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Abstract Conventional spinning is a widely used metal forming process to manufacture 

rotationally axis-symmetric and asymmetric products. Considerable efforts have been made to 

investigate the forming quality of spun parts using the process in recent years. However, inherent 

uncertainty properties involved in the spinning process are rarely considered in previous studies. 

In this paper, an uncertainty analysis and process optimisation procedure have been developed and 

implemented on conventional spinning with 3D Finite Element Method (FEM). Three process 

variables are randomized by Gaussian distribution to study the probabilistic characteristics of two 

process responses. Linear and quadratic approximate representations are constructed by Monte 

Carlo based Response Surface Method (RSM) with Latin Hypercube Sampling (LHS). The Most 

Probable Point (MPP) method, which has been widely used to estimate the failure probability in 

other applications, is further developed in this paper to obtain the probability distribution of the 

system responses. Following an evaluation of the system responses conducted by the MPP method, 

a control variable method is used to reduce the variance of spun part wall thickness and total roller 

force to satisfy the 3ı quality requirement. This uncertainty analysis and process optimization 

procedure can be easily implemented in other metal spinning processes. 
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Abstract

Conventional spinning is a widely used metal forming process to manufacture rotationally

axis-symmetric and asymmetric products. Considerable efforts have been made to investigate the

forming quality of the spun part of the process in recent years. However, inherent uncertainty

properties involved in the spinning process are rarely considered in previous studies. In this

paper, an uncertainty analysis and process optimisation procedure have been developed and

implemented on conventional spinning with 3D Finite Element Method (FEM). Three process

variables are randomized by Gaussian distribution to study the probabilistic characteristics of two

process responses. Linear and quadratic approximate representations are constructed by Monte

Carlo based Response Surface Method (RSM) with Latin Hypercube Sampling (LHS). The Most

Probable Point (MPP) method, which has been widely used to estimate the failure probability in

other applications, is further developed in this paper to obtain the probability distribution of the

system responses. Following an evaluation of the system responses conducted by the MPP

method, a control variable method is used to reduce the variance of spun part wall thickness and

total roller force to satisfy the 3σ quality requirement. This uncertainty analysis and process

optimisation procedure can be easily implemented in other metal spinning processes.

Keywords: Conventional spinning, Uncertainty analysis, Probabilistic modeling

1. Introduction

Metal spinning processes, including flowing forming, conventional and shear spinning are

widely used in manufacturing complex rotationally axis-symmetric and asymmetric products due
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(a) Conventional spinning: blank (left) and

product (right)

(b) Shear spinning: blank (left) and

product (right)

Figure 1: Sheet spinning, adapted from Music et al. (2010)

to its process flexibility, low forming load and high product precision, as summarized by Wong

et al. (2003). In the sheet spinning process, the workpiece rotates with the mandrel while one or

more rollers revolving around their own axes move along specific roller paths to form the blank

onto the mandrel. For the features of conventional spinning shown in Fig.1(a), the workpiece

stretches in the radial direction and compresses circumferentially aiming to keep the original wall

thickness (t0) constant during the whole process. For the features of shear spinning shown in

Fig.1(b), the final diameter of the blank (D1) remains constant while the workpiece experiences

tensile radial stresses and the final wall thickness (t1) is reduced according to the sine law, t1 =

t0 × sinα, as outlined by Music et al. (2010), where t0 is the original wall thickness of the blank, α

is the inclined angle of the spinning mandrel.

In most cases, the shape and dimensional accuracy of spun parts and the stability of tool

forces in the process are two of the most important criteria in spinning process design and

production together with other requirements such as spun part surface quality and mechanical

strength. It is widely accepted that the wall thickness of blank should theoretically remain

constant in conventional spinning, as outlined by Wong et al. (2003). However, many

experimental results showed that there was actually a certain amount of thickness variation in

conventional spinning process. Quigley and Monaghan (2000) obtained material deformation

strains by experimentally measuring the geometry of circles etched on to the blanks before and

after spinning. They showed that the measured radial strains were close to the theoretical values

while small differences were observed between measured circumferential strains and calculated

circumferential strains for a constant thickness. This implies that there exists some thickness

strains in the workpiece of conventional spinning, which is also supported by the work of Razavi

et al. (2005). Kang et al. (1999) studied the deformation mode of conventional spinning of plates

and reported that the deformation of the plates in the first-pass played an important role in the

wall thickness distribution of the final part, demonstrating that the thickness of the blank changed
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during the process. Avitzur (1983) pointed out that too small a roller nose radius led to poor wall

thickness uniformity in conventional spinning. For variations of tool forces during spinning, Xia

et al. (2005) showed that axial and radial tool forces increased with the increase of feed rate, by

conducting an experimental investigation on a one-pass deep drawing conventional spinning.

Arai (2003) used a laser sensor to measure the flange wrinkles and a force transducer to measure

the tool forces, indicating that fluctuation of tool forces could be used to detect the initiation of

the wrinkling failure. In summary of the studies above, it can be concluded that wall thickness of

blank and tool forces do change and vary to some extent in the conventional spinning. In order to

achieve high dimensional accuracy of spun components and to control tool force variations in the

conventional spinning process, trial and error based iterations are normally used in process design

and production. However, this always results in prolonged development time and increased costs

due to material wastage as well as the increase of machine and operator’s time.

In recent years, FEM has been widely used in the numerical simulation of metal spinning

processes. Hamilton and Long (2008) carried out Finite Element simulations of a one-pass deep

drawing conventional spinning and the results showed that the circumferential and radial strains

did not mirror each other, indicating there were thickness strains existing in the part. The FE

analysis of shearing forming process by Zhan et al. (2007) indicated that the larger the feed rate,

the less thinning in the wall thickness, which was also supported by Xia et al. (2005). Using

numerical simulation and experiment, Wang and Long (2011a) showed that the wall thickness

decreased after each forward roller path in a multi-pass conventional spinning process. In their

further work, by designing four different roller path profiles including combined concave and

convex, convex, linear, and concave, Wang and Long (2011b) conducted FE analyses and spinning

experiments to study the effects of the roller path profile on tool force and wall thickness variations

in conventional spinning. Furthermore, the thickness distribution of the workpiece in conventional

spinning process was analyzed by Klimmek et al. (2003) with FE simulation. The authors found

that once the material in the main region of workpiece entered into the local forming zone, the

tensile radial stresses could cause the thickness reduction in this area. On the other hand, when

the material near the rim of the workpiece came into contact, its significant compressive tangential

stresses resulted in material buildup at the front of the roller and led to thickening in the rim of the

workpiece.

However, the aforementioned FE simulation works are all based on deterministic methods

without consideration of the inherent uncertainties and randomness of process parameter

variation in the spinning process. As outlined by Der Kiureghian and Ke (1988), past experience

has shown that uncertainties are widely involved not only in the assessment of loading but also in

the material and geometric properties of engineering systems. For the conventional spinning

process, it involves many random process parameters such as variations of material flow stress,
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initial thickness, profile of roller path, roller feed rate and frictional condition between the

workpiece and tools. These uncertainties can increase the probability of material failures and

geometrical defects of the spun part and scattered distributions of the shape parameters and

dimensions of the formed components. In order to achieve high dimensional accuracy of the

formed part and ensure the process completes without material failures, it is necessary to analyse

and quantify uncertain characteristics of the system response such as variation of spun part wall

thickness and tool forces. Stochastic Finite Element method (SFEM) combines the classical

deterministic FEM with the stochastic approaches, as reviewed by Stefanou (2009). This method

aims at analysing the influence of random system parameters (input) on the uncertainty property

of system response (output). In the work published by Rubinstein and Kroese (2007), Monte

Carlo Simulation (MCS), the simplest and a universal tool for uncertainty analysis, has been used

as a reference approach for validating the results of other methods. However, the application of

direct MCS is impossible for large-scale systems and structures due to its excessive

computational cost. Therefore, approximation methods deriving from direct MCS such as Monte

Carlo based metamodels, Adaptive Monte Carlo simulation have been developed to enable more

efficient and robust computational modelling.

Limited investigations have been reported to the use of stochastic approach to quantify the

inherent uncertainties in metal forming processes. Ou et al. (2011) developed a two-step FE

based stochastic optimization approach for net-shape forging processes. They used a direct

compensation method for die shape modification and reduced random variations through a

control variable method to keep the die shape and dimensional errors to satisfy the 3σ quality

requirement. Belur and Grandhi (2004) studied the uncertainties causing defective parts of hot

forging by simulation of deformation process and cooling process, and they illustrated a method

which incorporated the process uncertainties into the forging and cooling process design, and

controlled the trade-off between rejected parts and rectifiable parts. Repalle and Grandhi (2005)

developed a reliability-based optimization method for preform shape design in forging, in which

various randomnesses in parameters are quantified and incorporated through reliability analysis

and uncertainty quantification techniques. In a research conducted by Wei et al. (2008), a system

was considered to be dominated by some of the main effects and lower-order interaction due to

the sparsity-of-effect principle. The authors constructed polynomial chaos expansion with points

of monomial cubature rules to estimate uncertainty propagation and identified factors

contributing to uncertainty. Jansson et al. (2008) used linear and quadratic approximating

response surfaces as metamodels to conduct probability analysis for springback and thickness

variations in a sheet metal forming process. Kleiber et al. (2004) used a response surface method

approach to estimate the probability of sheet metal failures during the forming operation with the

influence of uncertainties such as friction, material properties, thickness and blankholding force
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studied by the methodology of reliability theory. In a work conducted by Krusic et al. (2009), FE

simulations were applied to backward can extrusion, free upsetting, closed-die forging and

forward rod extrusion in order to study the effects of scatter of the key process input parameters

on the dimensional accuracy of products and on the tool service life. Furthermore, Rahman and

Wei (2006) presented a univariate method to approximate multivariate functions by employing

the Most Probable Point as the reference point for predicting failure probability of structural and

mechanical systems subject to random loads, variations in material properties and geometry. The

Most Probable Point (MPP) method was developed to quantify the specific probabilistic

distribution of system response by Du and Chen (2001).

Although stochastic approaches combined with FE based methods were applied to carry out

uncertainty analysis of some metal forming processes, no research has been reported to consider

the inherent uncertainty characteristics of metal spinning processes. In this paper, an uncertainty

analysis and process optimisation procedure incorporating FEM was proposed and implemented

on the conventional metal spinning process. 3D FE models were validated by experimental results.

With probabilistic modeling of three random variables, i.e. material flow stress, roller path and

feed rate, linear and quadratic RSM have been applied with LHS methods. The MPP method

has been further developed in this paper to study the probability distribution of process response,

variations of spun part wall thickness and tool force. The results of these two methods showed

good correlations. A system evaluation analysis was carried out to investigate the probability

of failures when the process responses were outside the required boundaries. A control variable

method was used to optimise the process response to comply with the 3σ quality requirement.

2. Uncertainty Analysis Methods

2.1. Uncertainties of system input and output

System variables (system inputs) include variations of material properties, initial geometrical

dimensions and process parameters such as temperature, load and friction conditions. These

random system inputs propagate in the whole process and finally lead to the uncertainty

characteristics of the system response (output) including variations of dimensional accuracy and

microstructures. Therefore the uncertainty analysis aims to find the probability distribution of

system response under the effects of the probabilistic properties of system variables (input).

The system response such as the actual geometrical dimensions of a product may be deviated

from the desired values. The dimensional error may be given by: ε = y−y0, where y and y0 are the

actual dimension and the desired value, respectively. A tolerance boundary [ε1, ε2] of ε is often

applied to ensure the actual dimension satisfying the production requirements. Thus c2 = ε2 + y0

and c1 = ε1 + y0 can be the upper boundary (US L) and lower boundary (LS L) of y, respectively.
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The dimension exceeding the US L or LS L is considered as the product failure. It is necessary to

control the mean of the system response, µy to the desired value y0 and to minimize the deviation

of system response, σy. Usually in practical manufacturing, 3σy quality level in Eq.(1) is often

used as the eligibility criteria for production processes.

LS L ≤ µy ± 3σy ≤ US L (1)

2.2. Quantification of the uncertainty characteristics

In the past decades, several methods have been developed in the area of uncertainty analysis.

However, conventional spinning process involves a large material plastic deformation, significant

dynamic condition and complex interactions between roller and workpiece, which requires an

extremely long computational time for 3D FE simulation. Thus computational efficiency and

simple implementation are important factors to be considered in this study in selecting uncertainty

analysis methods.

2.2.1. Monte Carlo based Response Surface Method

Direct Monte Carlo method is the simplest and most fundamental simulation method in

uncertainty analysis (Rubinstein and Kroese, 2007). Inverse transform method is commonly used

in MCS to generate random values of system variables according to their probability distributions

(Haldar and Mahadevan, 2000), which can be numerically given as:

xi, j = F−1
Xi

(ui, j) i = 1, 2, . . . , p; j = 1, 2, . . . ,N (2)

where F−1
Xi

(x) is the inverse cumulative function of system variable xi, ui, j are selected in region

(0, 1) by random number generator; p and N are the number of the system variables and groups

of simulations respectively. A larger number of simulations N leads to a higher degree of

accuracy of the prediction results. However, it is extremely time-consuming to run a large

number of deterministic FE simulations for complex processes such as conventional spinning.

Therefore, a more efficient Monte Carlo based Response Surface Method (RSM) (Myers

et al., 2009) was used in this paper together with Latin Hypercube Sampling (LHS) (Helton and

Davis, 2003). In this method, deterministic FE simulations are conducted on appropriate Latin

hypercube samples of system variables. The response surface can be constructed between the FE

simulation results and LH samples by regression analysis. In conventional metal spinning,

polynomial regression expansion may be used as the approximate representation and the selected

system variables (i.e. material flow stress, roller path profile and feed rate) are considered to be

independent from each other, therefore interaction terms could be neglected in the polynomial

approximation:

y = b0 +

p
∑

i=1

b1,ixi +

p
∑

i=1

b2,i(xi)
2 + · · · (3)
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where y is the system response, constants b0, b1,i, b2,i. . . can be calculated by the least square

method. Then thousands of random samples are generated by inverse transform method similarly

to the direct MCS process, while these values are substituted into the Eq.(3) and the results are

used to derive the histograms and quantify the uncertainty properties of the system response.

2.2.2. The Most Probable Method

A Most Probable Point (MPP) method was further developed in this paper to estimate the

probabilistic distribution of system response. A limit state function can be given as: g(x) = y − c,

where c is a constant and y = h(x) is the representation of system response. The system variables

x can be transformed into the standard normal space α by:

αi = Φ
−1[Fi(xi)] (i = 1, 2, . . . , p) (4)

where Fi(xi) is the cumulative probability function of system variables xi; Φ
−1 is the inverse of a

normal distribution function. The limit state function can be rewritten as:

g(α) = h(α) − c (5)

The most probable point has the shortest distance β from the origin point of the transformed space

to the limit state surface g(α) = 0, as shown in Fig.2. Eq.(6) can be used to solve the MPP

mathematically (Hasofer and Lind, 1974).

β = min ‖αMPP‖ subject to h(αMPP) − c = 0 (6)

where β is referred as the reliable index. The the accurate probability of limit state function less

than zero can then be evaluated by:

P{g(α) < 0} =P{y = h(x) < c}

=















Φ(β) if g(o) ≤ 0

1 − Φ(β) if g(o) > 0

(7)

where o denotes the origin point in the transformed space. As a result, the probability of failure

P{y = h(x) < c} can be evaluated by Eq.(7).

The probabilistic distribution of system response can be further obtained by defining a number

of limite state functions (Du and Chen, 2001):

pi = P{g(x) < 0} = P{y = h(x) < ci} (8)

where i = (1, 2, . . . , n). The corrsponding pi and ci can be used to construct the cumulative

distribution of system response, shown in Fig.3. The solution procedure for points (ci, pi) is

described as follows:
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Figure 2: Limit state surface
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Figure 3: Probability distribution using a set of p and c

i) A set of pi (i = 1, . . . , n) is selected to reasonably occupy the whole region [0, 1];

ii) β is a positive value, thus a set of corresponding βi may be derived by:

if pi ≤ 0.5, pi = 1 − Φ(βi)

if pi > 0.5, pi = Φ(βi)
(9)

iii) As the MPP on the limit state surface has the shortest distance β to the origin point in the

α-space, two solutions (α
(1)

i
and α

(2)

i
) of the vector αMPP can be calculated by:

‖αi‖ = βi

αi � ∇g(αi)
(10)

where ∇g(α) is the gradient vector of the limit state surface.

iv) Corresponding set of constants ci can be obtained from the limit state surface as following:

g(α
(1)

i
) = h(α

(1)

i
) − c

(1)

i
= 0

g(α
(2)

i
) = h(α

(2)

i
) − c

(2)

i
= 0

(11)

As a result, two values, c
(1)

i
and c

(2)

i
are obtained for each pi. One unreasonable constant in

them can be eliminated by:

if pi ≥ 0.5 g(o) = h(o) − ci ≤ 0

if pi < 0.5 g(o) = h(o) − ci > 0
(12)

Based on the approximate expression created by RSM, the MPP method can significantly

reduce the computational efforts by solving several points (ci, pi), while Monte Carlo based method

needs to generate thousands of random samples and to substitute them into the RS equation.
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2.3. Control of the uncertainty properties

In this paper, optimisation is conducted on small systematic errors, where µy meets LS L <

µy < US L, however σy is too large to satisfy the 3σ quality. A control variable method is used

for optimisation to reduce the variance of system response σy, demonstrated by Rubinstein and

Kroese (2007). For one dimensional case, Y is a response variable correlated with the control

variable X. A new response variable, Yλ, with a smaller variance than that of Y can be constructed

as:

Yλ = Y − λ(X − µX) (13)

where µX is the known expectation of control variable X, λ is a scalar parameter reducing the

variance of control variable X. The variance of new constructed variable Yλ is given by:

Var(Yλ) = Var(Y) − 2λCov(Y, X) + λ2Var(X) (14)

Consequently, the value λ∗ that minimizes Var(Yλ) is

λ∗ = Cov(Y, X)/Var(X) (15)

and the minimum variance is

Var(Yλ) = (1 − ρ2
YX)Var(Y) (16)

where Cov(Y, X) is the covariance of two random variables Y and X, ρYX is the correlation

coefficient of Y and X and the relationship is given as:

ρYX =
Cov(Y, X)

σYσX

=
E((Y − µY)(X − µX))

σYσX

(17)

It is clear that the larger |ρYX | is, the greater influence of the control variable X has on Y , and a

higher variance reduction of the response Y can be achieved.

However, in practice, it is actually difficult to meet the target by using single variable control

method due to the inherent limit on our ability to control them. Therefore, the method can be

extended from single variable control to multiple variables control. Let X = (X1, . . . , Xm) be a

vector of m control variables, and λ is an m-dimensional vector of scalar parameters corresponding

to X. Then Eq.(14) can be rewritten as:

Var(Yλ) = Var(Y) − 2λξYX + λΣXλ
T (18)

Where ξYX donates the m × 1 vector whose i-th component is the covariance of Y and Xi, and ΣX

is the m × m covariance matrix of X.
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For conventional spinning process, system responses are closely correlated with material

properties, geometrical dimensions and key process parameters. By selecting one or more most

influential parameters and defining the amount of reduction of the variance of each parameter that

can be achieved, the overall variance reduction of the system response, i.e. spun part wall

thickness and roller force, can be obtained using the proposed control variable method. Thus the

probabilistic characteristics of system response would be able to achieve the 3σ quality.

Initial system variables

Latin Hypercube samples

Correlation Evaluation Meet target (3     )?

Latin Hypercube Method

Submit as inputs

End

No

FE Model

System outputs

RSM

Obtain Response Surface

Monte Carlo or MPP

Probabilistic characteristic 
of system responses

σ
Yes

Select multiple
influential variables

Control variable method

Variance reduction on the 
selected variables

LH Sampling on 
updated variables

Probability of failure
by MPPCorrelation coefficients

Figure 4: Flow chart of uncertainty analysis and process optimisation procedure

2.4. Developed uncertainty analysis and process optimisation procedure

The flow chart of the developed procedure is shown in Fig.4 and may be described as follows:

i) Defining the probability distribution of the system variables and selecting a number of random

samples by Latin Hypercube method;

ii) Conducting deterministic FE simulations with all groups of LH samples generated in step i)

and then evaluating the system responses;

iii) Creating RSM between the system variables and responses by regression methods, then

quantifying the probabilistic characteristics of system responses by a Monte Carlo method or

MPP method;

iv) Calculating the probability of product failure by MPP method and checking them whether

within the 3σ quality. If yes, end the analysis process;

v) If not, evaluating the correlation coefficients between system variables and responses to select

one or more most influential variables; then defining the amount of variance reduction of each
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variable by the control variable method based on the target variance of the system response.

Then goes back to step i) using the updated variables with reduced variance.

3. FE Modeling with Probabilistic Approaches

3.1. Deterministic FE modeling

A deterministic FE model of conventional spinning, developed by Wang and Long (2011b),

has been further developed to incorporate with the uncertainty analysis in this paper. Due to large

material plastic deformation, complex dynamic and frictional contact conditions in the spinning

process, the Abaqus/Explicit solution method has been used in the FE simulation. Fig.5(a) shows

the FE model in which a single roller with two forward passes and one backward pass is used.

Roller, backplate and mandrel are created as analytical rigid bodies. The metal blank is modeled

as deformable body meshed by 8-nodes reduced integration linear continuum shell element.

Displacement boundary conditions are applied on the roller to complete the three multiple roller

passes. The feed rate here refers to the constant feed speed in roller’s own axial direction, while

the feed speed in roller’s own radial direction changes during the whole process according to the

specific path profiles. Penalty friction law is used to model the contact behavior between the

blank and tools.

Table 1: Conventional spinning parameters

Parameter

blank

diameter

(mm)

blank

thickness

(mm)

spindle

speed

(rpm)

feed

rate

(mm/s)

material

Young’s

modulus

(GPa)

Poisson’s ratio Density (kg/m3)

Value 240 2 400 12.65 DC01 198.2 0.3 7861

Table 1 shows key process conditions defined in this FE model. Experimental results obtained

from the same process condition are used to validate the results of deterministic FE analysis.

Fig.5(b) shows the experimentally spun product. The thickness distributions of experimental and

FE results along radial direction are shown in Fig.5(c). Because the actual contact condition

between backplate and blank in experiment is more complicated, it may be difficult to precisely

simulate the blank deformation near the edge of the backplate. Thus the thickness distribution

of the blank between 0 and 0.2 in normalised radial distance can be neglected in the subsequent

analysis. As shown in Fig.5(c), it can be seen that the thickness variation trend of FE result shows

a good correlation with the variation trend of the experimental result. Both of them increase,

then decrease and finally increase towards to the edge of the blank. Furthermore, both sets of the

results show that the minimum thickness occurs at the area where the normalised radial distance
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is about 0.6∼0.75, as marked by dotted lines. The difference of the minimum thickness between

the experimental and FE results is 0.015mm, which may be caused by the inherent uncertainty

natures of the real process such as the randomness of the machine precision and uncertainties in

the material property.

Roller
Backplate

Blank

Mandrel

(a) Conventional spinning FE model

(b) Experimental spun part

Minimum thickness of FEA
Minimum thickness of EXP

(c) Thickness comparison between FE analysis and

experimental measurement

Figure 5: Experimental results

3.2. Probabilistic modeling of system variables

Metal spinning process is affected by a number of process parameters including material,

geometrical and load factors. In this paper, material flow stress, roller path and feed rate are

selected as random variables for uncertainty analysis. All three random variables are assumed to

be Gaussian distributed and independent of each other. As a function of plastic strain, material

flow stress can be expressed by a random scaling factor k to represent the variation given as:

S = k × S (ε), where k obeys the normal distribution N(µk, σk). S (ε) is the original expression of
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(b) Variant roller path

Figure 6: Probabilistic modeling of system variables

material stress and strain relationship. Fig.6(a) shows the defined variation range of flow stress

based on this representation. A convex roller path profile containing two forward passes and one

backward pass is applied in the FE model. Similarly, the uncertainty of roller path is modeled by

defining a random scaling factor, z = w × Z(x), in which Z(x) is the original roller path profile

defined by x and z, where x and z are the radial coordinate and axial coordinate, w is a scaling

factor obeying the normal distribution N(µw, σw). Some examples of variant roller path profiles

produced by this method are shown in Fig.6(b). For the feed rate V , it can be directly considered

as a normally distributed variable. The specific mean value and standard deviation of each system

variable are given in Table 2.

Table 2: Mean value and standard deviation of variables

flow stress

scaling factor k

roller path

scaling factor w
feed rate V (mm/s)

mean value µ 1 1 12.65

standard deviation σ 0.04 0.03 1.33

For the Monte-Carlo based RSM, Latin Hypercube Sampling (LHS) method is used to generate

24 sets of random system inputs of the three independent system variables. Then Direct Monte

Carlo sampling method is used to generate another large size sample of 3000×3 matrix with three

columns representing the three system variables.

4. Results and Discussion

4.1. Probabilistic characterisation of part wall thickness

After running a FE model with the stochastic mean values of the three system variables listed in

Table 2, the thickness field distributions at the end of each roller pass are shown in Fig.7. It shows
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that the part wall thickness is significantly reduced during 1st forward pass (Fig.7 (a)-(b)) and

2nd forward pass (Fig.7 (c)-(d)), while the thickness remains nearly constant during the backward

pass (Fig.7 (b)-(c)). It is probably because the two forward paths have greater curvatures than the

backward path, shown in Fig.6(b), causing considerable material deformation. After undergoing

three multi-passes conventional spinning, the minimum thickness of the spun part occurs in region

A locating towards the outer edge of the workpiece as shown in Fig.7(d).

region A

(a) (b) (c) (d)

Figure 7: Thickness distribution at different stages: (a) Beginning (b) End of 1st forward pass (c) End of the backward

pass (d) End of the 2nd forward pass

Furthermore, 24 sets of deterministic FE simulations are conducted with selected LH

Samples, and the minimum thickness of spun part is derived from each set of simulation results.

Two simulation results are selected from the 24 simulation results, and the thickness distributions

along radial direction are shown in Fig.8, together with the spun part in the simulation with the

stochastic mean values of the system variables. It shows that the uncertainties of the system

variables have significant effects on the variance of the minimum thickness. Considering this, the

minimum thickness of the final spun part is taken as a critical system response, and its

probabilistic characteristics are quantified by following uncertainty analysis.
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Figure 8: Comparison of thickness distribution along radial direction
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4.1.1. Monte Carlo based Response Surface Method

Using the 24 results of minimum thickness obtained from 24 FE models with corresponding

LH random inputs, the regression analysis is conducted to obtain the linear and quadratic RSM

approximate representation. 3000 Monte Carlo random samples are substituted into each RSM

equation and the calculated results are used to derive the histograms and their fitted probability

density functions (PDF), shown in Fig.9(a) and Fig.9(b). It shows that the minimum thickness

response is also Gaussian distributed by linear approximation in Fig.9(a), while the PDF of

quadratic approximation in Fig.9(b) slightly deviates from the normal distribution due to the

second order effects. However, minimal differences of mean value and stantard deviation are

observed between linear and quadratic approximations, which are only 0.01% and less than 8.8%

respectively. Thus the two approximate representations by RSM are considered to be valid. To

evaluate the correlation between the minimum thickness response and selected system variables,

the correlation coefficients are calculated to be: ρt,k = 0.1706, ρt,w = −0.3972 and ρt,V = 0.9017,

respectively. It shows that feed rate has the biggest influence on the thickness, while the effect of

material flow stress is smallest.

1.94 1.95 1.96 1.97 1.98
0

100

200

300

400

Thickness (mm)

F
re

qu
en

cy

(a) Linear approximation RSM

1.94 1.95 1.96 1.97 1.98
0

100

200

300

400

Thickness (mm)

F
re

qu
en

cy

(b) Quadratic approximation RSM

Figure 9: Histogram and fitted PDF of minimum thickness by RSM

4.1.2. Most Probable Point

Based on the linear approximation, the MPP method described in section 2.2.2 is developed to

obtain the probability distribution of the minimum thickness and then to conduct system evaluation

analysis. Fig.10 compares PDFs of Monte Carlo RSM and MPP method. Based on the same linear

approximation, MPP results show a good correlation with corresponding RSM results.

For the system evaluation analysis, a lower tolerance limit of thickness is specified as: ε1 =

−0.047 mm, which means that the lower limit boundary of minimum thickness is: LS L = t0−|ε1| =

2− 0.047 = 1.953mm, The limit state function of minimum thickness based on linear RSM can be
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given as:

g(tmin) =(1.9609 + 1.4288 × 10−2k − 4.4344 × 10−2w + 2.2654 × 10−3V) − 1.953 (19)

The reliable index β is calculated to be 1.9443 and this suggests that the probability of failure

P{g(tmin) < 0} = 2.59%, which is not able to satisfy the 3σ quality.
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Figure 10: PDF comparison of minimum thickness response between RSM and MPP

4.1.3. Reduction of random variation

The control variable method described in section 2.3 is applied to reduce the variance of

thickness response. Feed rate V is selected as the control variable due to its biggest effect on

thickness variation. Based on Eq.(14), the variance of feed rate is calculated to be reduced from

σV = 1.33 to σV = 0.6. After another iteration of RSM using the updated feed rate

V ∼ N(12.65, 0.62), a much smaller variance of the thickness response is obtained as shown in

Fig.11. The probability of failure is evaluated to be P{g(tmin) < 0} = 0.052% by MPP analysis,

which now satisfies the 3σ quality.

4.2. Probabilistic characterisation of total roller force

In spinning process, roller force variations should be controlled in a reasonable range to ensure

the stability of the forming process. Similar to the analysis of spun part wall thickness, the results

of the same 24 sets of deterministic FE simulations are used and the maximum total roller force

of each simulation is obtained. Two simulation results are selected from the 24 sets, and they

are compared in Fig.12 together with the simulation result from the stochastic mean values of

the random system variables listed in Table 2. It is clear that the uncertainties of the system

variables significantly affect the variation of the maximum roller force in the spinning process. The

maximum roller force occurs in the 2nd forward pass, which may be caused by the greater curvature

of the 2nd forward path shown in Fig.6(b). The probabilistic characteristics of the maximum total

roller force in the spinning process are studied with following uncertainty analysis.
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(a) Minimum thickness from original linear RSM

1.94 1.95 1.96 1.97 1.98
0

100

200

300

400

Thickness (mm)

F
re

qu
en

cy

(b) Minimum thickness after variance reduction

Figure 11: Comparison of minimum thickness before and after variance reduction

4.2.1. Monte Carlo based Response Surface Methods

Similar to the analysis of spun part wall thickness, the RSM linear and quadratic

representations are produced. The 3000 MCS random samples are used to derive the histograms.

The fitted PDFs of linear and quadratic RSM are shown in Fig.13. Similar to the thickness

response, the maximum roller force response is also normally distributed and no significant

differences of the mean value and standard deviation exist between linear and quadratic

approximations. The correlation coefficients are calculated to evaluate the correlation between

the maximum roller force and system variables: ρF,k = 0.8374, ρF,w = −0.4232 and

ρF,V = −0.3459. It suggests that the variance of material flow stress has a much bigger influence

on roller forces than the variances of roller path and feed rate, however, the roller path has a

slightly greater effect than that of the roller feed rate.

4.2.2. Most Probable Point approach

Similar to the analysis of thickness, Fig.13 presents the comparison of PDFs obtained from

RSM and MPP. It shows that MPP method correlates well with the linear approximate RSM.

In the system evaluation analysis, an upper boundary of roller force is specified as: US L =

17



0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

Time (s)

R
ol

le
r 

fo
rc

e 
(N

)

maximum roller force

1stforward pass backward pass 2ndforward pass

simulation with the
stochastic mean values
simulation No.13
simulation No.8

Figure 12: Total roller force in spinning process

2200 2300 2400 2500 2600 2700 2800 2900 3000
0

1

2

3

4

5

x 10
−3

Roller Force (N)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

Linear RSM
Quadratic RSM
MPP

Figure 13: PDF comparison of roller force response between RSM and MPP

2750N. Thus the limit state function based on linear RSM representation is given as:

g(Fmax) = (2.2361 × 103 + 1.8659 × 103k − 1.2571 × 103w − 2.3122 × 101V)

− 2.75 × 103
(20)

The reliable index is calculated to be 2.2174, which implies that the probability of qualified process

is P{g(Fmax) < 0} = 98.67%. However, it still does not satisfy the 3σ quality.

4.2.3. Reduction of random variation

Multiple variable control method is applied to control the scaling factors of material flow

stress k and roller path w. Based on Eq.(18) and the target variance of maximum roller force,

the variance of k and w can be reduced from σk = 0.04 to σk = 0.028 and σw = 0.03 to σw =

0.0203, respectively. The standard deviation of maximum roller force is reduced considerably

after conducting another iteration of the linear approximate RSM with updated variables k ∼

N(1, 0.0282) and w ∼ N(1, 0.02032), as illustrated in Fig.14. The probability of qualified process

is now evaluated to be P{g(Fmax) < 0} = 99.87% by MPP analysis, which meets the 3σ quality.
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Figure 14: Comparison of maximum roller force response before and after variance reduction

5. Conclusions

In this research, by applying MCS, RSM, MPP and the control variable methods, an

uncertainty analysis method and process optimisation procedure coupled with 3D deterministic

FE simulation is developed and implemented on conventional spinning process with multiple

roller passes. The following conclusions may be drawn from the results obtained:

i) The minimum thickness and maximum tool force derived from the linear RSM are normally

distributed, while the results of quadratic representation slightly deviate from the normal

distribution. The differences between these two approximations are minimal suggesting

these two representations are valid. The results of MPP method show a good correlation with

linear RSM.

ii) The uncertainty of process variables significantly affect the variation of the minimum

thickness and maximum roller force. Among the three process variables, the uncertainty of

feed rate has the biggest effect on the thickness reduction while the material flow stress is the

most influential factor for the variance of the total roller force.

iii) The two forward roller passes produce a higher amount of thickness reduction and higher

total roller force than the backward roller pass. The greater curvatures of two forward passes

are believed to be the main cause of considerable thinning in wall thickness and higher roller
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force.

iv) Single and multiple variable control methods are proved to be effective to optimise the process

responses. The variation of minimum thickness and maximum roller force can be controlled

to satisfy the 3σ quality requirement.
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