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ABSTRACT

Context. Recent calculations of pulsation modes in rapidly rotating polytropic models and models based on the Self-Consistent Field
method have shown that the frequency spectrum of low degree pulsation modes can be described by an empirical formula similar to
Tassoul’s asymptotic formula, provided that the underlying rotation profile is not too differential.
Aims. Given the simplicity of this asymptotic formula, we investigate whether it can provide a means by which to identify pulsation
modes in rapidly rotating stars.
Methods. We develop a new mode identification scheme which consists in scanning a multidimensional parameter space for the
formula coefficients which yield the best-fitting asymptotic spectra. This mode identification scheme is then tested on artificial spectra
based on the asymptotic formula, on random frequencies and on spectra based on full numerical eigenmode calculations for which
the mode identification is known beforehand. We also investigate the effects of adding random frequencies to mimic the effects of
chaotic modes which are also expected to show up in such stars.
Results. In the absence of chaotic modes, it is possible to accurately find a correct mode identification for most of the observed
frequencies provided these frequencies are sufficiently close to their asymptotic values. The addition of random frequencies can very
quickly become problematic and hinder correct mode identification. Modifying the mode identification scheme to reject the worst
fitting modes can bring some improvement but the results still remain poorer than in the case without chaotic modes.

Key words. stars: oscillations – stars: rotation

1. Introduction

Many stars with intermediate or high masses are rapid rotators
(e.g. Reese et al. 2008, and references therein). Rapid rotation
causes a number of additional physical phenomena which make
it much more difficult to model the structure and evolution of
these stars. These include centrifugal deformation, gravity dark-
ening, baroclinic flows, various forms of turbulence and trans-
port phenomena (e.g. Rieutord 2006a). Much theoretical work
has gone into modelling these stars (e.g. Meynet & Maeder
1997; Roxburgh 2004, 2006; Jackson et al. 2005; MacGregor
et al. 2007; Rieutord 2006b; Espinosa Lara & Rieutord 2007).
Naturally, such models are subject to uncertainties and therefore
require observational constraints. Asteroseismology, the study
of stellar pulsations, is currently the best way to probe the in-
ternal structure of stars and therefore to constrain such models.
A number of recent works have therefore focused on the effects
of rapid rotation, and in particular stellar deformation, on stel-
lar pulsations. For acoustic modes, these include studies based
on full eigenmode calculations (Espinosa et al. 2004; Lovekin &
Deupree 2008; Lovekin et al. 2009; Lignières et al. 2006; Reese
et al. 2006, 2009) and studies based on ray dynamics (Lignières
& Georgeot 2008, 2009). There are also a number of works on
other types of pulsation modes. On the observational side, the
CoRoT mission is providing stellar pulsation data with unprece-
dented accuracy. However, in order to exploit such data, it is
necessary to correctly match theoretically calculated pulsation
modes with observed ones. This process is known as mode iden-
tification.

Until now, it has been very difficult to identify pulsation
modes in rapidly rotating stars (e.g. Goupil et al. 2005). This
is because mode identification requires a proper understanding
of the frequency spectrum of these stars. Such an understanding
has only been reached recently for acoustic modes. Using ray dy-
namics, Lignières & Georgeot (2008) and Lignières & Georgeot
(2009) recently showed that the acoustic spectrum of a rapidly
rotating star is a superposition of spectra from different classes
of modes, each with their own frequency organisation. The main
classes are island, chaotic, whispering gallery modes and modes
corresponding to a periodic orbit of period 6. Of particular inter-
est are the island modes. These are the most visible of the regular
modes since they are the rotating counterparts to modes with low
ℓ − |m| values. Their frequency organisation has been studied in
Lignières et al. (2006), Lignières & Georgeot (2008, 2009) and
Reese et al. (2008) for polytropic models and in Reese et al.
(2009) for models based on the Self-Consistent Field method
(Jackson et al. 2005; MacGregor et al. 2007). A new asymp-
totic formula, similar to Tassoul’s formula (Tassoul 1980), was
derived involving a new set of quantum numbers based on the
geometry of these modes. This naturally raises the question as to
whether such a formula can be used to identify pulsation modes.

In order to address this question, we develop a new mode
identification scheme which is described in Sect. 2. In Sect. 3,
we run an initial series of tests on the mode identification scheme
using frequencies based on the asymptotic formula, random fre-
quencies and numerical frequencies based on full 2D eigenmode
calculations. This is then followed by tests using composite
spectra in which random frequencies have been added to a set of
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numerical frequencies. The final section concludes by discussing
the results.

2. A new mode identification scheme

Various methods for identifying pulsation modes or detecting
underlying regularities in frequency spectra have been invented
over the past few years. For instance, Breger et al. (1999) and
Breger et al. (2009) have worked with histograms of frequency
differences in order to interpret pulsation spectra of δ Scuti
stars. Other similar techniques include calculating the autocor-
relation function or the Fourier transform of the power spec-
trum to identify the large frequency separation in solar-like pul-
sators (e.g. Chaplin et al. 2008, and references therein). These
procedures yield information on the structure of the frequency
spectrum rather than a detailed identification for each pulsa-
tion mode. Another type of approach has consisted in directly
comparing the set of observed pulsation modes to numerically
calculated frequency spectra from models in a large parameter
space. Given the computational cost involved in computing each
pulsation spectrum, various methods have been created in or-
der to search through parameter space in an intelligent way. For
instance, Metcalfe & Charbonneau (2003) and Charpinet et al.
(2005) have used genetic algorithms to find best matching mod-
els for white dwarfs and sdB stars, and Bazot et al. (2008) have
used a Monte Carlo Markov Chain (MCMC) approach when
studying α Cen A. As opposed to other methods, this type of ap-
proach yields potential mode identifications for each frequency
in the observed spectrum.

The mode identification scheme described here combines
some of the characteristics of the previous methods. On the one
hand, it would be nice to get more detailed information than what
is available from histograms of frequency differences or auto-
correlation functions and Fourier transforms of power spectra.
Furthermore, such methods may fail in rapidly rotating stars be-
cause the geometric term −mΩ due to advection of modes by
rotation may give rise to frequency spacings which are compa-
rable to the separation between island modes with consecutive
ñ values (which corresponds to half the large frequency separa-
tion). On the other hand, it is not currently feasible to calculate
complete pulsation spectra of rapidly rotating 2D models at each
point in a large multidimensional parameter space, even with
schemes such as genetic algorithms or the MCMC approach. A
useful compromise is therefore to use an asymptotic formula to
calculate approximate frequency spectra and to explore the pa-
rameter space based on the coefficients of this formula in search
of best fitting spectra.

In what follows, we used the following asymptotic formula
based on Reese et al. (2009) to construct approximate frequency
spectra:

ω = ñ∆ñ + ℓ̃∆ℓ̃ + m2∆m̃ − mΩ + α̃, (1)

where ∆ñ, ∆ℓ̃, ∆m̃, and α̃ are coefficients which depend on the

stellar structure, Ω the rotation rate and ñ, ℓ̃ and m quantum
numbers. These quantum numbers correspond to the number of
nodes along and parallel to the underlying ray paths (see, for
example, Fig. 3 of Reese 2008) and to the usual azimuthal or-
der, respectively. In what follows, we will refer to ñ as a radial
order although it roughly corresponds to twice the usual (spheri-
cal) radial order. This formula is an approximation which is valid
at low azimuthal orders of a more complete formula. Given the
computational efficiency of calculating a single spectrum using
the asymptotic formula, a simple scan of the parameter space,

Fig. 1. Schematic diagram which shows how one asymptotic spectrum
can be compared with a set of observed frequencies to produce a plau-
sible mode identification.

in which the coefficients and rotation rate are treated as the pa-
rameters, is performed rather than applying a more sophisticated
search algorithm.

A number of preliminary choices are made before applying
this method. Suitable ranges of ñ, ℓ̃ and m values must be se-
lected. These will determine which frequencies are calculated in
the asymptotic spectra. Also, bounds must be set for the parame-
ter space. Besides these choices, the set of observed frequencies
is assumed to be sorted in ascending order as this is needed when
matching these frequencies with those from the asymptotic spec-
tra. The following procedure is then applied to each point in the
parameter space:

1. an artificial spectrum based on the asymptotic formula is
created using the values of the different parameters and the
ranges chosen for ñ, ℓ̃ and m;

2. the artificial spectrum is sorted in ascending order using a
heapsort method;

3. the observed frequencies are matched to neighbouring
asymptotic frequencies using dichotomy. When two or more
observed frequencies are nearest to the same artificial fre-
quency, only the first one is matched to the frequency, the
others being matched to following frequencies. In some
cases this can produce sub-optimal solutions;

4. this match between the artificial and observed frequencies
yields a mode identification. Based on this mode identifica-
tion, the formula coefficients are then recalculated through a
least-squares minimisation of the standard deviation between
the artificial frequencies and the observed ones.

Figure 1 illustrates these different steps.

The search domain is in terms of the following parameters
rather than the original coefficients from the asymptotic formula:

∆ñ,
∆ℓ̃

∆ñ

,
∆m̃

∆ñ

,
Ω

∆ñ

,
α

∆ñ

· (2)

The advantage of working with these parameters is that the arti-
ficial spectrum does not need to be sorted again when the value
of ∆ñ or α

∆ñ
is modified.

It is important to note that the synthetic spectra are periodic
with a period equal to ∆ñ, except for the ends where frequencies
will be missing due to the cutoff in ñ values. As a result of this, it
is only necessary to test the parameter α

∆ñ
within a unit interval.

Choosing the wrong interval will offset all of the ñ values by
a fixed amount. Since this is probably one of the least robust
parameters, it is likely that the mode identification scheme will
only yield relative rather than absolute ñ values for real stars.
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Table 1. Description of the “observed” frequencies and parameters/results from the mode identification scheme.

. . . . “Observed” frequencies . . . . . . . . . . . . Mode identification . . . . . . . .

Case Type
δω

∆ñ

ñ ñ Average success
δω

∆ñ

1 Asymptotic 0 10–25 10–25 77.4 % 3.7 × 10−3

2 Numerical 2.4 × 10−2 15–20 10–25 17.5 % 1.2 × 10−2

3 Random – – 10–25 – 2.1 × 10−2

4 Numerical 2.8 × 10−3 45–50 40–55 65.9 % 5.4 × 10−3

5 Numerical 7.9 × 10−3 40–55 35–60 73.9 % 7.3 × 10−3

Characteristics of the “observed” frequency spectra (Cols. 2–4), of the ñ values used in the mode identification scheme (Col. 5) and of the results
(Cols. 6–7). The observed frequencies from cases 2, 4 and 5 come from a 25 M⊙ model, uniformly rotating at 60% of the critical rotation rate.

3. Results

3.1. Initial tests

A number of artificial spectra in which the identification of the
frequencies is known beforehand were used to test the mode
identification scheme. These spectra included artificial frequen-
cies which follow exactly the asymptotic formula, random fre-
quencies, and frequencies of low and high order modes of a
25 M⊙ ZAMS model rotating uniformly at 60% of the critical ro-
tation rate (for details on the eigenmode calculations, see Reese
et al. 2009). Results from these tests are summarised in Table 1.
In cases 1, 2, 4 and 5, 50 frequencies were randomly selected
with ℓ̃ values equal to 0 or 1 and m values between −3 and 3. The
ñ values are given in the fourth column of Table 1. For cases 1, 2
and 4, this corresponds to 50 out of 84 possible modes, whereas
there are 224 possible modes for the last case. Case 3 corre-
sponds to a set of 50 frequencies with random values in the same
frequency range as case 2. As such, these frequencies have no
corresponding identifications. The third column gives the stan-
dard deviation δω between the frequencies and their asymptotic
approximations, normalised by ∆ñ. This deviation is defined as
follows:

δω =

√

√

√

1

N

N
∑

i=1

(

ωi − ω
asymp.

i

)2
, (3)

where N is the number of observed modes, ωi the “observed”
frequencies and ω

asymp.

i
their asymptotic approximations, as

based on Eq. (2). The coefficients in Eq. (2) can be calculated in
several ways. Lignières & Georgeot (2008) give theoretical for-
mulas for ∆ñ and ∆ℓ̃ based on travel-time integrals of underlying
ray paths. However, similar formulas for the remaining coeffi-
cients are not currently available. A more heuristic approach is to
calculate a set of numerical frequencies and find the correspond-
ing coefficients using a least-squares fit. This then raises the is-
sue as to which frequencies are to be included in the set. In the
current context, the most logical choice is the set of “observed”
frequencies specific to each of the cases. Indeed, the mode iden-
tification scheme can only find the asymptotic coefficients based
on the frequencies which are available. Furthermore, choosing
these frequencies yields the lowest value for δω. This implies,
however, that the asymptotic coefficients will be different for
cases 2, 4 and 5 (as can be seen in Table 2) in spite of the fact
that these correspond to the same model.

The mode identification scheme was then applied using the
same ℓ̃ and m ranges. The range on ñ used by the scheme was
chosen to be larger than the range used to generate the observa-
tions (except for the first case), as can be seen in the fifth col-
umn of Table 1. The bounds of the parameter space are given in

Table 2. Bounds to parameter space and solutions.

Case(s)
∆ñ

(in µHz)

∆ℓ̃

∆ñ

∆m̃

∆ñ

Ω

∆ñ

α

∆ñ

Bounds to parameter space
1 11.5–19.2 0.5–0.9 0.01–0.05 0.6–1.0 2.5–3.5

2,3 9.6–19.2 0.5–0.9 0.00–0.05 0.8–1.2 2.8–3.8
4,5 9.6–19.2 0.5–0.9 0.00–0.05 0.8–1.2 1.0–2.0

Solutions
1⋆ 17.26 0.660 0.0288 0.827 2.92
2 15.25 0.767 0.0205 0.955 3.35
4 16.01 0.755 0.0076 0.919 1.64
5 16.01 0.758 0.0074 0.921 1.65

Bounds of the parameter space used in the mode identification scheme
and corresponding exact solutions. These bounds were chosen so as to
include the solutions. ⋆ These parameters correspond to a polytropic
model with a polytropic index of 3 and the same mass and equatorial
radius as the model used in cases 2, 4 and 5 (i.e. M = 25M⊙ and Req =

7.46 R⊙).

Table 2 along with the values of the parameters corresponding to
the exact solution. The parameter space was discretised using 50
uniformly distributed grid points in each direction, thus yielding
a total of 3.125× 108 combinations, except for case 5 where 100
uniformly distributed points were used in each direction. The av-
erage computational time was approximately 1 h on a single PC
for cases 1–4, and around 20 h for case 5.

Column 6 of Table 1 gives the success rate in correctly iden-
tifying modes, averaged over the 100 best solutions given by the
identification scheme. The last column gives the lowest standard
deviation between the fitted frequencies and observations, nor-
malised by the ∆ñ of the output solutions.

As could be expected, using frequencies which follow ex-
actly the asymptotic formula yields the best results. Although
the exact solution is within the bounds of the parameter space
tested, it was not actually found – the nearest grid points yielded
mode identifications which were slightly different than the orig-
inal.

Using low order numerical frequencies does not yield good
results, as can be seen from case 2. The reason for this fail-
ure seems straightforward. At low radial orders, the deviations
caused by avoided crossings between the frequencies and their
asymptotic values can be substantial. As a result, the mode iden-
tification scheme found erroneous identifications which actually
led to closer fits to the numerical frequencies than the origi-
nal identifications. This point is further confirmed by case 3,
in which the mode identification scheme is able to reproduce
a set of random frequencies with no underlying regularities with
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Fig. 2. Plots which show the standard deviation,
δω, in parameter space for case 4 of Table 1.
The ten plots arranged in triangular form cor-
respond to different pairs of parameters. For
each pair, the plot shows δω as a function of
the two parameters, the remaining parameters
having been optimised over the search domain.
Superimposed on these plots are the 100 best
solutions (as shown by the red crosses) and
the exact solution (indicated by the white di-
amonds). The plot in the upper right corner
shows the number of correctly identified pul-
sation modes for the 100 best solutions.

a standard deviation equal to 0.02∆ñ. This is marginally worse
than the standard deviation obtained in case 2.

Going to higher radial orders substantially reduces the de-
viations between the numerical frequencies and their asymptotic
values. This can be seen by comparing the standard deviations of
cases 2 and 4 (see 3rd Column of Table 1) which shows a tenfold
decrease at higher radial orders. This leads to good results when
applying the mode identification scheme. Figure 2 shows a series
of ten plots arranged in triangular form which give an idea of the
accuracy of the fits in parameter space. Each plot corresponds
to different pairs of parameters, which we shall generically de-
note as p1 and p2. The plots show the standard deviation, δω,
as a function of p1 and p2, the remaining variables being opti-
mised over the parameter space. The colour bar on the righthand
side indicates the meaning of the different colour levels. Since
these plots are based on the parameters after the least-squares
adjustment, the different positions in each plots are actually bins
in which only the best solution is retained. Using the adjusted
parameters also means that some regions will be avoided, and
these are indicated in yellow.

Superimposed on these plots are the positions of the 100 best
solutions, as represented by the red crosses. As can be expected,
these crosses are concentrated in the dark regions which corre-
spond to the best fits. The white diamonds show the exact solu-
tion. The plot in the upper right corner, besides the colour bar,
indicates the number of modes correctly identified. As can be
seen from these plots, the correct solution has a basin around it
which attracts most of the 100 best-fitting solutions. Some other
secondary basins around other solutions also appear and attract
a few of the best-fitting solutions.

The last case in Table 1 tests the effects of using a larger
range of ñ values and therefore a sparser set of observed

Fig. 3. The average success rate of the 100 best-fitting solutions (solid
line) and the success rate of the best solution (dotted line).

frequencies. In order to obtain good results, it was necessary to
use a finer grid, hence the reason why 100 rather than 50 points
were used in each direction. This need for a higher resolution in-
dicates that the basin around the exact solution is smaller, prob-
ably as a result of the larger range of ñ values. Once a sufficient
grid resolution is chosen, then the mode identification scheme
can yield very good results in spite of the sparseness of the set.

Another interesting test consists in changing the number of
observed modes. This has been done for case 4 of Table 1.
Two different measurements of the success rate are shown in
Fig. 3. The solid line shows the average success rate of the 100

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911914&pdf_id=2
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Fig. 4. Average success rate as a function of the number of additional random frequencies. The left plot corresponds to low order modes (case 2 of
Table 1) and the right plot to high orders (case 4).

best-fitting solutions whereas the dotted line shows that of the
best solution. As the number of observed frequencies decreases,
many additional local minima appear in parameter space due to
the lower number of constraints. These cause the average success
rate to decrease, especially when there are fewer than 30 modes,
by attracting an increasing number of the 100 best-fitting solu-
tions away from the true solution. The dotted line, on the other
hand, shows that in most cases, the best-fitting solution still re-
mains the true solution. However, in some cases, one or several
other local minima with completely different mode identifica-
tions produce solutions which fit the observations even better
than the true solution, thereby causing a dramatic drop in the
accuracy of the best solution. This is illustrated for 11 and 16
observed modes in Fig. 3. As a result, the best-fitting solution
must be used with caution.

3.2. Tests with additional random frequencies

As was shown in Lignières & Georgeot (2009) based on geomet-
ric visibility calculations, chaotic modes are likely to be visible
in the pulsation spectrum of rapidly rotating stars. The frequen-
cies of these modes do not follow an asymptotic formula but
rather a statistical distribution. These will naturally make mode
identification more difficult as it is not possible to know a pri-
ori which modes are regular and which ones are chaotic in an
observed frequency spectrum. In order to mimic the presence of
chaotic modes, we have done a number of tests in which random
frequencies were added to the frequencies from cases 2 and 4 of
Table 1.

Figure 4 shows two plots with the average success rate as a
function of the number of additional random frequencies, one for
case 2 (left panel) and the other for case 4 (right panel). Although
low order modes yielded worse results without random frequen-
cies, they seem to be less affected by the presence of random
frequencies than high order modes. The reason why the results
for high order modes are so poor seems to be that random fre-
quencies shift the basin of best-fitting solutions away from the
true solution. Even a small deviation between the two can be
sufficient to throw off the identification of modes.

One way of trying to deal with random frequencies is to add
another step in the mode identification procedure. At each point

Fig. 5. Same diagram as Fig. 1 except for an additional step in which
the Ncut worse frequencies are removed.

in parameter space, after matching the artificial frequency spec-
trum with the observed frequencies (step 3 of the procedure de-
scribed in Sect. 2), one can remove the Ncut worst modes, where
Ncut is a fixed number. Figure 5 illustrates the mode identifica-
tion procedure with this extra step.

Figure 6 shows the effects of removing Ncut = 20 frequencies
on the average success rate as a function of the number of addi-
tional random frequencies. The frequency sets are the same as
those used in the right panel of Fig. 4. The success rate has been
calculated only using the modes which have been retained: re-
jecting non-random frequencies has not been penalised. As can
be seen, having a comparable number of random frequencies to
Ncut yields the best results. The reason why the results are poor
when there are no random frequencies is because additional so-
lutions with lower standard deviations than the original solution
are appearing. This is similar to what happened when the num-
ber of observed modes was reduced (see Fig. 3), although this
time the problem is worse because the mode identification is
carefully choosing the subset of frequencies so as to reduce the
standard deviation. When random frequencies are added, these
tend to be rejected rather than the true frequencies, thereby lead-
ing to more favourable results. Even in the best of situations,
identifying modes remains difficult when random frequencies
are present.

4. Conclusion

In this paper we have created and tested a new method for iden-
tifying pulsation modes in rapidly rotating stars, based on an
asymptotic formula for island modes, the rotating counterparts

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911914&pdf_id=4
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Fig. 6. Average success rate as a function of the number of additional
random frequencies. The frequency sets are the same as those used in
the right panel of Fig. 4. This time, the Ncut = 20 worst frequencies have
been rejected at each point in parameter space. The success rate has
been calculated based on the modes which have been retained: rejecting
non-random frequencies has not been penalised.

to acoustic modes with low ℓ− |m| values (Lignières & Georgeot
2008, Reese et al. 2009). This method consists in scanning a pa-
rameter space in search of the formula coefficients which lead
to the best agreement with observations. Results show that it is
possible to correctly identify pulsation modes provided they are
sufficiently numerous and their frequencies close enough to their
asymptotic values. Such a situation occurs for 30 or more high
order modes, typically in the ñ = 40−50 range. Bearing in mind
that ñ is roughly twice the spherical radial order, this range is
similar to that of the solar p-modes. This method may apply to
δ Scuti stars thanks to their numerous pulsation frequencies, but
these will have to be of sufficiently high radial order.

However, when even a few random frequencies are added
in order to mimic the presence of chaotic modes, results can
become quite poor. Adding an extra step, in which the worst
modes are removed, can bring a small improvement but this
still remains insufficient to enable a reliable mode identification.
Recent calculations by Lignières & Georgeot (2009) suggest that
chaotic modes may be as much as 5 times as numerous as island
modes for a star at 60% of the critical rotation rate, which is far
more than what is considered here. One way to try to deal with
this problem is to start with stars at lower rotation rates, where a
smaller fraction of the modes are chaotic.

One of the weaknesses of this method is the large number of
input parameters. These include the ranges on the different quan-
tum numbers and the bounds on parameter space. In order to set
these parameters correctly, prior knowledge of the star through
other observations will be needed as well as an understanding
of the relationships between the coefficients in the asymptotic
formula and fundamental stellar parameters such as the mass,
age and rotation rate. Such an understanding can only be reached

through a systematic study of the frequency spectra of a grid of
stellar models.

Potential improvements in this method are as follows. Rather
than doing a simple scan of the parameter space, using a
more sophisticated search method like a genetic algorithm (e.g.
Metcalfe & Charbonneau 2003, Charpinet et al. 2005) or an
MCMC method (e.g. Bazot et al. 2008) would enable a more
detailed investigation of regions of interest while spending less
time in other less important parts of the parameter space. This
would be beneficial to case 4 of Table 1 as the solutions that
were found were not as optimal as the true solution, and case 5
because the basin around the true solution is smaller. Also, cor-
relating mode visibilities with observed mode amplitudes could
provide supplementary constraints. This, of course, is only vi-
able if a simple way to estimate mode visibilities exists. It is
then hoped that the results from this method would provide a
useful starting point for comparing full 2D calculations with ob-
servations.
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