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ABSTRACT

This paper studies the enhancement of spoken language trans-

lation (SLT) with groupwise learning. Groupwise features

were constructed by grouping pairs, triplets or M -plets of

the ASR k-best outputs. Regression and classification mod-

els were learnt and a straightforward score combination strat-

egy was used to capture the ranking relationship. Groupwise

learning with pairwise regression models give the biggest gain

over simple support vector regression models. Groupwise

learning is robust to sentences with different ASR-confidence,

meaning that the confidence threshold heuristics in reranking

are no longer needed. This technique is also complementary

to linear discriminant analysis feature projection. Altogether

a BLEU score improvement of 0.80 was achieved in an in-

domain English-to-French SLT task.

Index Terms— groupwise learning, ordinal regression,

spoken language translation, support vector regression

1. INTRODUCTION

Spoken language translation (SLT) involves automatic speech

recognition (ASR) and machine translation (MT) systems

trained on different data and objective criteria. There have

been extensive efforts in SLT system enhancements. For-

mat and character conversion minimise the model mismatch

between ASR and MT model trained in independent envi-

ronment [1]. Incorporating ASR transcript or its simulation

in MT system training also reduces system mismatch [1, 2].

With the goal of tighter system integration, coupling frame-

works have been proposed to incorporate the scores from

the ASR and MT [3]. Weighted finite-state transducers are

popularly used [4, 5].

ASR and MT systems are usually large and complex.

Considerable efforts are necessary to adapt or integrate sys-

tem components. Without readapting the models, we could

re-prioritise the search result during the decode stage. k-

best lists, confusion networks or lattices can be employed

[6, 7, 8, 9] to keep alternative ASR hypotheses during decod-

ing in the translation engine.

This research is partially funded by Google.

Distinctive features derived from ASR and MT could be

used to inform an optimal SLT results [9, 10, 11]. In our pre-

vious study, a quality estimation model was used to predict

the translation performance of a sentence based on a com-

prehensive set of features. According to the predicted quality,

reranking was performed on a 10-best ASR subject to optimal

SLT performance [12].

In the above work, a global model is learnt to generate a

score for one single hypothesis at a time. In this study we

look at SLT enhancement as a groupwise learning problems,

where pairs (or groups) of the ASR k-best outputs are com-

pared. We show that groupwise learning plus a straightfor-

ward score combination strategy effectively capture the rank-

ing relationship better than the quality prediction model for

single hypothesis, and outperforms the latter in SLT tasks.

2. FEATURES FOR QUALITY ESTIMATION

In the SLT quality estimation problem, a D-dimensional

feature vector xt is extracted for every sentence t to rep-

resent its property. In our experiments, the feature vec-

tor contains 116 features and they can be classified into

three big classes. 21 features were extracted from the ASR

system output. These features describe the decoder scores

from the acoustic and the language models, the ASR k-best

rank information and other count statistics. 79 are trans-

lation “blackbox” features. They were extracted based on

source segments (difficulty of translation), target segments

(translation fluency), and the comparison between the source

and target segments (translation adequacy). 16 features are

MT system-dependent, the so called “glassbox” features.

They describe the confidence of the MT system, such as

the global model score. The blackbox and glassbox fea-

tures were extracted using the open source toolkit QUEST

(http://www.quest.dcs.shef.ac.uk). The list of

features and the way they are extracted were identical as de-

scribed in [12]. More details could be found in [12, 13, 14].

3. MODEL CONSTRUCTION

We define a quality estimation (QE) problem where the SLT

performance metric yt of a sentence t is predicted based on



the D-dimensional feature vector xt. y is METEOR score

[15], which is an automatic translation quality metric with

continuous range. A regression model was used in prediction.

In this study, it was realised by support vector regression [16],

ŷt = f(xt) =

N
∑

i=1

(αi − αi
∗)Ker(xi,xt), (1)

where x1, x2, . . . , xN are the N support vectors from the

training data collection. αi and α∗
i are the Lagrangian multi-

pliers in the primal problem. Ker(·, ·) is the kernel function.

Assume a set of feature vectors x(t,1) , . . . , x(t,k) , . . .

, x(t,K) which represents the ASR K-best candidates of a

particular test sentence t. The rank ŷ(t,k) among k is more

important than their absolute values. The same problem was

studied in handwriting recognition [17], face detection [18]

and in biology for protein sequence detection [19]. The main

idea is to focus on the relative comparison within groups of

two or more samples in the training data collection and learn

a distance metric for each of these groups. With this intuition,

a pairwise and a M -plet feature construction are proposed in

a regression and a classification setup respectively to contrast

the vector-based model in Eq.(1). The control setting, which

considers only one single hypothesis at a time, is hereinafter

known as the single SVR model.

3.1. Pairwise regression

In pairwise regression, ordered pairs of features are con-

structed by concatenating different K-best candidates of the

same sentence t to form (x(t,k),x(t,l))∀l 6= k. Identical

operation were performed on the training data collection.

The feature vector in Eq.(1) is augmented and a new target

d((t,k),(t,l)) = y(t,k) − y(t,l) is learnt. The difference of ME-

TEOR scores y. It represents the relative translation quality

of (t, k) with respect to (t, l).
Finally, a new metric for z(t,k) is computed by averaging

all relevant predictions d̂((t,k),·),

z(t,k) =
1

L

∑

l 6=k

d̂((t,k),(t,l)). (2)

In this study, pairwise regression with varying degrees of K

from 3 to 10 will be tried.

3.2. Binary classification with M -plet

The method of pairwise feature concatenation can be ex-

tended to ordered triplets, ordered quadruplets and ulti-

mately ordered M -plet where M is equal to the order of

K-best. The augmented feature vector is thus in the form

(x(t,k),x(t,l1), · · · ,x(t,l(M−1))), ∀[l1, · · · , l(M−1)] 6= k. A

long feature vector with M > 2 potentially correspond to

comparison of kth-best with other M − 1 candidates. The

support vector regression formulation above, which captures

the difference of scores of 2 candidates, can no longer be used

to model this kind of relationship. Thus, a binary classifica-

tion task is formulated as follows,

b((t,k),(t,l1),··· ,(t,l(M−1)))=

{

1, if k=argmaxl y(t,l),

−1, otherwise.
(3)

In SLT quality estimation, a soft estimate of b̂((t,k),(t,l1),··· ,

(t,l(M−1))) was computed and they are averaged to give z(t,k)
in the same way as averaging d to give z in (2). In this study,

M -plet classification with M varying from 2 up to K would

be tested for different K-best settings. The number of training

samples (combinations of M -plets) duplicates K!
(K−M)! times,

which is an exponential factor of M . For quadruplets of 8-

best, this means a 1680 times increase of training size. In this

experiment, K varied from 3 to 10. For each K, different M

where the duplication factor < 100 would be tested.

3.3. Comparison to other methods

From the literature, pairwise and M -plet feature constructions

accompany with customised kernel functions to reduce the

space complexity of the very high dimensional features [17,

18]. This is not necessary in our experimental setup.

The above formulation is also related to ordinal regres-

sion. It covers problems in social science and information re-

trieval where the target labels are mostly generated by human

and are not continuous [20, 21]. It can be readily modelled

with rank SVM [22]. However, in the SLT reranking problem,

y (METEOR) is continuous and has a higher granularity. The

fine details of information in y is retained in the regression

setup, while the classification setup simulates a rank SVM.

4. DATA

The ASR and MT systems in SLT were trained on large

amount of data. For ASR, the acoustic models were trained

on TED data, augmented by the lecture archives from the

liberated learning consortium (LLC) and the Stanford Uni-

versity’s entrepreneurship corner (ECRN) [23, 24], with a

total duration of 298 hours. ASR language models were

trained on TED data (3.17M words) augmented with broad-

cast news transcripts and parliamentary minutes from News

commentary, Commoncrawl, Gigaword and Europarl with

data selection, leading to a total of 703.9M words. For MT,

the text data for language and translation models training

were mostly taken from WMT14 [25], supplemented with

the official in-domain TED data in IWSLT evaluations [26].

The training text for language and translation models contain

560.35M and 31.47M words respectively. Language model

adaptations and MT system tuning were performed on the

IWSLT 2010 development and test data (44K words).

The quality estimation (QE) system was trained on fea-

tures extracted from SLT system input and output. In the

training phase, SLT was run on IWSLT 2011 test data. It

comprises 818 segments with 1.1 hours of length in English

speech and 13K words in French text. The QE system was

tested on IWSLT 2012 test data, with 1124 sentences (1.8
hours in English speech, 20K words in French text).



5. EXPERIMENTAL SETUP

5.1. ASR and MT

The SLT task reported in this paper is an English-speech-to-

French-text translation task on TED talks data [27].

The English ASR system was a multi-pass system com-

prising DNN acoustic models with tandem configurations,

VTLN wrapped features, MPE trained HMM models with

CMLLR and MLLR transformation and 4-gram language

model rescoring.

The English-to-French MT system was a phrase-based

system with standard setting [28]. The phrase length in trans-

lation model and order of N -gram in language model is 5.

An English monolingual translation model frontend was used

to recover casing and punctuation from the ASR output.

5.2. Reranking with groupwise learning

The quality estimation (QE)-informed ASR k-best list rerank-

ing described in [29] was conducted. In brief, the SLT system

was applied on the QE training and test data (§4). The top K

ASR and their 1-best MT results were generated. For each

of the K-best candidates (t, 1) , . . . , (t, k) , . . . , (t,K) in

sentence t, a feature vector x(t, k) with 116 dimensions as

described in §2 were extracted. A QE model was trained and

it was used to predict the sentence translation quality to rerank

the K-best sentences.

To test the proposed groupwise learning models, two

types of feature concatenation following §3.1 and §3.2 re-

spectively were carried out. For each method, pairs, triplets,

or M -plet features (different sizes of groups, M ) would be

tested under different ASR K-best scopes (different K val-

ues). For each regression/classification setting with particular

K and M values, new models were trained and quality met-

rics z(t,k) were computed to replace the prediction with the

single SVR model (Eq. (1)). These predictions were used

to reranked the K-best candidates and the resulting BLEU

scores across different settings were compared.

The ASR confidence-informed heuristic in reranking was

also revisited, where different thresholds were applied and

reranking was only conducted on sentences with lower aver-

age word confidence reported from on the 1st-best ASR [29].

To illustrate the stability of performance, the whole exper-

iment were replicated in two extra settings with progressive

introduction of domain mismatch [12]. The default setting

was labelled as Setting A, where both ASR and MT systems

are in-domain. The MT system in setting B were slightly off-

domain and further domain mismatch in ASR system were

introduced in setting C. In summary, SLT performance de-

graded from Setting A to B to C. Details of these settings can

be referred to in [12].

Based on the performance, one optimal groupwise learn-

ing configuration was chosen and linear discrimination anal-

ysis (LDA) was carried out on the features. LDA aims to find

a projection of the feature vector to a low dimensional space

Fig. 1. 3-best reranking with in-domain ASR and MT
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subject to the Fisher criterion, and was shown to give an extra

0.04-0.11 BLEU score increase in previous SLT enhancement

experiment [12].

6. RESULTS

6.1. Groupwise learning with 3-best candidates

To gain an insight to the effectiveness of groupwise learning,

the reranking case with 3-best ASR and their 1-best MT hy-

potheses (i.e. K=3) with in-domain ASR and MT was stud-

ied. Figure 1 shows three groupwise learning models (one re-

gression with M=2; two classifications with M=2[pair] and

M=3[triplet]) compared with two control single SVR models

with K=3 and K=10.

The vertical axis shows the BLEU score from using dif-

ferent models. The horizontal axis shows the increasing

percentage of sentences being reranked using the confidence-

informed heuristics. The baseline performance is 32.03
(where 0% of sentences were reranked). From 10-best single

SVR to 3-best single SVR, the best performance dropped

from 32.48 to 32.35 (with 55% sentences reranked). This is

because of the reduced scope of potential improvement with

lower-order K-best.

When focusing on the groupwise learning models, the pair

regression model was found to give the same performance as

the 3-best single SVR (32.35) at the 55% data selection point.

The two classification models give 32.14 and 32.09 BLEU

scores respectively. The two single SVR models require data

filtering, as illustrated by the significant drop of BLEU be-

yond 55% sentence selection. The three groupwise learn-

ing models are more robust in reranking sentences with high

ASR confidence. In the following experiments, two thresh-

olds on average word confidence would be used (i) 0.96, this

is the empirical optimal threshold from previous experiment

(ii) 1.00, reranking is only skipped for sentences with average

word ASR confidence equal 1.00, this corresponds to roughly

10% of the sentences.

6.2. Groupwise learning up to 10-best

In this Section, the groupwise learning models with regres-

sion and classification were explored with varying orders of



Table 1. BLEU score with groupwise learning under different K, M , confidence selections and domain mismatch settings

K-best order 3 4 5 6 7 8 9 10

Size of group (M ) 2 3 2 3 4 2 3 4 2 3 2 2 2 2

Setting A (In-domain ASR, In-domain MT, Baseline: 32.03)

Regression (55%) 32.35 – 32.55 – – 32.59 – – 32.50 – 32.53 32.56 32.57 32.66

(% selected) (89%) 32.38 – 32.58 – – 32.63 – – 32.55 – 32.60 32.59 32.58 32.72

Classification (55%) 32.14 32.23 32.29 32.23 32.06 32.24 32.13 32.22 32.39 32.03 32.35 32.45 32.57 32.60

(% selected) (89%) 32.09 32.16 32.18 32.20 32.09 32.21 32.13 32.25 32.32 32.03 32.26 32.36 32.51 32.51

Setting B (In-domain ASR, Out-of-domain MT, Baseline: 30.64)

Regression (55%) 31.02 – 31.10 – – 31.07 – – 31.04 – 31.09 31.07 31.18 31.16

(% selected) (89%) 31.06 – 31.13 – – 31.02 – – 30.96 – 31.06 31.06 31.23 31.19

Classification (55%) 30.81 30.83 30.86 30.76 30.70 30.92 30.64 30.87 30.77 30.64 30.86 30.90 30.91 30.97

(% selected) (89%) 30.77 30.79 30.87 30.74 30.65 30.89 30.64 30.78 30.72 30.64 30.87 30.95 31.02 31.10

Setting C (Out-of-domain ASR, Out-of-domain MT, Baseline: 29.41)

Regression (59%) 30.02 – 29.95 – – 30.09 – – 30.17 – 30.14 30.22 30.30 30.25

(% selected) (90%) 30.17 – 30.15 – – 30.22 – – 30.30 – 30.31 30.36 30.48 30.43

Classification (59%) 29.67 29.62 29.75 29.63 29.61 29.88 29.68 29.82 29.96 29.46 29.94 30.04 30.12 30.23

(% selected) (90%) 29.68 29.65 29.82 29.67 29.69 29.99 29.74 29.92 30.00 29.46 30.04 30.23 30.29 30.42

ASR K-best (K) and sizes of groups (M ) under the three do-

main mismatch settings.

Table 1 summarises the performance in terms of BLEU.

The regression models learnt from pairwise features so M

always had a value of 2. The classification models had the

values of M varied from 2 up to K. From K = 5 onwards,

the growing space complexity limits the upper bound of M

to be tried. Three settings with increasing domain mismatch,

with baseline BLEU score equal to 32.03, 30.64 and 29.41
were tested. Following the previous experiments with 3-best,

reranking with two ASR confidence thresholds were reported.

These thresholds roughly correspond to 55%− 59% and 90%
of data being reranked in the three settings.

In general, performance improves with K because of the

larger potential scopes with longer K-best lists. Across differ-

ent settings, the regression models were better than the classi-

fication models across all K, while the performance gaps are

closing up when K ≥ 9. There is not a conclusive trend

observed with the increase of group size M . The use of

ASR-confidence threshold (selecting 55% of the sentences to

rerank) seems to be necessary only in groupwise classfication

with Setting A. Even for this particular setting, missing out

sentence selection only brings < 0.1 BLEU degradations.

The best performance for setting A, B and C are marked

with bold fonts and underlined in Table 1. They all using

groupwise regression model with K = 9 or 10 and 90% sen-

tences were reranked. For consistency, the configuration with

K = 10 was for further experiments and result comparison.

Table 2. BLEU with all techniques in 3 settings

A B C

Baseline 32.03 30.64 29.41

Single SVR [12] 32.44 31.08 29.94

Single SVR + LDA [12] 32.53 31.12 30.08

Groupwise 32.72 31.19 30.43

Groupwise + LDA 32.83 31.26 30.62

For this setting, the BLEU score for setting A, B and C are

32.72, 31.19 and 30.43 respectively.

Table 2 showed the performance comparison with dif-

ferent techniques. Compared with the single SVR method,

groupwise learning contribute 0.28, 0.11 and 0.49 BLEU

increase.

6.3. Groupwise learning with LDA

In the final experiment, LDA was applied on the specified

groupwise learning condition discussed above. The dimen-

sion of projection varied from 3 to 10 and the optimal results

were included in Table 2. LDA on top of groupwise learning

brings additional 0.11, 0.07 and 0.19 BLEU score increase to

Settings A, B and C respectively. The optimal LDA projection

dimensions for these these settings are 3, 5 and 4 respectively.

7. CONCLUSION

In this paper, a groupwise learning strategy was proposed

for the SLT reranking problem. Groups of 2 up to K sen-

tences from the ASR K-best list are grouped together and

vector-based regression and classification models were used

to learn a likelihood metric used for re-ranking. Compared

with learning with individual samples, groupwise learning

gives 0.11 to 0.49 additional increase to BLEU in three set-

tings. Groupwise learning is complementary to the previously

proposed LDA feature projection method, allowing further

performance improvement. Space complexity is an issue. Un-

like conventional vector-based classification problem where

special kernels and operations are needed for the high dimen-

sion, in the formulation of groupwise learning the number

of samples grow exponentially. Research in support vector

regression like primal training should help [30]. Moreover,

the technique could be extended to other non-SLT problems

where information are incorporated to redirect a search.
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