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Abstract

We tackle the sub-task of content selec-

tion as part of the broader challenge of au-

tomatically generating image descriptions.

More specifically, we explore how deci-

sions can be made to select what object

instances should be mentioned in an im-

age description, given an image and la-

belled bounding boxes. We propose cast-

ing the content selection problem as a

learning to rank problem, where object in-

stances that are most likely to be men-

tioned by humans when describing an im-

age are ranked higher than those that are

less likely to be mentioned. Several fea-

tures are explored: those derived from

bounding box localisations, from concept

labels, and from image regions. Object

instances are then selected based on the

ranked list, where we investigate several

methods for choosing a stopping criterion

as the ‘cut-off’ point for objects in the

ranked list. Our best-performing method

achieves state-of-the-art performance on

the ImageCLEF2015 sentence generation

challenge.

1 Introduction

In recent years, there has been significant interest

in developing systems capable of generating lit-

eral, sentential descriptions of images (a boy play-

ing with a frisbee in the park). The task poses an

interesting and difficult challenge for natural lan-

guage generation, and is important for improved

text and image retrieval. The image description

task could potentially advance research and pro-

vide insights into multimodal natural language

generation, e.g. building language models of how

humans naturally describe the visual world.

A standard paradigm for approaching this task

is to first detect instances of pre-defined concepts

in the image to be described, and then to rea-

son about the detected concepts to generate im-

age descriptions. Thus, such approaches may

involve various components of a standard Nat-

ural Language Generation pipeline (Reiter and

Dale, 2000), such as document planning (includ-

ing content determination), microplanning (lexi-

calisation/referring expression generation) and re-

alisation.

In this paper, we concentrate on a specific sub-

problem in such an image description generation

pipeline. More specifically, we explore the con-

tent selection problem proposed by Wang and

Gaizauskas (2015). In this setting, object in-

stances are assumed to have already been localised

in an image. Thus, given gold standard labelled

bounding boxes of object instances in an image,

the task is to select the appropriate bounding box

instances to be mentioned in the eventual image

description that is to be generated (see Figure 1

for an example). To our knowledge, there has

been minimal work specifically tackling the con-

tent selection problem. However, the task is im-

portant to image description generation as not all

entities depicted in an image will be mentioned by

humans. For example, a fork lying on a table prob-

ably will not be mentioned in a picture of a family

having dinner in the kitchen. Determining which

entity will be described thus poses an interesting

research question, and may provide insights into

how humans decide what is important enough to

be described in an image description.

Thus, the main objective of this paper is to pro-

pose methods for learning to predict the object en-

tities depicted in an image that will be mentioned

in a human-authored description of the image. Our

main contribution is to develop a ranking-based

content selection system that exploits stronger tex-
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Figure 1: Given labelled bounding boxes as input,

we tackle the content selection task, i.e. decid-

ing which bounding box instances should be se-

lected to be mentioned in the corresponding im-

age description. This is an important task as hu-

mans do not mention everything that is depicted in

an image. We propose casting the content selec-

tion problem as a ranking task, that is to order the

bounding box instances by how likely they are to

be mentioned in a human-authored image descrip-

tion.

tual and image features from data for the content

selection problem, than those used in the base-

lines proposed in Wang and Gaizauskas (2015).

We propose casting the content selection problem

as a learning to rank problem. More specifically,

given a set of labelled bounding boxes in an im-

age, bounding boxes instances are ranked by how

likely they are to be mentioned in a corresponding

human description. However, as we are interested

in both precision and recall, we do not require all

labelled bounding boxes to be ranked; for example

object instances that are unlikely to be mentioned

in the description need not be ranked. Thus, we

also propose various ‘stopping criterion’ to auto-

matically select only relevant instances based on

the rankings. Our hypothesis is that humans in-

herently prioritise important entities to be selected

based on background knowledge and other cues,

and we will thus be able to exploit this to tackle

the content selection problem.

1.1 Overview

We discuss related work on the content selection

problem in Section 2. In Section 3, we present our

proposed approach to treat content selection as a

learning to rank problem, discussing the formula-

tion of the task (Section 3.1), features derived from

bounding box localisations, concept labels and vi-

sual appearances (Section 3.2), and the various

ranking algorithms explored (Section 3.3). In Sec-

tion 3.4, we also propose some automatic stopping

criteria to select important objects to be described

from the ranking list. Experimental results are pre-

sented in Section 4, with regards to concatenating

all features (Section 4.2) as well as treating indi-

vidual features independently (Section 4.3). We

also provide a summary of our feature ablation

study in Section 4.4, and present conclusions in

Section 5.

2 Related work

Image description generation. Various ap-

proaches have been proposed in the literature for

the task of generation image descriptions, for ex-

ample (Yao et al., 2010; Kulkarni et al., 2011;

Yang et al., 2011; Mitchell et al., 2012; Karpathy

and Fei-Fei, 2015; Donahue et al., 2015; Vinyals

et al., 2015), among others. Most previous work

concentrates on solving the problem ‘end-to-end’,

that is to generate a description given an image

as input. Such systems are also evaluated in an

extrinsic manner, that is by comparing output im-

age descriptions to multiply-annotated gold stan-

dard descriptions of the same image using global

measures such as BLEU (Papineni et al., 2002),

ROUGE (Lin, 2004), Meteor (Denkowski and

Lavie, 2014) or CIDEr (Vedantam et al., 2015).

Whilst such evaluation methodologies are use-

ful to evaluate image description generation sys-

tems as a whole (how similar is the generated de-

scription to human-authored descriptions?), they

make it hard to identify which components of the

generation process contribute to any performance

gains or losses. Wang and Gaizauskas (2015)

propose evaluating image description generation

systems in a fine-grained manner, i.e. evaluat-

ing each component of the image description gen-

eration pipeline independently. To demonstrate

this, they proposed the task of content selection as

a precursor to generating image descriptions and

performed fine-grained evaluation on this specific

task.



Content selection. There has been some work

on selecting objects that are important or interest-

ing in an image. Elazary and Itti (2008) propose

learning to predict object interestingness by the or-

der in which objects are labelled by annotators in

LabelMe. Spain and Perona (2010) propose learn-

ing to predict object importance, by asking multi-

ple annotators (25 per image) to name 10 objects

they see in each image. The annotations are then

aggregated: important objects are those that are

mentioned by many annotators.

Most related to our work is Berg et al. (2012),

who explore factors (compositional, semantic, and

contextual) that can be used to predict what is be-

ing described in an image. For prediction, they

focus on a binary prediction problem – is this ob-

ject described? yes or no? – and treat bounding

boxes as independent of each other. In our case,

we treat other bounding boxes as context, as a fre-

quently occurring object may not be mentioned

when co-occurring with some other object. Dodge

et al. (2012) tackle an inverse problem: learning to

predict segments of Flickr captions (noun phrases)

that are ‘visual’, i.e. predicting whether a noun

phrase in the caption is depicted in the image.

There has also been some work on measur-

ing image memorability (what makes an image

memorable to humans?), for example, Isola et al.

(2011), among others. However, most work deals

with memorability at image-level, rather than ob-

ject level. Dubey et al. (2015) tackle image mem-

orability at object level, that is, what objects are

memorable (worth remembering) to a person in an

image. This acts as a precursor to the content se-

lection problem of choosing what to describe in an

image description.

Ortiz et al. (2015) treat image description gen-

eration as a Statistical Machine Translation (SMT)

task, and concentrate on describing abstract, clip-

art scenes. Part of their pipeline involves a con-

tent selection module where rankings of object

pairs are optimised as an integer linear program-

ming (ILP) problem, allowing object pairs that fre-

quently co-occur and are close to each other to

be ranked higher than those that are not. Our ap-

proach is not constrained to pairwise features, and

automatically learns to optimise rankings across

all instances directly from a training set, using ar-

bitrary feature vectors.

Directly related to our work is Wang and

Gaizauskas (2015), who propose some baselines

for content selection assuming ‘clean’ visual input

is provided in the form of bounding boxes labelled

with concepts. The baselines are based on various

textual and visual cues. We aim to move beyond

these baselines and attempt to improve the per-

formance of content selection on the same dataset

used in their paper.

Learning to rank. Learning to rank is a prob-

lem common in the field of Information Retrieval.

Many approaches have been proposed to learn to

rank instances in a document in order of their rel-

evance to a query. The approaches can generally

be divided into three main groups:

• Pointwise ranking: Each instance in a docu-

ment are treated independently of each other.

• Pairwise ranking: The relative rank of pairs

of instances are optimized in the objective

function.

• Listwise ranking: The rankings are op-

timised directly on the evaluation metric

(e.g. normalied discounted cumulative gain

(NDCG)).

We refer readers to Li (2011) for a summary of

different techniques for learning to rank.

3 Learning to rank object instances

In this paper, we use the dataset from the Image-

CLEF 2015 Scalable Image Annotation, Localiza-

tion and Sentence Generation challenge (Villegas

et al., 2015; Gilbert et al., 2015). More specifi-

cally, we tackle the ‘clean track’ of the sentence

generation task. In this track, participants are pro-

vided with images with bounding box instances la-

belled with a WordNet sysnet (from 251 possible

synset categories). Each image also contains 5-51

corresponding descriptions per image. Each de-

scription has been annotated with the correspon-

dence between a bounding box instance and a tex-

tual term in the description (e.g. “man” in descrip-

tion refers to bounding box instance 1 in the im-

age). There are 500 development images and 450

test images. At test time, participants are provided

labelled bounding boxes as input, and are asked to

produce systems capable of selecting the bounding

boxes that are mentioned in the human-authored

descriptions.



3.1 Problem definition

Let Bi = {bi
1
, bi

2
, ..., bik} be the set of labelled

bounding boxes for an image i ∈ I , where bij =

(lij , c
i
j), and lij is the bounding box localisation

(position and size), and cij ∈ C is the concept

label for the bounding box j, and |C| = 251 is

the number of pre-defined categories. Given the

set of input bounding boxes Bi for each image i,

the eventual task is to predict the set of bounding

box instances that are most likely to be mentioned

in the gold standard descriptions. Casting this as a

ranking task, we aim to predict the relevance of the

bounding boxes, i.e. most likely to be mentioned

in the gold standard, and then rank the bounding

box instances by their relevance.

As a learning to rank problem, our objective is

to learn, from some training data, to predict the

relevance of an unseen bounding box instance for

a test image, given other bounding box instances

of the same image as well as features xij derived

from each bounding box instance bij .

3.2 Features

We explore different features, derived from (i) the

bounding box localisation, lij ; (ii) the concept la-

bel, cij ; or (iii) the visual appearance of the region

in image i bounded by lij . The features we explore

are:

• bboxsize: the area of the object bounding

box relative to the image.

• bboxdist: distance of the centre of the ob-

ject bounding box from the image centre. For

this paper, we negate the distance to accom-

modate classifiers that assume positive linear

relations.

• textiv: a 251 dimensional one-hot vector

with 1 for the matching concept label and 0
for the others.

• textemb: a 300 dimensional synset embed-

ding derived from word2vec pretrained on

the Google News Dataset (Mikolov et al.,

2013). As each concept label is a Word-

Net synset, we further fine-tuned the em-

beddings to obtain synset embeddings in the

original word2vec embedding space with Au-

toExtend (Rothe and Schütze, 2015), where

an autoencoder is learnt based on WordNet

terms, lexemes and hypernym relations.

• imgemb: a 4,096 dimensional image embed-

ding for the object region enclosed by the

bounding box. For this paper we used the

penultimate layer (FC7) of the 16-layer vari-

ant of VGGNet (VGG-16) (Simonyan and

Zisserman, 2014). Intuitively, this feature

represents the visual appearance of the region

enclosed by the bounding box.

In early experiments, we experimented with us-

ing the absolute bounding box positions (x and y

coordinates) as a features. However, these fea-

tures yielded poor performance, and were thus dis-

carded in subsequent experiments.

We also explore combining the features to ex-

amine the contribution of each feature, to deter-

mine which features play a role in the content se-

lection task.

3.3 Ranking algorithms

For ranking, we consider several commonly used

algorithms in the literature for Learning to Rank.

We select one example from each of the group of

approaches (pointwise, pairwise, listwise):

• rforest: Random forests (Breiman, 2001),

an algorithm using pointwise ranking. We

use the implementation of random forests in

RankLib1 in this paper.

• svmrank: Ranking SVM (Joachims, 2002),

an algorithm using pairwise ranking. We

use the SVMrank implementation (Joachims,

2006) of Ranking SVM in this paper. A lin-

ear kernel is used for this paper. 2

• cascent: Coordinate ascent (Metzler and

Croft, 2007), an algorithm using listwise

ranking. In our paper, we optimise the rank-

ings using NDCG@10 as a metric. Again, we

use the implementation of coordinate ascent

in RankLib.

For these algorithms, we compute the relevance

score for each bounding box instance as the pro-

portion of human-authored, gold standard descrip-

tions that mention the concept. The task is to learn

to predict the relevance score given the features

in Section 3.2, and subsequently rank the bound-

ing box instances for each image by this score. As

1http://www.lemurproject.org/ranklib.php
2We have experimented with an RBF kernel, but found

the results comparable to a linear kernel.



such, this task is treated as a continuous regression

problem.3

Our intuition is that pairwise and listwise rank-

ing algorithms would suit our task better than

pointwise algorithms, as pairwise/listwise ranking

implicitly considers all other object instances as

context rather than treating each instance indepen-

dently as in pointwise ranking. For example, a ta-

ble might be important and frequently mentioned,

but might not be mentioned when co-occurring

with kitchen.

3.4 Stopping criteria

While the ranking process will result in a ranked

list of all input object instances per images, there

is a need to provide a cut-off point in the rankings

for the eventual task of content selection.

From our initial experiments, we found that the

number of selected object instances greatly affects

the F -scores (see Section 4.1 for evaluation mea-

sure). Selecting fewer good object instances per

image will raise precision at the expense of lower

recall, while selecting more objects will increase

recall at the expense of lower precision. Wang

and Gaizauskas (2015) propose a fixed threshold

for the maximum number of object instances to

be selected, and found that selecting 3 to 4 ob-

ject instances yields an optimal balance between

precision and recall (the mean number of unique

bounding box instances per description is 2.89 in

the development dataset). However, it may be

more beneficial to have a variable threshold across

images depending on the number of input object

instances. For example, the bigram-based fea-

ture proposed in Wang and Gaizauskas (2015) has

an internal stopping criterion, resulting in higher

overall precision when compared to other fixed

length features.

Motivated by the high precision scores of the

aforementioned system, in this paper we propose

two variable stopping criteria:

• absolute: Retaining only object instances

with a predicted relevance score above a cer-

tain threshold.

• relative: Setting the cut-off point at the

largest difference in relevance scores.

3We also experimented with ordinal regression, where
regression scores are partitioned into a set of integers
{0,1,2,3,4} based on the relevance score (with 4 being the
most relevant). We found performance to be lower, in gen-
eral. Thus, we only report results for continuous regression.

In the former case (absolute), we first normalise

the predicted score across bounding boxes per im-

age, where the highest-ranked bounding box is as-

signed a score of 1 and the lowest-ranked a score

of 0. We retain only bounding box instances where

the normalised predicted score is above a thresh-

old (0.5 in our experiments).

The motivation for the latter case (relative)

stems from our observation that the relevance

scores in the development set reduces dramatically

once the most important object instances are se-

lected. For example, the most relevant object in-

stances may have a relevance score of 0.9 and 0.8

followed by 0.2. Thus, a suitable cut-off point

would be between 0.8 and 0.2. Cutting off at the

point that immediately precedes the biggest differ-

ence in scores (after 0.8 in the example above) we

refer to as relative1 in our experiments. We also

found that cutting off the ranked list after the point

that follows the largest difference in score (after

0.2 in the example above) produces a marginally

higher F -score (increased recall at the expense of

precision). We therefore also report the results for

this as a variant, which we refer to as relative2.

4 Experimental results

4.1 Evaluation measure

Following the convention of the ImageCLEF2015

Sentence Generation challenge, we evaluate con-

tent selection using the fine-grained evaluation

metric proposed in Wang and Gaizauskas (2015)

and Gilbert et al. (2015). More specifically, we

measure the F -score (including P recision and

Recall) when comparing the object instances se-

lected by our system to the object instances men-

tioned in the gold standard human-authored image

descriptions. The human upper-bound is estimated

by evaluating one description against the other de-

scriptions of the image and repeating the process

for all descriptions.

We compare our results to the winning par-

ticipants of past ImageCLEF challenges. RUC

2015 (Li et al., 2015) achieved the best perfor-

mance in the 2015 edition (Villegas et al., 2015;

Gilbert et al., 2015) with high precision, but

used an external image description dataset to train

their joint CNN-LSTM image captioning system,

and performed content selection in a retrospective

manner. DUTh 2016 (Barlas et al., 2016) achieved

the best performance (high recall) in the 2016 edi-

tion (Villegas et al., 2016; Gilbert et al., 2016),



Stopping

Criterion

P R F

RUC 2015 0.68 ± 0.30 0.48 ± 0.24 0.53 ± 0.23

DUTh 2016 0.45 ± 0.17 0.79 ± 0.20 0.55 ± 0.15

W&G 2015 0.59 ± 0.19 0.58 ± 0.22 0.56 ± 0.18

ca
sc

en
t

k = 3 0.59 ± 0.22 0.56 ± 0.23 0.55 ± 0.20

k = 4 0.50 ± 0.20 0.63 ± 0.22 0.54 ± 0.17

absolute 0.42 ± 0.22 0.72 ± 0.22 0.49 ± 0.17

relative1 0.72 ± 0.33 0.57 ± 0.29 0.53 ± 0.22

relative2 0.56 ± 0.25 0.66 ± 0.26 0.54 ± 0.20

sv
m

ra
n

k

k = 3 0.60 ± 0.20 0.59 ± 0.22 0.57 ± 0.18

k = 4 0.53 ± 0.18 0.68 ± 0.21 0.58 ± 0.16

absolute 0.43 ± 0.20 0.80 ± 0.19 0.52 ± 0.15

relative1 0.67 ± 0.31 0.61 ± 0.29 0.53 ± 0.19

relative2 0.55 ± 0.25 0.70 ± 0.25 0.55 ± 0.18

rf
o
re

st

k = 3 0.69 ± 0.18 0.68 ± 0.21 0.66 ± 0.16

k = 4 0.60 ± 0.17 0.76 ± 0.19 0.65 ± 0.14

absolute 0.84 ± 0.19 0.64 ± 0.21 0.70 ± 0.16

relative1 0.89 ± 0.18 0.57 ± 0.23 0.66 ± 0.18

relative2 0.71 ± 0.18 0.69 ± 0.21 0.68 ± 0.17

Human 0.77 ± 0.11 0.77 ± 0.11 0.74 ± 0.12

Table 1: Results of combining all features: Mean

P recision, Recall and F -score (with standard de-

viations) for different algorithms and stopping cri-

teria, compared to the winning ImageCLEF par-

ticipants (RUC 2015 and DUTh 2016), the best

reported results of Wang and Gaizauskas (2015)

(W&G 2015) and a human upper-bound.

using a binary SVM classifier with bounding box

localisation and visual features. We also com-

pare our performance to the best reported results

in Wang and Gaizauskas (2015) (W&G 2015),

namely by combining bigram and bounding box

size priors with a stopping criterion of k = 3.

4.2 Combining features

We first report the results of concatenating all fea-

tures (Section 3.2) as a single vector, and compare

the performance of the various ranking algorithms

(Section 3.3) and stopping criteria (Section 3.4).

The intuition is that the ranking algorithm will

perform automatic feature selection to select the

most discriminative features useful for predicting

the relevance score.

Table 1 shows the results of using a combina-

tion of all features. The pointwise ranking based

Random Forests classifier performs best overall,

achieving an F -score of 0.70, close to the human

upper-bound of 0.74. This significantly exceeds

the previous state-of-the-art result on the same

training and test data of F = 0.56, as reported

in Wang and Gaizauskas (2015). The coordinate

ascent ranker and Ranking SVM achieved com-

parable scores, the latter perhaps having a slight

edge.

Stopping

Criterion

P R F

ca
sc

en
t

k = 3 0.63 ± 0.21 0.62 ± 0.21 0.60 ± 0.17

k = 4 0.55 ± 0.19 0.69 ± 0.21 0.59 ± 0.16

absolute 0.54 ± 0.22 0.71 ± 0.20 0.58 ± 0.15

relative1 0.84 ± 0.25 0.57 ± 0.24 0.61 ± 0.18

relative2 0.63 ± 0.22 0.66 ± 0.23 0.61 ± 0.17

sv
m

ra
n

k

k = 3 0.65 ± 0.19 0.64 ± 0.22 0.62 ± 0.17

k = 4 0.57 ± 0.18 0.72 ± 0.21 0.61 ± 0.15

absolute 0.81 ± 0.24 0.55 ± 0.23 0.62 ± 0.18

relative1 0.85 ± 0.24 0.51 ± 0.23 0.59 ± 0.17

relative2 0.69 ± 0.21 0.65 ± 0.22 0.64 ± 0.18

rf
o
re

st

k = 3 0.69 ± 0.18 0.68 ± 0.20 0.66 ± 0.16

k = 4 0.60 ± 0.17 0.75 ± 0.19 0.64 ± 0.14

absolute 0.83 ± 0.19 0.66 ± 0.21 0.71 ± 0.16

relative1 0.88 ± 0.18 0.59 ± 0.23 0.67 ± 0.18

relative2 0.70 ± 0.17 0.70 ± 0.21 0.68 ± 0.15

Table 2: Results of combining features derived

from bounding box localisation and concept labels

(excluding image region features). In contrast to

Table 1, excluding image region features improves

the performance of both cascent and svmrank.

The performance of the various stopping crite-

ria seems to be dependent on the ranking algo-

rithm. The absolute stopping criterion seems to

be sensitive to the type of ranking algorithm. As

expected, relative1 achieved higher precision than

relative2, whereas relative2 achieved better recall

with the additional object instance being selected.

In an earlier experiment, we have explored com-

bining only features derived from bounding box

localisation and concept labels, excluding image

region features (imgemb). Interestingly, we found

better performance by excluding image region fea-

tures for cascent and svmrank, but not much dif-

ference for rforest (compare Table 1 and Table 2).

This is very likely because the high dimensional

image features (4,096D) dominated the ranking

decisions for these rankers, compared to rforest

which seemed less affected by the imbalance. The

performance of cascent and svmrank in Table 1

is similar to that of using only image region fea-

tures (c.f. Table 5, to be discussed later), further

confirming our suspicion.

4.3 Individual features

We now explore each feature individually to inves-

tigate the contributions of each. Table 3 shows the

results for the features derived from bounding box

localisation (bboxsize and bboxdist). The same

scores are obtained from both cascent and svm-

rank, possibly because both these features are sin-

gle dimensional vectors. rforest requires higher

dimensionality to operate, and as such is unable



Stopping

Criterion

P R F

b
b

o
x
si

ze

k = 3 0.53 ± 0.20 0.55 ± 0.26 0.53 ± 0.21

k = 4 0.50 ± 0.16 0.66 ± 0.24 0.55 ± 0.17

absolute 0.56 ± 0.28 0.44 ± 0.28 0.46 ± 0.25

relative1 0.56 ± 0.34 0.36 ± 0.29 0.40 ± 0.27

relative2 0.54 ± 0.22 0.51 ± 0.28 0.49 ± 0.22

b
b

o
x
d

is
t k = 3 0.39 ± 0.22 0.40 ± 0.27 0.38 ± 0.23

k = 4 0.36 ± 0.18 0.48 ± 0.28 0.39 ± 0.21

absolute 0.32 ± 0.19 0.71 ± 0.20 0.41 ± 0.16

relative1 0.40 ± 0.30 0.64 ± 0.32 0.40 ± 0.21

relative2 0.34 ± 0.21 0.69 ± 0.31 0.39 ± 0.19

Table 3: Mean P recision, Recall and F -score for

features derived from bounding box localisation.

Both cascent and svmrank return the same scores

(shown). rforest is unable to handle single dimen-

sional vectors. The results for k=3 and k=4 are

comparable to Wang and Gaizauskas (2015).

to handle these one-dimensional features. The

results are consistent with what was reported by

Wang and Gaizauskas (2015) – that whilst both

bboxdist and bboxsize show that content selection

is dependent on these features, bboxsize is a better

predictor for an object being selected compared to

bboxdist.4

Table 4 shows the results for features derived

from concept labels (textiv and textemb). For

these three rankers, textemb seems to outperform

textiv. The only exception is for cascent when

the stopping criterion is absolute, where textiv

seemed to give better precision than textemb.

Comparing Table 3 and Table 4, we can see that

features derived from concept labels are stronger

predictors for content selection.

Table 5 shows the results of using only image

region features (imgemb). Here, cascent does not

perform as well as svmrank and rforest, due to

the high dimensionality of the CNN embeddings.

The performance of image region features seem to

be on par with features derived from concept la-

bels (Table 4), and better than bounding box fea-

tures (Table 3). Noteworthy is how image region

features yield higher recall than other features in

general, at the expense of lower precision.

4.4 Feature ablation

We also performed a feature ablation study to gain

insights into which features are important to con-

tent selection and the interaction between the fea-

tures. This is done by testing different combina-

tions of features to investigate which features con-

4This was demonstrated in the errata provided by Wang
and Gaizauskas (2015) after the paper was published.

Stopping

Criterion

P R F

ca
sc

en
t

te
x
ti

v

k = 3 0.61 ± 0.22 0.59 ± 0.22 0.58 ± 0.19

k = 4 0.53 ± 0.20 0.66 ± 0.22 0.57 ± 0.17

absolute 0.54 ± 0.30 0.76 ± 0.20 0.55 ± 0.19

relative1 0.58 ± 0.36 0.69 ± 0.28 0.48 ± 0.18

relative2 0.48 ± 0.29 0.78 ± 0.23 0.51 ± 0.20

ca
sc

en
t

te
x
te

m
b

k = 3 0.60 ± 0.21 0.59 ± 0.21 0.57 ± 0.18

k = 4 0.52 ± 0.19 0.65 ± 0.21 0.56 ± 0.17

absolute 0.36 ± 0.19 0.79 ± 0.19 0.46 ± 0.15

relative1 0.59 ± 0.37 0.71 ± 0.27 0.50 ± 0.21

relative2 0.45 ± 0.26 0.76 ± 0.25 0.49 ± 0.20

sv
m

ra
n

k
te

x
ti

v

k = 3 0.60 ± 0.22 0.58 ± 0.22 0.57 ± 0.19

k = 4 0.53 ± 0.19 0.68 ± 0.21 0.57 ± 0.16

absolute 0.70 ± 0.32 0.60 ± 0.27 0.54 ± 0.16

relative1 0.71 ± 0.33 0.59 ± 0.27 0.53 ± 0.17

relative2 0.57 ± 0.26 0.69 ± 0.25 0.55 ± 0.18

sv
m

ra
n

k
te

x
te

m
b

k = 3 0.60 ± 0.21 0.58 ± 0.22 0.57 ± 0.18

k = 4 0.51 ± 0.20 0.64 ± 0.21 0.55 ± 0.17

absolute 0.77 ± 0.28 0.56 ± 0.23 0.59 ± 0.18

relative1 0.82 ± 0.26 0.52 ± 0.23 0.58 ± 0.18

relative2 0.63 ± 0.22 0.62 ± 0.23 0.60 ± 0.18

rf
o
re

st
te

x
ti

v

k = 3 0.64 ± 0.21 0.63 ± 0.22 0.61 ± 0.18

k = 4 0.56 ± 0.19 0.70 ± 0.21 0.60 ± 0.16

absolute 0.79 ± 0.23 0.62 ± 0.22 0.66 ± 0.19

relative1 0.84 ± 0.23 0.57 ± 0.23 0.64 ± 0.20

relative2 0.66 ± 0.19 0.67 ± 0.21 0.64 ± 0.17

rf
o
re

st
te

x
te

m
b

k = 3 0.65 ± 0.20 0.64 ± 0.22 0.62 ± 0.18

k = 4 0.57 ± 0.19 0.71 ± 0.21 0.61 ± 0.16

absolute 0.78 ± 0.23 0.64 ± 0.21 0.67 ± 0.18

relative1 0.84 ± 0.22 0.58 ± 0.23 0.65 ± 0.19

relative2 0.67 ± 0.19 0.68 ± 0.21 0.65 ± 0.17

Table 4: Mean P recision, Recall and F -score for

features derived from concept labels (one-hot in-

dicator vectors and text embeddings).

tribute better to the overall performance and thus

play a bigger role for content selection.

Because of space constraints, we only provide

a summary of interesting observations. Table 6

shows the F -scores for the rforest ranker with the

absolute stopping criterion. We found that the fea-

tures based on concept labels are dominant and

influential in our experiments compared to those

based on bounding box localisation or visual ap-

pearances. Combining textiv and textemb alone

already yielded an F -score of 0.67. This demon-

strates that semantic concept labels are the best

predictors for content selection. Adding bbox-

size to imgemb improves the F -scores marginally,

suggesting that the object size does play some role

on top of visual appearances in selecting important

objects. We also found that for rforest rankers,

textemb plays a larger role in predicting content

selection compared to textiv, as evidenced by a

greater drop in F -scores when omitting textemb

compared to textiv.



Stopping

Criterion

P R F

ca
sc

en
t

im
g
em

b
k = 3 0.50 ± 0.23 0.47 ± 0.24 0.47 ± 0.21

k = 4 0.45 ± 0.19 0.55 ± 0.24 0.48 ± 0.19

absolute 0.29 ± 0.14 0.80 ± 0.22 0.40 ± 0.14

relative1 0.39 ± 0.30 0.73 ± 0.32 0.39 ± 0.18

relative2 0.34 ± 0.22 0.79 ± 0.29 0.40 ± 0.17

sv
m

ra
n

k
im

g
em

b

k = 3 0.60 ± 0.20 0.59 ± 0.22 0.57 ± 0.18

k = 4 0.53 ± 0.18 0.67 ± 0.21 0.57 ± 0.16

absolute 0.43 ± 0.20 0.80 ± 0.19 0.52 ± 0.15

relative1 0.66 ± 0.31 0.61 ± 0.29 0.53 ± 0.20

relative2 0.54 ± 0.25 0.69 ± 0.26 0.54 ± 0.19

rf
o
re

st
im

g
em

b

k = 3 0.60 ± 0.20 0.59 ± 0.22 0.58 ± 0.18

k = 4 0.53 ± 0.18 0.67 ± 0.22 0.57 ± 0.16

absolute 0.47 ± 0.19 0.76 ± 0.20 0.55 ± 0.15

relative1 0.64 ± 0.29 0.62 ± 0.28 0.55 ± 0.19

relative2 0.52 ± 0.22 0.69 ± 0.26 0.55 ± 0.17

Table 5: Mean P recision, Recall and F -score for

features derived from image region features (im-

age embeddings).

4.5 Discussion

We observed that the pointwise-based random

forests ranker performs better than the pairwise

and listwise-based rankers. This is surprising

as we expected either pairwise- or listwise-based

rankers to perform better than pointwise-based

rankers, which treat each instance in a docu-

ment as independent without considering other in-

stances within the same document. It still remains

unclear whether this is due to the random forests

classifier itself being strong or that context plays

a lesser role in content selection for this particular

dataset. Further work is required to ascertain this.

5 Conclusion

We explored the content selection problem of de-

ciding what needs to be mentioned in the descrip-

tion of an image, given labelled bounding boxes

as input. We proposed casting the problem as

a learning to rank task, where object instances

that are more likely to be mentioned in human-

authored descriptions are ranked higher than those

less likely to be mentioned. Several features are

explored: those derived from bounding box local-

isations, concept labels and visual appearances for

each object instance. We also proposed methods

to automatically estimate a cut-off point in each

ranked list, to select only object instances that are

likely to be mentioned in the image description.

Our method showed excellent results, achieving

the state-of-the-art F -score of 0.70 on the Image-

CLEF2015 content selection dataset, substantially

out-performing the highest figures previously re-

Feature rforest

bboxdist bboxsize textiv textemb imgemb F

D -

D -

D 0.66 ± 0.19

D 0.67 ± 0.18

D 0.55 ± 0.15

D D -

D D 0.66 ± 0.17

D D 0.69 ± 0.16

D D 0.55 ± 0.15

D D 0.67 ± 0.18

D D 0.70 ± 0.16

D D 0.57 ± 0.16

D D 0.67 ± 0.18

D D 0.62 ± 0.16

D D 0.70 ± 0.16

D D D 0.67 ± 0.17

D D D 0.70 ± 0.16

D D D 0.57 ± 0.15

D D D 0.69 ± 0.16

D D D 0.63 ± 0.16

D D D 0.69 ± 0.16

D D D 0.70 ± 0.16

D D D 0.64 ± 0.16

D D D 0.70 ± 0.17

D D D 0.69 ± 0.16

D D D D 0.71 ± 0.16

D D D D 0.64 ± 0.17

D D D D 0.70 ± 0.17

D D D D 0.69 ± 0.16

D D D D 0.70 ± 0.16

D D D D D 0.70 ± 0.16

Table 6: Results of the feature ablation test: mean

F -scores for rforest with the absolute stopping

criterion, for various combinations of features.

Some results are omitted because rforest does not

work well with single or two dimensional features.

ported on this test set. We also found that for the

proposed features, those that are derived from the

concept labels are better predictors for the content

selection task than those derived from bounding

box localisations or visual appearance of regions.

The proposed learning to rank approach is gen-

eral enough and may also be relevant to content

selection tasks in other areas of natural language

generation. Future work could include exploring

even stronger features. There is also scope to au-

tomatically gather a larger noisy dataset to enable

more robust learning and reduce reliance on anno-

tating training data. We hope that these additions

will further improve the content selection capabil-

ities of the proposed system.
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Aloimonos. 2011. Corpus-guided sentence genera-
tion of natural images. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 444–454. Association
for Computational Linguistics.

Benjamin Z. Yao, Xiong Yang, Liang Lin, Mun Wai
Lee, and Song Chun Zhu. 2010. I2T: Image pars-
ing to text description. Proceedings of the IEEE,
98(8):1485–1508.


