate nucleotide diversity (m) for each group and
window and calcudted the differences in nucleotide diversity between gralipgshorefishore@nd
Amredorangd fOr each window. We overlaid the positional information for genomic islands wik the

windows and assigned theaacordingly tdisland windows’ if they overlapped with genomic islands

11
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or to‘genomic background windowstherwise We tested whether the absolute valueAmtarshore
ofshore @N0 ATredorangeOF iSland windows were different from genomic background windows, using t

tests and falsdiscoveryrate adjusted-palues.

We overlaidpositional information fogenomic islands witthose ofEnsembl predicted gené¥ones
et al. 2012b)and withpreviously identified quantitative trait loci (QTLS), caddie genes, expression
outliers,andoutlier regiongPeichelet al. 2001; Colosimat al. 2004; Creskat al. 2004; Shapiret
al. 2004; Colosimat al. 2005; Kimmelet al. 2005; Coylest al. 2007; Milleret al. 2007; Albertet al.
2008; Makineret al. 2008a; Makineret al. 2008b; Charet al. 2009; Kitanoet al. 2009; Charet al.
2010; Hohenlohet al. 2010; Kitanoet al. 2010; DeFavergt al. 2011; Greenwooek al. 2011,
Shimadaet al. 2011; Deaglet al. 2012; Greenwooet al. 2012; Jonest al. 2012a; Jonest al.
2012b; Kaeuffeet al. 2012; Maleket al. 2012; Rogerst al. 2012; Warket al. 2012; Greenwooet
al. 2013; Kitanoet al. 2013; Arnegardt al. 2014; Berneet al. 2014; Clevest al. 2014; Ericksoret
al. 2014; Glazeet al. 2014; Liuet al. 2014; Milleret al. 2014; Terekhanovet al. 2014; Yoshidaet
al. 2014; Conteet al. 2015; Elliset al. 2015; Ericksoret al. 2015; Feulneet al. 2015; Glazeet al.
2015; Greenwoosdt al. 2015; Gucet al. 2015; Roestét al. 2015; Yonget al. 2015; Ericksoret al.
2016; Marque®t al. 2016) We tested whether the setgghesverlappingwith geromic islandsvas
enrichedfor gene ontology (GO) terms using the STRING v9.1lukda (Franceschiei al. 2013)
with a Bonferronicorrected alpha level of 0.08/e alsotested whether genomic islands fell more
often intoQTLs for 39 trait groupghan expected by chanasing a permutation approafifiarques
et al. 2016) Genomic data analysis was performesthgthe bioinformatics infrastructure of the
Genetic Diversity Centre (GDC), ETH Zurich/Eawag, on the Ezdenputercluster aETH Zurich
and on the Ubelixomputercluster atUniversity of Bern, Switzerland. Statistical analyses were

conducted in R v3.2.@R Development Core Team 2015)

Results

Throat color polymorphism is stable and associated with the environment
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Breeding males in the Jordeweiher pond show a bimodal distritafttbnoat color variationwith

one mode of rethroatedmales andinother modeof orangethroatedmales(Fig. 2a & h LRT
statistic=7.82, p=0.02R Redthroated malepredominanthbreed in the steep shore part of the pond
the‘nearshore’ habitat, while orandkroated malemostlybreed on the deepand flatter bottom of
the pond, théoffshore’ habitat(Fig. 3;males 2013 and 2015: Bwater depth at nest/ -41,12,36=4.00,p<0.001,
males2007, 20122013 and 201Pnabita=8.98,12,10~6.70, p<0.00LL This associatiomesultsin
significantphenotypic differentiatiobvetween nearshore and offsharelesfor throat coloration
(Pst=0.37, p<0.001)Fig. 4). Furthermorgheassociation ofmale throat coloratiowith breeding
habitatpersistel overthe surveyed periothetween 2007 and 201big. 2¢), demonstrating the

temporal stability of thiphenotypesnvironment association

Weak differentiation in defense and feeding mor phology and ecology

Besides throat coloration, morphologidiferentiationis weakbetween reéindorangeor nearshore
andoffshorebreedingmales:Red/ nearshorenalesare slightly larger than orangeffshoremales,
haveslightly larger headand upper jaws, a shorter second spiné a longer dorsal fin as well as a
deeper bog (Tab. 1) Howeveronly swimming performance related trait differences (body depth and
shape, dorsal fin length), predominardipongthe color morphsemainsignificant after correction

for multiple testing(Tab. 1, Fig. S& S3). Concordarly, morphologicalifferentiationis not
significantin any ofthose traitafter correction for multiple testingeitherbetween habitatsor

betweercolor morphgFig. 4)

Estimatesof differentiation in feeding ecologgmongmalesbreedingn differenthabitats8*°N Est=
0.11, '3C Est=0.12, Fig. 4 Tab. 1 suggesaslight but not significantlyincreaseadarbon depletion
in offshorebreeding males and an on average slightly elevadptiic positiorfor nearshore males
(Figs. 4 & S4) Thistrendis not present amongplor morphsWeakdifferentiation in morphological
traitsis similarin direction between bothabitats and color morphs, but slightly stronger among color

morphs (standard length, body depth, swimming performance linear morpheltdg ecologicd
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differentiation eBmates are highdrsetweerhabitats thatetweercolor morphs (Fig. 4)The degree
of differertiation in allthese phenotypic and ecological tréastsnuchlower than differentiation in

throatcoloration(Fig 4).

Genomic islands of differentiation

We studied patterns of genomic differentiation and diversity using a RAD sequendivepiddataset
of 2,907,120 sequenced sites passing quality filters, includiff@3 ENPsdistributed across the
genome. We computed relative differentiati®ar) for each SN®etween male color morphs and
betweemmales breeding ithe twodifferent habitats, using a locly-locus AMOVA (see Methods).
Averagel across all SNPspeangenomic differentiatiommongnearshore and offshore breeding
males(mean kr=-0.0018, permutation test>p0.05)andred and orange¢hroated malegmean kst
=-0.001Q p > 0.05)is notsignificantand thus there is no genomic background differentiation among
them However differentiation isheterogeneouscross the genomegveaing a numberof genomic
regionswith considerable differentiatioranging up to Er= 0.46between colomorphs andrst=
0.48betweerbreeding habitat(Fig. B & d). Weused a Hidden Markov Model (HMM) approach
and a subset of 7,669 SNPs with minor allele frequency >t@0@entify regionswith an
accumulation oflifferentiatedoci. Wefound 14suchgenomic islands of differentiatidretweerred
and orange stickleback males and 9 genomic islbettgeermaesgrouped by breeding habitat (Fig.
5b & d, Table 2. Threegenomicislands on chromosomedl, X1V and XVIII aredivergentboth

between males breeding in differdmatbitats and males of the differeaior morphs

In several genomic islandsycleotide divesity is reduced in one of the two male tygadicative of
habitat or color morphspecificselective sweeps in those regi¢Rg). 5a & ¢) For example island
H.21b (Tab. 1, Fig. 5shows a highly positivAmnearshorefishore SUGgesting a reduction of diversitye
to asweepin offshoremales In contrastjsland HC.18hows negative values for badinearshorfishore
andAmedorange@nd thus reduced diversity irearshoré red males, suggesting a selective sweep in

nearshore/red male&mong males breeding in different habitats, island H.11 shows decreased
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diversity in offshore males and island H.16 in nearshore males, while amonglrethage males,
islands C.2band HC.1Xhow low diversity in orange males andhigll C20din red malegFig. 5).
Overall,differences in nucleotide diversity between nearshore vs. offshore males and redges. oran
males respectively were higher in genomic islands than in the genomic backgrounds(amean
|Athearshorefishord =3.5* 1074, mean backgroun@\mnearshoreftshord =2.2 * 10, t45= —2.66, p=0.011;
meanisland Pfregorangd = 3.4* 1074, meanbackgroundAmregorangd =2.1 * 107, thgo= —3. 17 p<

0.00). At the same timeraw estimates afiucleotide diversit@arenotlowerin genomic islands than
in the genomic backgroundeither within individuals grouped by habitatean island mtnearshore= 1.37
* 1073, mean background Tnearshore= 1.41 * 10%, t2,47=—0.31, p = 0753 mean island Tofishore= 140 *
1073 mean background moftshore= 1.38* 1073, tr48 = —0.20, p = 084) nor by color morphrfiean island
Tred = 1.38 * 10°, mean background mreq= 1.49 * 10° tbea=—1.11, p=0.271, mean island Torange=

1.39 * 10 mean background Torange= 1.43 * 103, t,63=—-0.38, p = 0.70R This suggests that
genomic islands are likelrising fromdivergent selection between habitats and cmlorphsand not
dueto older sweepgpredating the colonization of the Jordeweiher pondue tootherprocesses such
as background selectig@ruickshank & Hahn 2014; Buret al. 2015) which would instead reduce

diversity in both groups at the same genomic regions

We screened the gene contehgenomic islands and four@dl7 overlappingenesincluding615
genes withorthologuesn zebrafish Danio rerio). We did notfind enrichmenfor gene ontology
categorie@among these 847 genes, gidentifieda number oputativecandidate genesith
functiors derived from zebrafish phenotyp@foweet al. 2013)that are relevartb the observed
phenotypic divergencamong Jordeweiherates The set of overlapping genes contained multiple
genes with a role imisual perceptiongye, retina and photorecepti®velopment, photoreceptor
maintenance and recovegenes controllin@rythrocyte developmemnesponsible fored
pigmentation melanocyte developmeandiridophore development responsible for blue coloration

Thosegenes are distributed acramsltiple genomic islands found in this study, wittany islands
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containingcandidate genes involved in botisual systemand in pigmetation, which could be

possible targets of divergent select{erg. island C.2a, C.3, H.11, C.20c, H.21a, Tib.

The genomic islands overlayth 151 previously identified QTLs controlling morphology associated
with feeding ecologybody shapand predator defeng€ab. S3. However, the overlap between
QTLs and genomic islands is not significantly higher than expected if the islandsangoenly
distributed across the genome (permutation test, p > 0.05). Furthenooeeof these traits are
differentiated among Jordeweiher males, whdee of the few QTLs known to influence male
nuptialcoloration overlap with the observed genomic islaiMislek et al. 2012; Yonget al. 2015)
Unlike the analysis of candidate genes, the analysis of QTL overlap thus did nopteusitle
functional connections between divergent phenotypes and the genetic basis of ticid deteher

studies and populations.

Most of thegenomic slandsthat we foundverlap withgenomicislandspreviously reportethetween
other sticklebaclecotypes or populatiorf$ab. S2)islands C.2a, C.2b, H.3, H.11, HC.12, C/20b
and H.21a are also differentiatedtween parapatric lake and stream ecotirp€anada, Germany
and SwitzerlandKaeufferet al. 2012; Feulneet al. 2015; Marquest al. 2016) Islands Q0a/b/c
andH.2lawere alsaivergentbetweenmmultiple parapatric marine and freshwater stickleback
populations from around the Northern Hemisph@omest al. 2012b) Finally, islands C.3, H.11 and
C.20a contain loci divergent among allopatric marine and freshwater popul@ieffeveriet al.
2011)and loci with evidence for balancing selection in marine and freshwater populatiens wer
detected inslands C.2b, H.7 and C.20dqMlakinenet al. 2008b) With the exception of sympatric
lake and stream stickleback from Lake Constance, which also diffet frorange throat coloration
(Marqueset al. 2016) most oftheseothercasesnvolveddifferentiationbetweerallopatricor
pargatric populations, for which despite the obvious habitat differedfés,encesn malenuptial

coloration hae not been reported.

Discussion
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Our results reveal a rare case in sticklel@#cdtrongdifferentiation in a sexualignaling phenotype
associated with habitat differences in sympaitryhe absence dafifferentiation inecological and
morphological traitselated to resource acquisition and predator def@isgenomic landscape
as®ciated with this early divergentecharacterized bgnultiple genomic islands of moderate
differentiation bcated orseverakchromosomes. Imanyislands, diversity is reduced in one of the
two morphsbut not the other onesuggesting that selectiggveeps occurred in both morghs at
different loci We identified a number giossibletargetsof divergent selection in genomic islanafs

differentiation geneghat are involved in visual perception and eye morphogenesis

Environmentally mediated divergent sexual selection as a likely driver of stable throat color

polymorphism

Nuptial colorationis a productand target of sexual selecti@odric-Brown & Brown 1984;
Andersson 1994)with throatcolor being of particular importance threespine sticklebadBakker

& Mundwiler 1994; Rustet al. 2003; Flamariquet al. 2013) Previous work on other stickleback
populations showed thatales with redder throats are preferbgdfemaleqBakker & Mundwiler
1994) more dominanBakker & Milinski 1993) more successful in éendng territory and offspring
(Candolin & Tukiainen 2015ndin a bettercondition(Milinski & Bakker 1990; Boughman 2007)
However, sexual selection on throat color &s®been shown to be divergent betwaseme
populations and ecotypes, mainly depending on divergent visual eméints (McKnnon & Rundle
2002) For examplen stained waters on the North American Pacific catiskleback males have
repeatedly acquireolackthroats(Semler 1971; Reimchen 1989; McKinnon 19%5¢onsequence of
sexual selectiomaximiang malesignal intensityor visibility to femalesagainst ébackgroundhat is
dominated by red light (Reimchen 1989; Boughman 2001; Lewandowski & Boughman068)
studies (Malelet al. 2012; Yonget al. 2015)have identified a genetic basis for throat color
controlling hue (red vs. black) and intensity (redness), confirmiogrtain degree of heritabilifgr
this sexual signallheory suggestthat interactios between sexual selection and visually

heterogeneous habitdead to the evolution and maintenance of male color polymorphism under
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many conditiongChuncoet al. 2007)andmany examplesxistfor environmemassociated
polymorphisms in male ornaments (Gray & McKinnon 208uppies (Endler 1983; Cole & Endler
2015) cichlids(Seehausen & van Alphen 1999; Allendeal. 2003) killifish (Fuller 2002)

silversidegGrayet al. 2008)or Anolis lizards (Leal & Fleishman 2002)

Thestrong and stable association between male cabophand breedindpabitat in the Jordeweiher
pond is ikely drivenby such environmerdependent divergent sexual selectionanother study
(Felleret al. 2016) we found @imodaldistribution of female preferences in this population
suggestinghatthe femalepopulation in this pond does not cause directional selettivards redder
throat coloration. Insteaéemales vary in their preferences for either sedrange malesven when
tested in the same standard white light lab environment, suggesting some &sssirtdtive mating
could bepresent in the pongdrelleret al. 2016) Red and orangeuptial colorationcould therefordoe
alternative strategies to maximize male attractiveness to femalderent light regimes andgainst
differentbackground colors, in response to divergent sexual selection imposed by females
Divergence in nest types as an extended phen@tjyrgter 2009 may enhance male attractiveness in
the respective habitafsraaket al. 1999; Bolnicket al. 2015) nearshore males build shallower, less
conspicuous, hidden nests (Fig. 1b), while offshore males build open;siraterd nests at greater
depth (Fig. 1e). Both direct sexual selection against males in the ‘wrorigithatalemale
competition and ‘habitainatching’(Edelaaret al. 2008) the active boice of the optimal breeding
habitat maximizing thénpact of a male morph’s sexusgnaling phenotypemay contribute to the

stability of this polymorphism

Divergence in throat color could also be a produthefinteraction betweattisruptivenatural and
sexual selectiobetweerthe two habitats: f@dators may select foeduced conspicuousness and
camouflage, leading to different solutianghetwo light regimes and background coldfsis could
induce arade-off between natural and sexwsalection which in turn may have causetfshore
malesto compensate for being less féntoatedby building more elaborate nestgt might aidn

attractingfemales as shown elsewhe(&raaket al. 1999) Also, predator composition and predation

18
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441 pressure may vary between habitatswever, the predator fauna of the Jordeweiher is very
442  impoverished compared with other stickleback hab({éefler et al. 2012) in particular piscivorous
443  fish and birds-the latter putatively causing divergent predation pressure between habitatsare
444  anddivergent selection imposed byesepredators may thus be irregular and ovearativery strong.
445  Furthermore, the magnitude of trait divergence was much larger in throat csidhetn in typical
446  predator defense or predator evasion (e.g. swimmingrpeaface) related traits, which was

447  unexpected if predator compaosition or predator pressure differences between wabildise a

448 major source of divergent natural selection.

449  Littledivergencein traits under direct natural selection

450 Traitscommonly found to bander direchatural selection, such as predator defense, feeding ecology
451 or swimming performance traitednot divergel between habitats or color morphs in the

452  JordeweiherThis is in strong contrast to most otltases of phenotypidivergence between

453  stickleback populationgccupying adjacent habitats, whichmmonlyshow strong morphological

454  divergence irraits related tpredatoravoidanceor feeding, rather than, or simultaneously with,

455  divergence in sexually selected trgitécPhail 1994; McKinnon & Rundle 2002; Olafsdottiral.

456  2006; Olafsdottiet al. 2007b, a; Coopest al. 2011; Ravinett al. 2013; Reimcheset al. 2013) Most
457  well-studiedstickleback ecotypes with divergence in mating signals show morphological di#ergen
458 related to feeding and / predator defensmo, for examplesympatric benthic and limnetic

459  stickleback specidg British Columbia(Schluter & McPhail 1992; McPhail 1994; Boughneial.

460 2005) sympatric lake and stream stickleback from Lake Consfauoeket al. 2012; Moseket al.

461 2012)or allopatric stickleback from stainedrsusclear lakes on Haida GwdiReimcheret al.

462 2013)

463  While a range of differences imbitats and selection regimes may explain phenotipérgence
464  betweerallopatricor parapaic populationsthe ngjor axis ofphenotypiadivergencen stickleback

465 speciegoexisting in sympatris benthicversudimnetic formsin freshwater lakes in British
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Columbia(McPhail 1994). Although these forms are thoughtage evolvedrom doubleinvasiors
of the lakes rather than from sympatrgpeciation(Taylor & McPhail 2000) ecological diferentiation
in sympatry idikely crucial to their coexistence and persistef@ehluter & McPhail 1992; Rundk
al. 2000; Vamosi & Schluter 2002; Arnegaetdal. 2014) Theweakdivergence in ecological traits
betweerhabitats and color morphs in the Jordeweiher mhegpie strong differentiation in mating
traitsmay suggesthat thefitness landscape for feeding related traits in this habitat does not cause
strong disruptive selection, contraryldenthic and limnetic sticklebadk Canadian lake@Arnegard
et al. 2014) Thedifferernt predcator communityin the Jordeweiheidominated by insectadds to
generatingaselective landscapiat is probably very different frothose of the British Columbia
lakes wherdrout as gredatolis important(Vamosi & Schluter 2002; Rund&t al. 2003; Arnegard
et al. 2014) Alternativelyi,it is possible that disruptive selectionJordeweihers dissipatedy
ecologicaldimorphismbetween thesexednstead ofdivergentecologicaladaptatiorbetweercolor

morphs(Bolnick & Lau 2008; Bolnick 2011; Coopetal. 2011)

Genomic signature of early ecological speciation

While sympatricbenthic and limnetic sticklebadpeciedrom lakes inBritish Columbiashow
considerable reproductive isolation and genomic differentiditoiPhail 1994; Nagel & Schluter
1998; Rundlest al. 2000; Boughman 2001; Jonetsal. 2012a) genome differentiation among
Jordeweiher ecotypes is restricted to a few genomic islargigroficantly elevated differentiation
similar to ympatric lake and stream ecotypes from Lake Const@viaejueset al. 2016. The
evolution ofCanadiarbenthic and limnetic sticklebadpecies pairgwolved an extensivphase of
allopatry(Taylor & McPhail 2000nd genomic differentiatiomay reflecta mix ofselective
maintenance of adaptivtfferentiatin, adaptive divergence in sympatry aaddomdivergencedue
to historicalcontingencyJone<t al. 2012a) The Jordeweiher poridstead as most of the
surrounding populations in Central Switzerlaisdnhabitedoy a populatiorthatarose from
hybridizationbetweerat least two distinct stickleback lineadesiceket al. 2010; Royet al. 2015)

and the resulting genetic and phenotypigataon in the hybrid swarm may have facilitated incipient
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speciationinto color morphs divergently adapted to two adjacent habitat and therein ‘ecolypes’
fact that we find n@levated backgrourdifferentiationin the genome witla number ofgenomic
islandsis consistent with the hypothesis that the Jordeweiher pond was coloniyexhce bya
population from thdaybrid zone rather thaseparateloy each of the ffierentlineageghat gave rise
to the hybrid zonelt is therefordikely thatgenomic differentiatiomnd stabilizatiommong
Jordeweiher nearshore and offshecetypess a productof very recentncipient speciatiomn
sympatry possibly facilitated by thpreceding formation of a hybrid swarm betwerergent

lineageqSeehausen 2004, 2013)

Few welldocumented examples of sympatric divergence @whick & Fitzpatrick 2007)and

genomic differentiation has been studied in even feasrs. Otthe twocaseghat we know of

Rhagoletis fruit flies and crater lake citilds (Michelet al. 2010; Malinskyet al. 2015) many

genomic islands have been foustinilar to the Jordeweiher sticklebadkowever in Rhagoletis fruit
flies many of thee islands were associated with inversitiag diverged during periods of allopatry
something that remainsiknown in Jordeweiher stickleback and the crater lake ciclitidontrast to
the Jordeweiher stickleback, weak but significant geraide backgroundiifferentiation was
detectable in fruit flies diverging for 15Michel et al. 2010)andcichlidsdiverging for 10’000 years
(Malinsky et al. 2015) These differences in genomic background differentiation might be due to a
combination ofvaration intime since divergence started, levels of ongoing gene dod the

mechanisms of reproductive isolati@mdvarying population sizes and thdsft in different systems

Whatare thetraits codedin genomic islandsinder divergent selecti@The presence of oitiple
moderatelydifferentiated islands Jordeweihestickleback suggest a rather complex genetic basis
for the traits under selection, controlled by genes on different chromosanaesor multifarious
selection on several traits leading to multiple differentiated genomic regfiedsret al. 2012) The
presence ofaor perception andyedevelopmengenesnayindicate thathe perception of coland
therefore female preferencaetarges of divergent sexual selectifirig. 5). If female preference

was environmentlependent and genetically inheriteghroductive isolatiobetweerecotypes could
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518 be strengthened tsensory drivethe combination of habitadpecifictransmission omale signal,
519 perception adaptation ierales and the matching of male signal and female percéptoghman
520 2002) Sensory drive speciation is wéthown from benthic and limnetic stickleba@oughman
521 2001)and fromPundamilia cichlids (Seehauseat al. 2008)and may have led to sympatricegpation
522 inthe latter(Seehausen & van Alphen 1999; Seehagsah 2008) We dohowevemot yet knov
523 whether sensory drive may operate as a mechanism of divergence among Jordeweiltercksckle
524  Measurement of the distribution of female mate preferences, excluding engirtai effects,

525 revealed a bimodal preference functeonong female@-elleret al. 2016) yet thestrength of

526  assortative mating under natural corafiremains unknowiSnowberg & Bolnick 2012)A better
527 understandingf theenvironmental component of mate choig# be crucialto evaluatevhether
528 sensory drive may baperatingandcausing rproductive isolationn the Jordeweiher stickleback

529 (Hendryet al. 2009)

530 Conclusions

531 We showed that tweympatric color morphs of threespine sticklebadtk a stable habitat

532 associatiorevolvedin a 90 years old population, representangery early stageof ecological

533 speciatioras defined by the emergencedofergence in multiple genomic regions in sympatiye

534  Jordeweiher pond stickleback are jleeingestase of divergence between sympatriocahorphs

535 investigated athe genomic levelnd thus the first snapshot of the genomic landscape associated with
536 very early ecological speciatidgm which divergent sexual selectidikely plays the leadole. Our

537 results suggest thi#te genomic patterassociated with this process is characterized tgipre

538 unlinkedgenomic islandagainst an undifferentiategenomic background. We encourage further

539 search foother youngsympatriccolor polymorphismin sticklebackthe genomic investigation of

540 whichwould allowtestingthe generality of this pattern.
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900 Tables

901 Table 1. Linear mixed effects model results for morphological and ecologitta) tvith summary
902 statistics given for the predictors habitat and ¢akespectively. Significant traits / model&er
903 correction for multiple testing atgghlightedin bold.

Trait Abbr. Habitat Color
Brrait trss*  p-value  Buai trss*  p-value

standard length SL 1.785 2.221 0.030 2.389 2938 0.005
head length HL 0.251 2.134 0.037 0.192 1.554 0.126
shout length SnL 0.097 1.521 0.134 0.048 0.742 0.461
eye diameter ED 0.078 1.576 0.121 0.039 0.771 0.444
upper jaw length uJL 0.148 2.404 0.020 0.124 1.924 0.060
suction index proxy SucP 0.307 2.033 0.047 0.295 1.870 0.067
first spine length FSL 0.034 0.370 0.713 0.004 0.049 0.961
second spine length SSL 0.158 1.958 0.055 0.220 2.773 0.008
pelvic spine length PSL 0.054 0.510 0.612 0.059 0.545 0.588
body depth 1 BD1 0.298 2.386 0.021 0371 2930 0.005
body depth 2 BD2 0.337 2.783 0.007 0.381 3.064 0.003
total length pelvic fin TLP 0.070 0.689 0.494 0.020 0.185 0.854
basal length pelvic fin BLP 0.018 0.403 0.689 0.012 0.261 0.795
basal length dorsal fin BLD 0.282 2.973 0.004 0.363 3.838 <0.001
basal length anal fin BLA 0.212 1.820 0.074 0.016 0.129 0.898
caudal peduncle length CPL 0.077 0.652 0.517 0.018 0.153 0.879
caudal peduncle depth CPD 0.027 0.879 0.383 0.011 0.348 0.729
all linear traits PC1 - 0.665 2.952 0.005 0.723 3.118 0.003
feeding traits PC1 - 0.436 2.377 0.021 0.382 1.981 0.053
defense traits PC1 - 0.099 0.747 0.458 0.148 1.127 0.265
swimming traits PC1 - 0.495 2.674 0.010 0.621 3.330 0.002
throat color - 10.936 6.078  <0.001 - - -
head + body shape PC2 - 0.003 0.536 0.594 0.008 1.418 0.162
body shape PC1 - 0.018 2.708 0.009 0.022 3.365 0.001
head shape PC1 - 0.000 0.054 0.957 0.007 0.931 0.356
dt%carbon dt3C 1.948 1.650 0.127 1.397 1.055 0.314
3™nitrogen 3N 0.764 1.570 0.145 0.443 0.803 0.439

proportion of planktonic prey PPP 0.074 0.449 0.659 0.185 1.100 0.288
904  *tp11for 8°C / 8'°N and t16for PPP.
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Table2. Position and size of genomic islands of differentiation among male color morpéusd C)
malesbreedingn different habitats (H), as well as islands found in both comparisons (HC).

Island name  Chromosome  Start* End* Length No. of SNPs

H.3 chrlll 10,195189 11,013,253 818,065 18
H.7 chrVil 29,369,008 29,580,946 211,939 12
H.11 chrXI 15,670,181 16,461,683 791,503 21
HC.12 chrXll 5,238,787 5,776,374 537,588 19
HC.14 chrXIv 2,990,195 3,400,864 410,670 18
H.16 chrXvi 17,953,430 18,437,334 483,905 26
HC.18 chrxXVili 12,115,653 12,700,449 584,797 21
H.21a chrXXIl 3,569,648 6,950,491 3,380,844 18
H.21b chrXXIl 12,637,551 12,876,396 238,846 10
C.2a chrll 4,559,861 6,181,686 1,621,825 46
C.2b chrll 23,256,982 23,687,419 430,437 11
C.3 chrlll 9,275,841 9,275,999 158 6
C.10 chrX 6,932,366 7,012,361 79,995 7
HC.12 chrXll 5,387,615 5,706,897 319,282 14
HC.14 chrXIv 2,377,579 3,131,078 753,499 33
C.17 chrxXvili 4,900,840 5,033,507 132,667 6
HC.18 chrxXVili 11,702,348 12,700,449 998,101 28
C.18a chrxXvill 13,194,103 13,453,530 259,427 15
C.18b chrxXvill 13,483,346 14,067,086 583,740 10
C.20a chrxX 363,978 956,341 592,363 21
C.20b chrxX 4,850,891 6,519,852 1,668,961 44
C.20c chrxX 6,619,982 8,049,063 1,429,081 21
c.20d chrxXX 9,363,001 9,607,463 244,462 6

*Coordinates from the rassembly byGlazeret al. (2015)
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Figures

Fig. 1. Threespine sticklebadieedin two divergent habitat&yffshore’ (a.c) and ‘nearshore’ (8,

in the Jordeweiher pond near Bern, Switzerlafitlile offshore habitat (a) consistsari open, flat,
muddyfloor, with direct sunlight and greater depth down tm3nearshore habitat (d) is a steep clay
bank below overhanging trees producing a more heterogeneous and dynamic light mosaiorand a m
complex habitat withbranchestree roots and leaveStickleback males breeding in offshore habitat

(c) have an orange throat and pale body color and bugd,ldeep crater nests (b), whilearshore
breeding male§) have a red throat and a darker body with more dark pigraedtsuild concealed
nests (e)
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Fig. 2. Bimodal distribution ottroat colorand phenotypenvironmentssociation in Jordeweiher
threespine stickleback) Throat colordistributionand clusteanalysisassignment of each male
(colored vertical bardp the two supported ‘red’ and ‘orangsustersb) The phenotype
environment association is significant using both continuous variables (hue, depthfnoral 2013
and 2015 only, see text for statistics) as well as c) discrete habitat categories éloéstaire,
black dots: nearshord}e latter demonstrating temporal stability of the thomdtr vsbreeding
habitatassociatiorfor at least 9ears Symbols showhe intensity ohuptialcoloration Males
sampled in 2018howedmore fadeduptial coloation, likely due to the early sampling @anh the
yearand the capture using minnow traps
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930 Fig. 3.Distribution of nests in the Jordeweilamaross breeding habitateep nearshore habitat
931 wherepredominantlyred-throated males build their nesis mostly found at the Eastern side of the
932 pond The flat offshore habitat covers most of the pond bottom, where mostly dfangéed males
933  breed
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Fig. 4. Phenotypi¢Pst) and ecologicalEsy) differentiation between stickleback matgeupedoy
breeding habitat and color morghabitatdifferentiationis only significanfor throat color a sexual
signal, while ndifferentiationis presenin morphological traits associated with feeding, defense and
swimming performance. Filled and empty symbols indicate graith higher absolute aresidual
valuesfor raw and sizecorrected traits respectivel@eeTable 1 for trait abbreviationdVhiskers

indicate 95% confidence intervals from 1,000 bootstrap permutationstfan® Er (feeding

ecology) estimates. Asterisks indicate significasited3timateg***: p<0.001).
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Fig. 5. Distribution of pairwise differentiation {ff and differences in nucleotide diversityr) across
the genome between Jordeweiher males grouped by color morph and breeding hatuitaic Ge
islands, regions witan accmulation of increased differentiation loci, ar@amed withitalic letters
(see Tab. 1) andighlighted withgreyvertical bars, black colored SNHss7) and black colored
overlapping windows/r) respectively. Three genomigslands on chXll, chrXIV andXVIIl are
found both among males groupeddajor morph and habitdblue vertical bars). While on average,
stickleback males are not differentiated across most of their genome, genondis fstavor
moderately divergent SNPs, ranging up =0.46(color morphs) anddr= 0.48 (habitat),
respectively.
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Supporting Information

Supplementary Figures

Fig. S1. Linear and geometric morphometric traits measured in this studyt \Melaedmarks
(red circles) and measured 17 linear traits (blue bars) as well as throat color @é)eSze Tab.
1 for trait abbreviationsSuction proxy(SucP) is the diance along the body axes from the
anteriormost point of the premaxillary bone to the junction of dorsal and head scales.
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Fig. S2. Variation in linear morphometric traits among males grouped by renitétroat color.

a) Residuals of 16 sizeorrectedinear traits,see Tab. 1 for abbreviatiari$earshore fed-throated
males tend to be on average largeaded andeepetbodiedand show a larger dorsal fjiab. 1)

b) PCA for the 16 sizeorrected linear traits with individuals grouped by throatrcatal nest
habitat. ¢) Body size distribution of males sampled in 2007, 2013 and 2015. Nearstore / re
throated males tend to be on average larger than offshore / orangéTahblek) Differences in
body size between years are likely dugdaation insampling dates and growth rates depending
ondifferentwinter conditionsn these years
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Fig. S3. Variation in body shape among males grouped by habitat and throat color, shoandg a t
for shorter heads and more slender bodies in offshore / orange males. Grey outlinesdshow
shape at PC/CV=0 and black outlines the respective valuestediizathe axis labeh) & b)

Principal component analysis results of male overall shape variation. PC axes &arsth@vn, as
the first PC axes reflects bending. c¢) & d) Canonical variance analysis results of maleshapeal
variation for males grouped into nearshore vs. offshore (c) and red vs. orange &) male
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Fig. S4. Stomach content and stable isotope data for males from 2007. a) Stomatth:conte
Offshore / orange males tended to have more copepods and cladocerans, as well as more
stickleba& eggs in their stomachs, while nearshore / red stickleback had more chironomids and
isopods, in line with their proximity to terrestrial habitats. b) & c¢) Carbgetien (b) tends to be
stronger in nearshore / red stickleback and they tend to occupy an on average higher trophic
position (c) than offshore / orange males, however these differences are natasigfifib. 1)
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Supplementary Tables

Table S1. Candidate genes in genomic islantts fuihctions relevant to phenotypic differentiation among Jordeweiher sticklelzdek. m

Island  Gene name Gene Ensembl* Relevant GO terms@GO superterms

C.2a insulin-like growth factor 1b receptor igflrb 14729 cameratype eyedevelopmentphotoreceptocell maintenance

C.2a LEO1 homolog, Paf1l/RNA polymerase Il complex leol 14999 melanocyte differentiation
component

C.2b cyclic nucleotide gated channel beta 1a cngbla 17581 visual perception

C.2b forkhead box Bla foxbla 17597 visual learning

C.3 RAB18B, member RAS oncogene family rab18b 16395 eye development

C.3 forkhead box Cla foxcla 16468 cameratype eyedevelopment

H.11 recoverin a rcvrna 14486 cone photoresponse recovery

H.11 granulin a grna 14616 neural retina development

H.11 ribosomalprotein L27 rpl27 14635 erythrocyte differentiation

HC.12 ATPase, H+ transporting, lysosomal accessory prote atp6aplb 11378 eye pigment granule organizatjonelanosome organizatipn
1b retina development in cametgpe eyeretinal pigment

epitheliumdevelopment

HC.12 premelanosome protein b pmelb 11605 developmental pigmentatipmelanosome organization

HC.14 ribosomal protein L7a rpl7a 15957 embryonic eye morphogenesis

H.16 gap junction protein, alpha 3 gja3 1367 postembryonic eye morphogenesis

H.16 intraflagellar transport 88 homolog ift88 1380 eye photoreceptor cell developmgptiotoreceptor cell

maintenance

HC.18 RAB32a, member RAS oncogene family rab32a 11637 melanosome organization

HC.18 ribosomal protein S7 rps7 11913 nucleateerythrocyte

C.18b  opsin 8, group member b opn8b 12337 G-protein coupled photoreceptor activiphototransduction

C.20c  glyceraldehyde3-phosphate dehydrogenase gapdh 10219 nucleate erythrocyte

C.20c  Ras interacting protein 1 rasipl 10504 nucleateerythrocyte

C.20c interleukin 11a iI1la 10508 retinal ganglion cell

C.20c recoverin 2 rcvrn2 10601 cone photoresponse recovery

C.20c  PRP31 pranRNA processing factor 31 homolog (yea: prpf31 11464 retina development in cametgpe eye

C.20c  PRP3premRNA processing factor 3 homolog (yeast) prpf3 11792 retina development in cametgpe eye

H.21la RAB18A, member RAS oncogene family rab18a 1694 eye development

H.21la  Kruppellike factor 6a klféa 1778 erythrocyte maturation
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Island  Gene name Gene Ensembl* Relevant GO terms@GO superterms
H.2la  ATP-bindingcassette, sufamily A (ABC1), member  abcada 2000 visual perception
4a
H.21la  cyclic nucleotide gated channel beta 3 cngb3 2128 visual perception
H.21b  nephronophthisis 3 nphp3 3823 visual perception

*EnsembiGene ID, e. gENSGACG00000001778 shovas1778.



34 Table S2Table of QTLsand outlier regions identified in previous studies overlapping with genomic istanadshis study. PVE: grcentage of variance
35 explained, OutR: outlier region.

Type |Chrom. |Start End Confidence interval Trait category [Trait PVE |Overlapping island|Reference

QTL |chrll 1,554,409 5,248,887associated marker + 1 Mb |body shape |landmark x23 9.5/C.2a Rogerset al. 2012
QTL |chrll 2,554,40413,504,8211.5LOD region as reportedfeeding row 2 joint raker number 5.3C.2a Miller et al. 2014
QTL |chrll 2,554,40413,504,8211.5LOD region as reportedfeeding row 3 epi raker number 6.4/C.2a Miller et al. 2014
QTL |chrll 2,554,40421,574,7611.5LOD region as reportedfeeding joint raker number 4.7C.2a Miller et al. 2014
QTL |chrll 2,554,40421,574,76]1.5LOD region as reportedbody shape |nonray-bearing postanal 5.5/C.2a Miller et al. 2014

pterygiophore number

QTL |chrll 4,086,474 7,655,9911.5LOD region as reported/feeding epibranchial 1 length 6.7/C.2a Miller et al. 2014
QTL |chrll 4,248,79121,574,76]1.5LOD region as reported/feeding opercle width 7.5/C.2a Miller et al. 2014
QTL |chrll 4,786,74421,574,76]11.5LOD region as reporteddefence dorsal spine 2 length 3.9C.2a Miller et al. 2014
QTL |chrlll 4,622,00016,690,5541.5LOD region as reported/feeding premaxilla length 3.7C.3,H.3 Miller et al. 2014
QTL |chrVIl 26,760,48130,314,29{associated marker + 1 Mb |body shape |landmark x25 12.8H.7 Rogerset al. 2012
QTL |chrViIl 26,760,48130,314,29{associated marker + 1 Mb |body shape |landmark x24 13.3H.7 Rogerset al. 2012
QTL |chrVIl 26,882,41130,850,39]1.5LOD region as reported/feeding premaxilla length 3.9H.7 Miller et al. 2014
QTL |chrVIl 27,760,48130,850,3911.5LOD region as reportedfeeding opercle width 5.4H.7 Miller et al. 2014
QTL |chrVIl 27,760,48130,850,39]1.5LOD region as reported/feeding dentary height 5.7H.7 Miller et al. 2014
QTL |chrViIl 28,313,62(30,314,29{associated marker + 1 Mb |defence complete vs. reduced pelvis H.7 Shapiroet al. 2004
QTL |chrVIl 28,313,62(30,314,29{associated marker + 1 Mb |defence pelvis asymmetry 13.5H.7 Shapiroet al. 2004
QTL |chrViIl 28,313,62(30,314,29{associated marker + 1 Mb |defence ascending branch height 22.2H.7 Shapiroet al. 2004
QTL |chrVIl 28,313,62(30,314,29{associated marker + 1 Mb |defence pelvic girdle length 27.8H.7 Shapiroet al. 2004
QTL |chrVIl 28,313,62(30,314,29{associated marker + 1 Mb |defence pelvic spine length 43.71H.7 Shapiroet al. 2004
QTL |chrVI 28,313,62(30,314,29{associatednarker + 1 Mb  |defence mendelian pelvic locus H.7 Creskoet al. 2004
QTL |chrX 3,320,834 8,666,77¢1.5LOD region as reportedfeeding dorsal toothplate 1 tooth number 4.2C.10 Miller et al. 2014
QTL |chrX 3,320,834 8,666,77¢1.5LOD region as reportedfeeding dorsal toothplate 2 tooth number 7.6/C.10 Miller et al. 2014
QTL |chrX 3,320,83412,662,6441.5LOD region as reportedfeeding ventral toothplate tooth number 3.6C.10 Miller et al. 2014
QTL |chrX 3,320,83412,662,6441.5LOD region as reportedbody shape |last postanal pterygiophore positig  4.4/C.10 Miller et al. 2014
QTL |chrX 3,320,83412,662,6441.5LOD region as reporteddefence serration number on dorsal spinel 6.1C.10 Miller et al. 2014
QTL |chrX 3,320,83412,662,6441.5LOD region aseported |defence serration area on dorsal spine 2 6.7/C.10 Miller et al. 2014
QTL |chrX 3,320,83416,084,20{1.5LOD region as reportedfeeding all raker number 3.0C.10 Miller et al. 2014
QTL |chrX 3,962,47116,084,20{1.5LOD region as reportedfeeding joint raker number 4.4C.10 Miller et al. 2014
QTL |chrX 5,838,69] 7,839,29]associated marker + 1 Mb [feeding tooth number 3.3C.10 Cleveset al. 2014
QTL |chrX 6,287,74(16,084,20{1.5LOD region as reportedfeeding row 6 joint raker number 6.4/C.10 Miller et al. 2014
QTL |chrX 6,838,69116,084,20{1.5LOD region as reportedfeeding row 7 hypo raker number 5.5C.10 Miller et al. 2014




Type |Chrom. |Start End Confidence interval Trait category [Trait PVE |Overlapping island|Reference

QTL |chrXIl 498,629 9,007,25]associated marker £ 1 Mb |body shape |landmark y12 9.0HC.12 Rogerset al. 2012
QTL |chrXIl 498,629 9,007,25]associated marker £ 1 Mb |body shape |body depth 9.0HC.12 Rogerset al. 2012
QTL |chrXIl 498,629 9,007,25]associated marker £ 1 Mb |body shape |[landmark y6 11.gHC.12 Rogerset al. 2012
QTL |chrXIl 3,528,00415,130,39(1.5LOD region aseported [feeding opercle neck width 8.4HC.12 Miller et al. 2014
QTL |chrXIl 3,528,00419,667,91]1.5LOD region as reportedfeeding dorsal toothplate 1 width 5.2HC.12 Miller et al. 2014
QTL |chrXIl 3,830,03¢11,751,24{1.5LOD region as reportedfeeding ceratobranchial 4 length 3.5HC.12 Miller et al. 2014
QTL |chrXIl 3,830,03¢19,667,91]1.5LOD region as reportedfeeding dentary height 6.9HC.12 Miller et al. 2014
QTL |chrXIl 3,830,194 5,551,7541.5LOD region as reportedfeeding dorsal toothplate @idth 4.4HC.12 Miller et al. 2014
QTL |chrXIl 4,551,614 6,551,754associated marker £ 1 Mb |body shape [landmark x25 11.1JHC.12 Rogerset al. 2012
QTL |chrXIl 5,551,74415,130,39(1.5LOD region as reportedfeeding premaxilla length 3.7HC.12 Miller et al. 2014
QTL |[chrXIV 1/12,440,72{1.5LOD region as reportedfeeding in-lever 1 of articular length 5.3HC.14 Miller et al. 2014
QTL |[chrXIV 2,698,85¢ 9,939,59¢{1.5LOD region as reportedfeeding epibranchial 1 length 4.0HC.14 Miller et al. 2014
QTL |[chrXIV 2,698,85¢15,188,52{1.5LOD region as reportedfeeding ceratobranchial 1 length 3.5HC.14 Miller et al. 2014
QTL |[chrXIV 2,698,85¢15,188,52{1.5LOD region as reportedfeeding ceratobranchial 4 length 3.6HC.14 Miller et al. 2014
QTL |[chrXIV 2,698,85¢15,188,52{1.5LOD region as reportedfeeding ceratobranchial 5 length 3.7HC.14 Miller et al. 2014
QTL |[chrXIV 2,698,85¢15,188,52{1.5LOD region as reportedfeeding premaxilla length 3.8HC.14 Miller et al. 2014
QTL |[chrXIV 2,698,85¢15,188,52{1.5LOD region as reportedifeeding articular length 3.9HC.14 Miller et al. 2014
QTL |[chrXIV 2,698,85¢15,188,52{1.5LOD region as reportedfeeding premaxilla height 5.2HC.14 Miller et al. 2014
QTL |chrXVI ]16,413,00]18,202,79]1.5LOD region as reportedfeeding medial gill raker length 6.0H.16 Glazeret al. 2015
QTL |chrXVI ]16,413,00{18,202,79{1.5LOD region as reportedfeeding lateral gill raker length 6.3H.16 Glazeret al. 2015
QTL |chrXVI ]16,413,00]18,202,79]1.5LOD region as reportedfeeding middlegill raker length 9.1H.16 Glazeret al. 2015
QTL |chrXVII 763,55616,509,76]associated marker £ 1 Mb |body shape |landmark x25 9.5C.17 Rogerset al. 2012
QTL |chrXVIl 2,058,474 5,290,11¢1.5LOD region as reportedfeeding ceratobranchial 1 length 3.7C.17 Miller et al. 2014
QTL |chrXVII 2,058,474 5,290,11¢1.5LOD region as reportedfeeding ceratobranchial 3 length 4.1)C.17 Miller et al. 2014
QTL |chrXVIl 2,058,474 5,290,11¢1.5LOD region as reportedfeeding hypo raker number 5.1/C.17 Miller et al. 2014
QTL |chrXVII 2,058,47415,509,76]1.5LOD region as reportedfeeding dentary height 4.6C.17 Miller et al. 2014
QTL |chrXVIl 2,058,47415,509,76]1.5LOD region as reportedfeeding ceratobranchial 2 length 4.9C.17 Miller et al. 2014
QTL |chrXVII 2,058,47415,509,76]1.5LOD region as reportedfeeding dentary length 7.5C.17 Miller et al. 2014
QTL |chrXVII 2,058,47420,254,13(1.5LOD region as reportedfeeding middle raker spacing 3.3C.17 Miller et al. 2014
QTL |chrXVII 4,466,58117,136,43(1.5LOD regionas reported |feeding ventral tooth plate tooth number 7.3C.17 Ellis et al. 2015
QTL |chrXVIIl | 5,070,40912,934,33{1.5LOD region as reportedfeeding ventral tooth plate intertooth spaci| 9.9HC.18 Ellis et al. 2015
QTL |chrXVIIl | 7,613,26(15,688,94(1.5LOD region as reportedfeeding all raker number 2.8HC.18, C.18a, Miller et al. 2014

C.18b
QTL |chrXVIIl | 9,393,39]12,520,4341.5LOD region as reportedbody shape |frontal width 3.8HC.18 Miller et al. 2014




Type |Chrom. |Start End Confidence interval Trait category [Trait PVE |Overlapping island|Reference
QTL |[chrXVIIl | 9,393,39]14,194,26{1.5LOD region as reportedffeeding ceratobranchial 1 length 2.9HC.18, C.18a, Miller et al. 2014
C.18b
QTL |[chrXVIIl |11,520,27(13,520,43{associated marker + 1 Mb |body shape |body shape:dorsal extent of the 4.5HC.18, C.18a, Albert et al. 2008
ascending branch of the pelvis (x) C.18b
QTL |[chrXVIIl |11,520,27¢13,520,43{associated marker + 1 Mb |body shape |body shape:dorsal extent of 5.5HC.18, C.18a, Albert et al. 2008
ectocorocoid (x) C.18b
QTL |[chrXVIll [11,520,27(13,520,43{associated marker + 1 Mb |body shape |body shape:posterior extent of 5.7HC.18, C.18a, Albert et al. 2008
ectocorocoid (x) C.18b
QTL |[chrXVIIl {11,520,27(13,520,43{associated marker + 1 Mb |body shape |body shape:anterior extent of 5.7HC.18, C.18a, Albert et al. 2008
ectocorocoid (y) C.18b
QTL |[chrXVIIl {11,520,27(13,520,43{associated marker + 1 Mb |body shape |body shape:posterior extent of 6.3HC.18, C.18a, Albert et al. 2008
premaxilla (x) C.18b
QTL |chrXX 3,763,57115,500,73{1.5LOD region as reportedfeeding lateral gill raker length 6.5/C.20b, C.20c, C.2(Glazeret al. 2015
QTL |chrXX 3,806,40115,047,24]1.5LOD region as reportedfeeding gill raker number adult 11.5C.20b, C.20c, C.2(Glazeret al. 2014
QTL |chrXX 3,806,40119,341,3841.5LOD region as reportedfeeding gill rakernumber adult 9.7/C.20b, C.20c, C.2(Glazeret al. 2014
QTL |chrXX 3,831,31116,942,924associated marker + 1 Mb |defence pelvic girdle length 11.7/C.20b, C.20c, C.2(0Rogerset al. 2012
QTL |chrXX 4,831,311 7,907,07¢1.5LOD region as reported/feeding all raker number 18.1JC.20b, C.20c Miller et al. 2014
QTL |chrXX 4,831,31111,260,2341.5LOD region as reported/feeding row 1 raker number 8.6/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31111,260,23!1.5LOD region as reported/feeding branchialarch 1 raker number 11.0C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31112,244,18{1.5LOD region as reporteddefence anal spine length 6.4{C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31112,244,18{1.5LOD region as reported/feeding branchial arch 2 raker number 13.6C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31112,244,18{1.5LOD region as reported/feeding odd row raker number 15.5C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31112,244,18{1.5LOD region as reported|feeding cerato raker number 25.3C.20b, C.20c, C.2(0Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reportedbody shape [frontal width 3.2/C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reporteddefence dorsal spine 2 area 4.7/C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 2 raker number 7.4/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding dorsal toothplate 2 tooth number 7.6/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding dorsal toothplate 1 tooth number 8.8/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 4 raker number 10.2C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 4 cerato raker number 11.5C.20b, C.20cC.20dMiller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 5 raker number 11.6C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 6 cerato raker number 11.7/C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 3 raker number 12.4C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding lateral rakeispacing 12.5C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 5 cerato raker number 13.0C.20b, C.20c, C.20Miller et al. 2014




Type |Chrom. |Start End Confidence interval Trait category [Trait PVE |Overlapping island|Reference

QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 9 cerato raker number 13.2C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 2 cerato raker number 13.4C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region ageported |feeding row 7 cerato raker number 13.4C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 6 raker number 13.7C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 1 cerato raker number 14.3C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding middle raker spacing 14.8C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding even row raker number 16.4C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reportedbody shape |supraoccipital crest width 16.6C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding row 3 cerato raker number 16.9C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31116,175,21]1.5LOD region as reported/feeding branchial arch 3 raker number 17.5C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31116,433,34(1.5LOD region as reported/feeding row 8 raker number 7.5/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31118,002,15]1.5LOD region as reporteddefence dorsal spine 3 length 3.5C.20b, C.20c, C.20Miller et al. 2014
QTL |chrXX 4,831,31118,002,15]1.5LOD region as reported/feeding premaxilla height 4.5C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31118,002,15]1.5LOD region as reported/feeding ventraltoothplate width 5.0/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31118,002,15]1.5LOD region as reportedbody shape |vertebrae number 5.2/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31118,002,15]1.5LOD region as reporteddefence serration number on dorsal spinel 8.0C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31118,002,15]1.5LOD region as reported/feeding branchial arch 4 raker number 8.1/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 4,831,31118,002,15]1.5LOD region as reporteddefence serration area on dorsal spine 2 9.0/C.20b, C.20c, C.2(Miller et al. 2014
QTL |chrXX 6,027,56115,047,24|1.5LOD region as reportedfeeding gill raker number adult 22.4C.20b, C.20c, C.2(Glazeret al. 2014
QTL |chrXX 6,907,07¢ 8,907,47lassociated marker + 1 Mb |body shape |landmark y27 9.3/C.20c Rogerset al. 2012
QTL |chrXX 8,194,87¢18,002,15]1.5LOD region as reportedfeeding ventral toothplate tooth number 5.4/C.20d Miller et al. 2014
QTL [chrXXI 1,811,559 3,811,72¢associated marker + 1 Mb |body shape |landmark y26 10.0H.21a Rogerset al. 2012
QTL [chrXXI 1,811,559 3,811,72¢associated marker + 1 Mb |body shape |landmark y25 10.6H.21a Rogerset al. 2012
QTL [chrXXI 1,811,559 3,811,72¢associated marker + 1 Mb |defence plate number in aa f2s 23.2H.21a Colosimoet al. 2004
QTL [chrXXI 2,811,554 9,041,89¢1.5LOD region as reportedbody shape |[third predorsal pterygiophore 5.4H.21a Miller et al. 2014

position

QTL |[chrXXI 2,811,55413,187,90{1.5LOD region aseported |defence dorsal spine 2 length 3.0H.21a, H.21b Miller et al. 2014
QTL |chrXXI 2,811,55113,187,90{1.5LOD region as reportedfeeding ceratobranchial 1 length 3.0H.21a, H.21b Miller et al. 2014
QTL |[chrXXI 2,811,55413,187,90{1.5LOD region aseported [feeding hypo raker number 4.2H.21a, H.21b Miller et al. 2014
QTL |chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding ceratobranchial 3 length 4.3H.21a, H.21b Miller et al. 2014
QTL |[chrXXI 2,811,55413,187,90{1.5LOD region aseported |body shape |frontal width 4.9H.21a, H.21b Miller et al. 2014
QTL |chrXXI 2,811,55413,187,90{1.5LOD region as reporteddefence dorsal spine 1 length 5.0H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55%13,187,90{1.5LOD region as reportedfeeding in-lever 2 of articular length 5.3H.21a, H.21b Miller et al. 2014
QTL |chrXXI 2,811,55113,187,90{1.5LOD region as reportedfeeding articular length 5.8H.21a, H.21b Miller et al. 2014
QTL |chrXXI 2,811,55%13,187,90{1.5LOD region as reportedfeeding ceratobranchial 4 length 5.9H.21a, H.21b Miller et al. 2014
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Type |Chrom. |Start End Confidence interval Trait category [Trait PVE |Overlapping island|Reference
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedbody shape |total postanal pterygiophore numb 5.9H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedbody shape |last postdorsal pterygiophore 6.3H.21a, H.21b Miller et al. 2014
position
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding dorsal toothplate 1 width 6.5H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding ceratobranchial 5 length 6.5H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reporteddefence dorsal spine 3 length 6.7H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding premaxilla length 7.2H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding dentary length 7.2H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding ventral toothplate length 10.7H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding premaxilla height 12.3H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,811,55413,187,90{1.5LOD region as reportedfeeding epibranchial 1 length 15.5H.21a, H.21b Miller et al. 2014
QTL [chrXXI 2,969,124 4,969,33]associated marker + 1 Mb |defence lateral plate number 10.0H.21a Peichelet al. 2001
QTL [chrXXI 2,969,331 9,021,244associatednarker + 1 Mb  |defence lateral plateb qtl H.21a Creskoet al. 2004
QTL [chrXXI 3,930,309 5,930,45¢associated marker + 1 Mb [feeding tooth plate area 14.7H.21a Cleveset al. 2014
QTL [chrXXI 4,642,71414,055,50]1.5LOD region as reported/feeding epibranchial 1 length 6.7H.21a, H.21b Ericksonet al. 2014
QTL [chrXXI 4,930,30413,187,90{1.5LOD region as reported/feeding dorsal toothplate 1 tooth number 7.3H.21a, H.21b Miller et al. 2014
QTL [chrXXI 4,939,041 6,939,294associated marker + 1 Mb |feeding tooth spacing 7.3H.21a Cleveset al. 2014
QTL |chrXXI 5,777,10§13,187,90{1.5LOD region as reportedfeeding epibranchial 1 length 9.3H.21a, H.21b Ericksonet al. 2014
QTL [chrXXI 5,939,04413,187,90{1.5LOD region as reportedbody shape |lastpostanal pterygiophore positio| 12.3H.21a, H.21b Miller et al. 2014
QTL [chrXXI 5,939,04413,187,90{1.5LOD region as reportedfeeding dorsal toothplate 2 width 15.4H.21a, H.21b Miller et al. 2014
QTL [chrXXI 5,939,04413,187,90{1.5LOD region aseported [feeding ventral toothplate tooth number 26.2H.21a, H.21b Miller et al. 2014
QTL [chrXXI 6,709,144 9,264,69(95% confidence interval asffeeding tooth number 31.5H.21a Cleveset al. 2014
reported
QTL |[chrXXI 7,914,24413,187,90{1.5LOD region aseported [feeding ventral toothplate width 23.6H.21b Miller et al. 2014
QTL |chrXXI 8,072,47{12,912,82{1.5LOD region as reportedfeeding ventral tooth plate tooth number 13.5H.21b Ellis et al. 2015
QTL |[chrXXI 9,041,65¢13,187,90{1.5LOD region aseported [feeding dorsal toothplate 2 tooth number 7.8H.21b Miller et al. 2014
OutR |chrll 4,879,721 4,895,04]exact region as reported C.2a Feulneret al. 2015
OutR |chrll 4,968,22( 4,994,21¢exact region as reported C.2a Feulneret al. 2015
OutR |chrll 5,130,901 5,156,90]exact region as reported C.2a Feulneret al. 2015
OutR [chrll 22,113,18123,708,22{outlier microsat + 1 Mb C.2b Makinenet al. 2008
OutR |chrll 23,642,33(23,672,33!exact region as reported C.2b Feulneret al. 2015
OutR |chrlll 7,925,000 9,936,00(outlier microsat + 1 Mb C.3 DeFaveriet al. 2011
OutR |chrlll 10,209,63{10,288,12}exact region as reported H.3 Feulneret al. 2015
OutR |chrlll 10,256,791 10,270,83{exact region as reported H.3 Feulneret al. 2015
OutR |chrlll 10,260,00]10,270,00(exact region as reported H.3 Feulneret al. 2015
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Type |Chrom. |Start End Confidence interval Trait category [Trait PVE |Overlapping island|Reference
OutR |chrlll 10,298,11110,326,11]exact region as reported H.3 Feulneret al. 2015
OutR |chrlll 10,423,31110,498,34exact region as reported H.3 Feulneret al. 2015
OutR |chrlll 10,600,65(10,625,50}exact region as reported H.3 Feulneret al. 2015
OutR |chrlll 10,626,71]10,750,87{exact region as reported H.3 Feulneret al. 2015
OutR |chrlll 10,805,58¢10,830,13exact region as reported H.3 Feulneret al. 2015
OutR |chrlll 10,849,62410,934,254exact region as reported H.3 Feulneret al. 2015
OutR |chrVII 28,101,77(30,101,904outlier microsat £ 1 Mb H.7 Méakinenet al. 2008
OutR |chrVII 29,357,28130,850,39]outlier microsat + 1 Mb H.7 Makinenet al. 2008
OutR |chrXI 14,309,86416,310,00]outlier microsat + 1 Mb H.11 DeFaveriet al. 2011
OutR |chrXI 16,359,44117,646,57{outlier microsat £ 1 Mb H.11 Kaeufferet al. 2011
OutR [chrXIl 4,329,16418,644,93]exact region as reported HC.12 Feulneret al. 2015
OutR |chrXII 5,330,664 5,365,91]exact region as reported HC.12 Feulneret al. 2015
OutR [chrXIl 5,756,781 5,777,30%exact region as reported HC.12 Marqueset al. 2016
OutR |chrXVII 4,945,844 4,971,90]exact region aseported C.17 Feulneret al. 2015
OutR [chrXVIlI 334,676 15,953,87(exact region as reported HC.18, C.18a, Feulneret al. 2015
C.18b
OutR |chrXX 1) 1,570,92]outlier microsat + 1 Mb C.20a DeFaveriet al. 2011
OutR |chrXX 618,03¢ 639,31]exactregion as reported C.20a Joneset al. 2012
OutR |chrXX 654,064 660,08fexact region as reported C.20a Jonest al. 2012
OutR |chrXX 669,147 672,859exact region as reported C.20a Jonest al. 2012
OutR |chrXX 674,015 686,16exact region ageported C.20a Jonest al. 2012
OutR |chrXX 1,569,22118,771,17{exact region as reported C.20b, C.20c, C.2(Feulneret al. 2015
OutR [chrXX 3,830,76412,260,84|outlier microsat + 1 Mb species diagnostic marker C.20b, C.20c, C.2(Malek et al. 2012
OutR |chrXX 5,229,934 5,265,934exact region as reported C.20b Feulneret al. 2015
OutR [chrXX 5,534,01] 5,536,41¢exact region as reported C.20b Jonest al. 2012
OutR |chrXX 5,537,50y 5,539,22]exact region as reported C.20b Jonest al. 2012
OutR [chrXX 5,738,16( 5,776,34lexact region as reported C.20b Feulneret al. 2015
OutR |chrXX 5,880,39¢ 5,885,73exact region as reported C.20b Jonest al. 2012
OutR [chrXX 6,030,68] 6,034,68]exact region as reported C.20b Jonest al. 2012
OutR |chrXX 6,082,914 6,233,43]exact region as reported C.20b Feulneret al. 2015
OutR [chrXX 6,929,30y 6,940,55¢{exact region as reported C.20c Feulneret al. 2015
OutR |chrXX 6,980,23¢ 7,007,23]exact region as reported C.20c Feulneret al. 2015
OutR [chrXX 6,987,79¢ 7,014,79]exact region as reported C.20c Feulneret al. 2015
OutR |chrXX 6,993,68] 7,003,68f(exact region as reported C.20c Feulneret al. 2015
OutR |[chrXX 7,029,05¢ 7,075,05¢{exact region as reported C.20c Feulneret al. 2015
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Type |Chrom. |Start End Confidence interval Trait category [Trait PVE |Overlapping island|Reference

OutR |chrXX 7,338,374 7,360,41]exact region as reported C.20c Feulneret al. 2015
OutR |chrXX 7,357,074 7,420,074exact region as reported C.20c Feulneret al. 2015
OutR |chrXX 7,691,924 7,794,10¢{exact region as reported C.20c Feulneret al. 2015
OutR |chrXX 7,754,461 7,817,48]exact region as reported C.20c Feulneret al. 2015
OutR |chrXX 7,886,47( 7,921,46Yexact region as reported C.20c Feulneret al. 2015
OutR |chrXX 7,899,30¢ 7,905,71%exact region as reported C.20c Jonest al. 2012
OutR |[chrXX 7,924,664 7,937,68]exact region as reported C.20c Joneset al. 2012
OutR |chrXX 7,939,68] 7,942,18]exact region as reported C.20c Jonest al. 2012
OutR |chrXX 7,955,271 8,000,27(exact region as reported C.20c Feulneret al. 2015
OutR |chrXX 8,003,53110,004,15¢outlier microsat + 1 Mb C.20c, C.20d Makinenet al. 2008
OutR [chrXXI 4,900,56( 4,918,70yexact region as reported H.21a Joneset al. 2012
OutR [chrXXI 4,920,16] 4,928,69]exact region aseported H.21a Jonest al. 2012
OutR [chrXXI 5,361,804 5,378,23(exact region as reported H.21a Feulneret al. 2015
OutR [chrXXI 5,573,571 5,684,08]exact region as reported H.21a Feulneret al. 2015
OutR [chrXXI 5,655,184 5,676,18¢exact regioras reported H.21a Feulneret al. 2015
OutR [chrXXI 5,664,144 5,674,14{exact region as reported H.21a Feulneret al. 2015
OutR [chrXXI 5,768,854 5,951,85]exact region as reported H.21a Feulneret al. 2015
OutR [chrXXI 6,100,26¢ 6,276,85]exactregion as reported H.21a Feulneret al. 2015
OutR [chrXXI 6,868,95] 6,951,95lexact region as reported H.21a Feulneret al. 2015

Note that the genomic coordinates are based orethgsembly reference genoift@azer et al. 2015)
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