
This is a repository copy of Evaluation and combination of pitch estimation methods for 
melody extraction in symphonic classical music.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/103396/

Version: Accepted Version

Article:

Bosch, J.J., Marxer, R. and Gómez, E. (2016) Evaluation and combination of pitch 
estimation methods for melody extraction in symphonic classical music. Journal of New 
Music Research. pp. 1-17. ISSN 0929-8215 

https://doi.org/10.1080/09298215.2016.1182191

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of 
New Music Research on 23/5/2016, available online: 
http://www.tandfonline.com/10.1080/09298215.2016.1182191.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1080/09298215.2016.1182191
https://eprints.whiterose.ac.uk/id/eprint/103396/
https://eprints.whiterose.ac.uk/


Evaluation and Combination of Pitch Estimation

Methods for Melody Extraction in Symphonic

Classical Music

Juan J. Bosch∗1, R. Marxer†1,2 and E. Gómez‡1
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Abstract

The extraction of pitch information is arguably one of the most im-
portant tasks in automatic music description systems. However, previous
research and evaluation datasets dealing with pitch estimation focused
on relatively limited kinds of musical data. This work aims to broaden
this scope by addressing symphonic western classical music recordings,
focusing on pitch estimation for melody extraction. This material is char-
acterised by a high number of overlapping sources, and by the fact that the
melody may be played by different instrumental sections, often alternating
within an excerpt. We evaluate the performance of eleven state-of-the-art
pitch salience functions, multipitch estimation and melody extraction al-
gorithms when determining the sequence of pitches corresponding to the
main melody in a varied set of pieces. An important contribution of the
present study is the proposed evaluation framework, including the annota-
tion methodology, generated dataset and evaluation metrics. The results
show that the assumptions made by certain methods hold better than
others when dealing with this type of music signals, leading to a better
performance. Additionally, we propose a simple method for combining
the output of several algorithms, with promising results.

1 Introduction

Melody is one of the most relevant aspects of music. According to Selfridge-Field
(1998), ‘It is melody that enables us to distinguish one work from another. It is

∗juan.bosch@upf.edu
†r.marxer@sheffield.ac.uk
‡emilia.gomez@upf.edu

1



melody that human beings are innately able to reproduce by singing, humming,
and whistling. It is melody that makes music memorable: we are likely to recall
a tune long after we have forgotten its text’.

Due to its relevance and the number of potential applications, there have
been many efforts in the Music Information Retrieval (MIR) literature to au-
tomatically extract melodic information from both monophonic (Gómez, Kla-
puri, and Meudic 2003) and polyphonic (Salamon, Gómez, et al. 2014) music
recordings, commonly applying concepts from auditory scene analysis (Bregman
1994) and voice leading principles (Huron 2001). Automatic melody extraction
methods represent the first step to develop systems for automatic transcrip-
tion (Klapuri and Davy 2006), melodic retrieval (e.g. query by humming (Hu
and Dannenberg 2002)) or transformation (Gómez, Peterschmitt, et al. 2003).
Further applications deal with the removal of the lead instrument from a poly-
phonic music recording, since the identification of the pitches from the melody
is helpful to guide source separation algorithms (Durrieu, Richard, et al. 2010;
Marxer 2013). Furthermore, a symbolic representation of the melody is also
useful for music classification systems (Salamon, Rocha, and Gómez 2012).

The definition of melody has evolved in the literature, depending on the
context in which it was proposed (Ringer 2015). There is thus no standard way
to define melody, even for monophonic music material (Gómez, Klapuri, and
Meudic 2003). In the MIR community, melody has been defined as the single
(monophonic) pitch sequence that a listener might reproduce if asked to whistle
or hum a piece of polyphonic music, and that a listener would recognize as being
the ‘essence’ of that music when heard in comparison (Poliner et al. 2007). This
operational definition is very open and involves cognitive processes behind the
annotations.

In practice, research in polyphonic music material has focused on ‘single
source predominant fundamental frequency (f0) estimation’. According to Sala-
mon, Gómez, et al. (2014), the melody is constrained to belong to a single sound
source throughout the piece being analyzed, where this sound source is considered
to be the most predominant instrument or voice in the mixture. Here, the term
‘predominant’ is used to denote the source with higher energy. This is the crite-
rion followed to generate ground truth information for the evaluation of melody
extraction systems in the Music Information Retrieval Evaluation eXchange1

(MIREX).
More specifically, most of the research has focused on singing voice, and as a

consequence, melody extraction methods commonly work better for vocal music
in comparison to instrumental music. For instance, the algorithm by Salamon
and Gómez (2012) obtains the best mean overall accuracy across all datasets
used in MIREX, but the results in vocal datasets (MIREX09, INDIAN08) are
better than in datasets containing a mixture of vocal and instrumental excerpts
(ADC2004, MIREX05). In vocal popular music the definitions of Poliner et al.
(2007) and Salamon, Gómez, et al. (2014) provide similar annotation criteria,
as people tend to sing the vocal part (when present in the signal), and the
voice is usually the most predominant source in the mix. However, both defini-
tions differ in more complex music, where the melody is alternatingly played by
different instruments. A recent related contribution is the MedleyDB dataset
(Bittner et al. 2014), which includes a variety of instrumentation and genres.

1http://www.music-ir.org/mirex
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More importantly, it extends the definition in Salamon, Gómez, et al. (2014)
to incorporate two other definitions of melody: ‘The f0 curve of the predomi-
nant melodic line drawn from multiple sources’ (to annotate excerpts where the
melody is alternated by different predominant instruments), and ‘The f0 curves
of all melodic lines drawn from multiple sources’ (to annotate excerpts where
multiple instruments may be playing different melodic lines).

Such definitions are more useful in the context of symphonic music, which
presents further challenges, since melodies are played by alternating instruments
or instrument sections (playing in unison, octave relation, or with harmonised
melodic lines), and which might not be energetically predominant. The main
goal of this work is to study the limitations and challenges posed to state-of-
the-art melody extraction algorithms when estimating the pitch sequence cor-
responding to the melody in symphonic repertoire. For this study, we create an
evaluation database by gathering human annotations according to the definition
of melody in (Poliner et al. 2007), and do an analysis in terms of instrumenta-
tion, melodic features and energy salience. In order to understand the influence
of the different steps in melody extraction algorithms, we also consider an inter-
mediate representational level which corresponds to the pitch salience. We are
interested in evaluating the ability of this initial step of most methods to identify
the pitch corresponding to the melody as the more salient, since it affects the
following steps. Furthermore, we consider multipitch estimation methods, since
they are based on similar principles as salience functions and melody extraction
methods, but allowing multiple melodic lines. Finally, we propose a method
for the combination of algorithms that takes advantage of the estimated pitch
salience to refine estimations. The results of this work are exploited to design
a music understanding system intended for the visualisation of descriptors such
as the melodic contour. With such purpose, we restate the standard methodol-
ogy for melody extraction evaluation by proposing a set of evaluation measures
which are specially suitable for this context. The main contributions of this
paper are summarised as follows:

• a methodology for the creation of a melody extraction dataset by collect-
ing human annotation data through singing, assessing agreement among
subjects and performing manual transcriptions;

• a reliable dataset for melody extraction in symphonic music, featuring
challenging musical characteristics which had not previously been consid-
ered in the literature;

• a detailed study of the challenges and potential of state-of-the-art pitch
estimation algorithms for symphonic music, including an analysis of the
influence of melodic characteristics, instrumentation, and energetic pre-
dominance of the melody on their accuracy;

• the proposal of novel evaluation metrics which account for both pitch and
time continuity, and

• a simple pitch estimation method which combines the output of pitch
estimation algorithms, takes advantage of the estimated pitch salience to
refine the estimations, and allows increasing the accuracy and reducing
the variance of the results on the proposed dataset.
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The remainder of this paper is organised as follows: the dataset and method-
ology for its creation are presented in Section 2. An overview of the evaluated
pitch estimation algorithms is provided in Section 3, including the proposed
combination method. The evaluation methodology and results (including the
definition of novel metrics) are presented in Section 4, which are further analysed
and discussed in Section 5.

2 Evaluation dataset: definition and annotation

The creation of a dataset for automatic melody extraction in symphonic mu-
sic has been a challenge, partially due to the lack of a established annotation
methodology when there is more than one instrument playing the melody. In-
spired by the definitions of melody in (Poliner et al. 2007; Selfridge-Field 1998),
we collected excerpts in which human listeners agreed in their ‘essence’, that is,
the sequence of notes that they hum or sing to represent it. The problem with
interannotator agreement has been discussed in tasks such as chord recognition
(Ni et al. 2013) or music similarity (Flexer 2014). Several MIR datasets have
also involved more than one annotator during their creation, e.g. for structure
analysis (Smith et al. 2011), instrument recognition (Bosch, Janer, et al. 2012)
or melody extraction (Bittner et al. 2014).

In this work, the dataset creation comprised several tasks: excerpts selection,
recording sessions, analysis of the recordings and melody annotation. We first
describe the procedure followed to collect music audio excerpts and describe the
final music collection in terms of duration, instruments playing the melody and
melodic features (Section 2.1). We then provide further details on the designed
methodology for human annotation gathering (Section 2.2) and analysis of these
annotations (Section 2.3).

2.1 Dataset description and statistics

The proposed dataset is focused on symphonies and symphonic poems, bal-
lets suites and other musical forms interpreted by symphonic orchestras, mostly
from the romantic period, as well as classical and 20th century pieces. Music
recordings were taken from private collections, and selected to have an ade-
quate recording audio quality. They were sampled to create short excerpts
with a potential dominant melody, maximising the existence of voiced segments
(containing a melody pitch) per excerpt.

To verify that the excerpts contained a clear melody and identify the exact
sequence of notes, we collected human annotations by recording subjects singing
the melody, as described in section 2.2. From the starting set of excerpts, we
selected those in which subjects agreed on the sequence of notes (melody), and
annotated them as detailed in section 2.3. An overview of the whole process is
shown in Figure 1.

The final collection, which is freely available for research purposes2, contains
64 audio excerpts with their corresponding annotation of the melody in MIDI
format. The files were converted to mono combining left and right channels
before executing the extraction, in order to ensure that all algorithms worked
with exactly the same material.

2http://www.mtg.upf.edu/download/datasets/orchset
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The length of the excerpts ranges from 10 to 32 seconds (µ = 22.1 s., σ =
6.1 s.). For each excerpt we provide a text file with the sequence of melody
pitches using a sampling period of 10 ms. If no melody pitch is annotated at
a specific time, the frame is considered as unvoiced, otherwise it is consider as
voiced. 93.69% of the frames of the dataset are labelled as voiced while 6.31%
are unvoiced (in which case the pitch is set to be 0). The number of excerpts
per composer are: Beethoven (13), Brahms (4), Dvorak (4), Grieg (3), Haydn
(3), Holst (4), Mussorgsky (9), Prokofiev (2), Ravel (3), Rimsky-Korsakov (10),
Schubert (1), Smetana (2), Strauss (3), Tchaikovsky (2), Wagner (1).

In order to understand the characteristic of the annotated melodies, we com-
puted a set of statistics about instrumentation, pitch and rhythm related fea-
tures. Regarding instrumentation, only in one of the excerpts there is a single
instrument (oboe) playing the melody (with orchestral accompaniment). In the
rest of the dataset, the melody is played by several instruments from an instru-
ment section, or a combination of sections, or even alternating sections within
the same excerpt. Figure 2 (left) illustrates the statistics of the predominant
instrumental sections playing the melody. Figure 2 (right) depicts the distribu-
tion of pitches of all frames of the dataset, and a Gaussian model (µ = 74.1, σ
= 12.1). Using the MIDI Toolbox (Eerola and Toiviainen 2004), we computed
a set of melodic descriptors for each of the ground truth MIDI files (containing
the sequence of melody notes):

• Density: amount of notes per second.

• Range: difference in semitones between highest and lowest note pitch.

• Tessitura: melodic tessitura based on pitch deviation from median pitch
height (Von Hippel 2000).

• Complexity (pitch, rhythm, mixed): expectancy-based model of melodic
complexity (Eerola and North 2000) based either on pitch or rhythm-
related components, or on a combination of them together.

• Melodiousness: ‘suavitatis gradus’ proposed by Euler, which is related to
the degree of softness of a melody, and is a function of the prime factors
of musical intervals (Leman 1995).

• Originality: Different measurement of melodic complexity, based on tone-
transition probabilities (Simonton 1984).

Additionally, we computed the melodic intervals found in the dataset, as
the difference in semitones between consecutive notes. Histograms with the
distribution of the melodic features are depicted in Figure 3. We observe that
although melodies in the dataset have varied characteristics in terms of the
computed descriptors, there are some general properties. Melodic intervals gen-
erally lie in a relatively small range, according to the voice leading principle
of pitch proximity (Huron 2001). The most common sequence of two notes is
a perfect unison, followed by a major second, and then minor second either
descending or ascending. Previous works obtained similar conclusions, such as
Dressler (2012b) with a dataset of 6000 MIDI files from varied genres, or Friberg
and Ahlbäck (2009) in a dataset of polyphonic ring tones. The melodic density
histogram shows that most excerpts present an average of less than three notes
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per second, which also corresponds to the results obtained in (Dressler 2012b).
Some differences with respect to the cited works are: the fact that our dataset
presents a larger range of intervals, and that some excerpts present a higher
amount of notes per second (and thus a lower inter-onset interval). Similar
melodic features have been previously used in combination with classifiers to
select the tracks containing the melody in a MIDI file (Rizo et al. 2006). In Sec-
tion 4, we analyse the correlation between the presented melodic characteristics
and algorithm accuracy.

2.2 Recording sessions

We carried out recording sessions where subjects had to carefully listen to the
audio samples twice and then sing or hum along with the audio three more
times. As excerpts were repeated and relatively short, subjects could more
easily memorize them. A total of 32 subjects with a varied musical background
and a common interest in music took part in the recording sessions, including
two of the authors. The instructions provided to the subjects were to ‘hum or
sing the main melody (understood as the sequence of notes that best represent
the excerpt)’. They were also instructed to focus on pitch information rather
than on timing (onsets and offsets).

During the session, subjects rated how well they knew each of the excerpts
before the experiment (ranking from 1 to 4). After the recordings, they also
filled out a survey asking for their age, gender, musical background, amount
of dedication to music playing, and a confidence rating of their own singing
during the experiment, in terms of the percentage of melody notes that they
considered they sang correctly (‘Less than 30%’, ‘30-60%’, ‘60-90%’, ‘More than
90%’). We discarded 9 subjects which could not properly accomplish the task,
based on both their confidence (those which responded ‘Less than 30%’) and
their performance in some excerpts, which contained an easy to follow single
melodic line. The selected 23 subjects sang a subset of the collection, and were
distributed to have three different subjects singing each excerpt. Additionally,
the main author sang the whole collection, so finally there were four different
subjects per excerpt, as shown in Figure 1.

Personal and musical background statistics of the selected annotators
are: age (min=23, max=65, median=31.5), gender (‘male’ (66.7%), ‘female’
(33.3%)); musical background (‘None’ (16.7%), ‘Non-formal training’ (16.7%),
‘Formal training less than 5 years’ (0%) and ‘Formal training more than 5 years’
(66.7%)); dedication to music playing (‘None’ (16.7%), ‘Less than 2 hours per
week’ (16.7%), ‘More than 2 hours per week’ (45.8%), ‘Professional musician’
(20.8%)).

2.3 Analysis of the recordings and annotation

Our next step was to analyse the sung melodies and select the excerpts in
which the four subjects sang the same sequence of notes. Given the difficulty of
singing some of the excerpts (fast tempo, pitch range, etc.), the notes sung by
the participants were contrasted with the musical content of the piece, mapping
them to the notes played in the excerpt. The objective was to transcribe the
notes that the participants intended to sing, allowing small deviations in the
sung melodies. Such deviations typically arise from an incorrect singing of
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some notes, notes which were not present in the piece but the participants
sang, or from the presence of a chord in the excerpt, in which some subject
sang a different note compared to the rest. In the final selection, we kept only
the excerpts in which the four participants agreed in nearly all notes. In this
process, we also considered the reported self-confidence on their singing, giving
less importance to notes which disagree with the rest if they were sung by people
with less self-confidence.

After selecting the excerpts, we manually transcribed the notes sung by the
participants, adjusting onsets and offsets to the audio. Since vocal pitch range
is different to the range of the instruments playing the main melody, notes were
transposed to match the audio. For excerpts in which melody notes are simul-
taneously played by several instruments in different octaves, we resolved the
ambiguity by maximising the melodic contour smoothness (minimising jumps
between notes). The recording sessions and the manual transcription of the
melody notes were performed within a Digital Audio Workstation (Cubase 5),
as shown in Figure 4. Figure 5 (top) shows the pitches sung by the four sub-
jects, as well as the annotation of the melody for one of the excerpts. We
observe that all subjects follow a similar melodic contour despite some slight
differences, in some cases in different octaves (related to the gender of the anno-
tator). An analysis of the pitch curves derived from the recordings showed that
the agreement between subjects is correlated with some melodic features of the
excerpts (Bosch and Gómez 2014). Specifically, there is a negative correlation
with melodic density and complexity (specially pitch complexity).

3 Evaluated Approaches

The problem of mapping a sound signal from time-frequency domain to a ‘time-
pitch’ domain has turned out to be especially hard in the case of polyphonic
signals where several sound sources are active at the same time. Multipitch
(multiple f0) estimation can be considered as one of the main challenges in the
MIR field, as they need to deal with masking, overlapping tones, mixture of
harmonic and non-harmonic sources and the fact that the number of sources
might be unknown (Schedl, Gómez, and Urbano 2014). Given the complex-
ity of the musical material in consideration, it would be virtually impossible
with current methods to estimate and track all present pitches. A simplified
version of this problem is multiple f0 estimation on simple polyphonies. The
performance obtained by multipitch estimation methods recently reached 72%
note accuracy for relatively simple music material, such as quartet, woodwind
quintet recordings, and rendered MIDI, with a maximum polyphony of 5 notes.

While the focus of this work is set on the melody extraction task, we also
consider multiple pitch estimation methods, in order to investigate if the set
of estimated pitches at a given time frame includes the pitch annotated as
‘melody’, as further detailed in Section 4. An important similarity between
melody extraction and multiple pitch estimation methods is the use of pitch
salience functions as an intermediate representational level. Their purpose is
to create a time-frequency representation that assigns prominence to f0 values
inside a given range of interest, for each frame of the audio signal. We thus
additionally consider salience functions, in order to investigate the potential
of such signal processing front-ends for melody extraction in this repertoire.
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After the computation of pitch salience, both melody extraction and multipitch
estimation methods commonly use perceptual principles or additional musical
knowledge (timbre, harmonicity, spectral smoothness, etc.) to separate partials
and group salience peaks into streams, or even map them to a given pitched
source. They may also perform polyphony estimation or voicing detection,
following different approaches (commonly using a threshold). An analysis of
each of the building blocks allows a better understanding of the characteristics
of such methods.

We selected a total of eleven algorithms for evaluation, considering their
relevance in the state of the art, availability (ideally as open source software, or
by having access to their estimations on our dataset), and their performance in
MIREX (audio melody extraction and multiple pitch estimation). An overview
of the evaluated methods is provided in Table 1. We labelled each algorithm
according to its type (SF: salience function, MP: Multiple Pitch estimation,
ME: Melody extraction), and the three first letters of the first author’s surname
to refer to a specific method (e.g. SF-DUR refers to the salience function by
Durrieu in (Durrieu, David, and Richard 2011)). We evaluated the methods
using the original implementation by the authors. We adapted the minimum
and maximum pitches to fit the range of our dataset according to Figure 2
(right) (from 103 Hz to 2.33KHz), in all algorithms except SF-SAL, ME-SAL,
ME-DRE and MP-DRE, which are not configurable to these values.

3.1 Salience functions

Salience functions ideally only contain clear peaks at the frequencies correspond-
ing to the pitches present at a given instant. A commonly used pitch salience
function is harmonic summation (Klapuri 2006), a frequency domain approach
which computes the salience of each pitch by summing the energy of the spec-
trum bins which contribute to that pitch, weighted by the strength of their
contribution. This approach is computationally inexpensive and has been used
successfully in a variety of forms for predominant melody extraction (Salamon
and Gómez 2012; Dressler 2012b) as well as multiple pitch estimation (Dressler
2012a). More recently, probabilistic approaches based on decomposition models
such as Non-negative Matrix Factorisation (NMF) have gained more interest,
especially within source separation scenarios (Marxer 2013; Durrieu, David,
and Richard 2011), but also for music transcription (Benetos and Dixon 2011;
Carabias-Orti et al. 2011; Smaragdis and Brown 2003).

The computation of pitch salience in the evaluated algorithms starts with
a time-frequency transformation such as the Short-Time Fourier Transform
(STFT) (Salamon and Gómez 2012; Durrieu, David, and Richard 2011; Marxer
2013; Duan, Pardo, and Zhang 2010), multi-resolution transforms (MRFFT)
(Dressler 2012b) or constant-Q transform (CQT) (Cancela, López, and Ro-
camora 2010; Fuentes et al. 2012; Benetos and Dixon 2011). Some of them
perform a pre-processing step such as Equal-Loudness Filters (ELF) (Salamon
and Gómez 2012; Marxer 2013), or a posterior step like frequency refinement
(Salamon and Gómez 2012).

The approach by Salamon and Gómez (2012) computes the salience based on
harmonic summation. Cancela, López, and Rocamora (2010)3 propose a multi-

3http://iie.fing.edu.uy/investigacion/grupos/gpa/fcht.html
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resolution Fan Chirp Transform (FChT), which uses a Gaussian pitch preference
function that we adjusted to the statistics of this dataset as in the cited work:
tripling the standard deviation (σ = 36.3) and with the same mean (µ = 74.1)
compared to the fitted Gaussian model from Figure 2 (right).

A different approach is taken by Durrieu, David, and Richard (2011)4, that
aims to model the signal first, using a source/filter model, and applying Non-
negative Matrix Factorisation (NMF) to estimate the salience of the pitches.
Finally, Marxer (2013) follows a similar strategy as Durrieu, David, and Richard
(2011), but instead of using NMF, a Tikhonov Regularisation (TR) is employed,
which is computationally cheaper and allows low-latency processing.

Two examples of pitch salience functions in the musical context under consid-
eration are shown in Figure 6. The plot at the top corresponds to the approach
by Salamon and Gómez (2012), implemented in the VAMP plugin MELODIA5.
As it can be observed, there is no clearly salient melodic line using this salience
function. The proposed dataset is thus specially challenging for melody extrac-
tion algorithms based on harmonic summation. The plot at the bottom corre-
sponds to the pitch salience computed with the approach by Durrieu, David,
and Richard (2011), which is visibly much sparser.

3.2 Multiple pitch estimation

Multipitch methods initially calculate a pitch salience function, and then per-
form refinement or tracking to smooth pitch trajectories. For instance, Duan,
Pardo, and Zhang (2010) estimate the pitches present with a Maximum Likeli-
hood (ML) approach assuming spectral peaks at harmonic positions and lower
energy elsewhere. They then employ a neighbourhood refinement method to
create a pitch histogram in the vicinity of a frame to eliminate transient estima-
tions, as well as to refine the polyphony estimation. We evaluated two variants
of this method, one with refinement (MP-DUA-Ref), and one without it (MP-
DUA). In both cases, we did not use the polyphony estimation, so that both
algorithms output all estimated pitches.

Benetos and Dixon (2011) use Shift-Invariant Probabilistic Latent Compo-
nent Analysis (SIPLCA), which is able to support multiple instrument models
and pitch templates, and uses a Hidden Markov Model (HMM) for tracking. In
our evaluation, we did not consider tracking, and no threshold for polyphony
estimation, so as to only consider the intermediate non-binary pitch represen-
tation (MP-BEN).

Dressler (2012a) uses a salience function based on the pair-wise comparison
of spectral peaks (which is not available for evaluation), and streaming rules for
tracking. MP-DRE is a more recent implementation of this method, with the
main difference that it outputs more pitches, which are not ordered by salience.

3.3 Melody extraction

There are different strategies for melody extraction, which are commonly divided
into salience-based and separation-based (Salamon, Gómez, et al. 2014). The
former start by computing a pitch salience function and then perform tracking
and voicing detection, and the latter perform an initial melody separation stage

4https://github.com/wslihgt/IMMF0salience
5http://mtg.upf.edu/technologies/melodia
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(which is more or less explicit depending on the approach) and then estimate
both pitch and voicing.

We evaluate two salience-based (Salamon and Gómez (2012)5, and Dressler
(2012b)) and two separation-based approaches (Fuentes et al. (2012)6, and Dur-
rieu, Richard, et al. (2010)7). Salamon and Gómez use the previously introduced
pitch salience function and then create contours, which are used to do the track-
ing and filtering of the melody using ad-hoc rules. Dressler uses almost the same
system as in Dressler (2012a), except for the frequency range in the selection of
pitch candidates, which is narrower in the case of melody extraction. Fuentes
et al. (2012) use PLCA on a CQT to build a pitch salience function, and Viterbi
smoothing to estimate the melody trajectory. Durrieu, Richard, et al. (2010) use
the pitch salience previously introduced, and a Viterbi algorithm for tracking.
Voicing detection (deciding if a particular time frame contains a pitch belong-
ing to the melody or not) is approached by the evaluated algorithms using a
dynamic threshold (Dressler 2012b), an energy threshold (Durrieu, Richard, et
al. 2010; Fuentes et al. 2012), or a salience distribution strategy (Salamon and
Gómez 2012).

Figure 5 (bottom) shows the pitches estimated by the four melody extraction
algorithms, as well as the annotation of the melody. As it can be observed, this
is a challenging excerpt since there are many estimation errors (including octave
errors) with all of the algorithms, as well as jumps between octaves.

3.4 Proposed combination method

We propose a hybrid method that combines the output of several pitch salience
functions and then performs peak detection and neighbourhood-based refine-
ment. The main assumption is that if several algorithms agree on the estima-
tion of a ‘melody’ pitch, it is more likely that the estimation is correct. Related
works also use agreement between algorithms for beat estimation (Holzapfel et
al. 2012; Zapata, Davies, and Gómez 2014).

The proposed salience function is created frame-by-frame, placing a Gaus-
sian with σ semitones standard deviation in the output pitches of each of the
algorithms, weighted by the estimated salience of the pitch, and then summing
all Gaussians. The selected value of σ was 0.2, so that the maximum value of
the sum of two Gaussians separated more than a quarter tone is not higher than
the maximum value of both Gaussians.

Another option would be to combine the raw salience functions, however our
method remains more generic since it could be equally applied to methods es-
timating multiple discrete pitches. Additionally, the use of Gaussian functions
allows to cope with small differences between the estimated and the melody
pitch. Since each algorithm has a different pitch salience range, we normalise
the values before combining them, so that the sum of the salience of all fre-
quency bins in a given frame is equal to 1 (following probabilistic principles).
Finally, we multiply the salience values of each of the methods (M) by a differ-
ent value (αM ∈ [0, 1]), allowing a weighted combination. A value of αM = 0 is
thus equivalent to not including a method in the combination. An example of
the combination of salience functions is given in Figure 7, where three salience

6http://www.benoit-fuentes.fr/articles/Fuentes2012 ICASSP/index.html
7https://github.com/wslihgt/separateLeadStereo
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functions with the same weight (αMAR, αDUR, αCAN = 1) agree on the estima-
tion of pitches around MIDI notes 75 and 87, while only one of them estimates
pitches around MIDI notes 74 and 77. This gives a maximum salience in the
sum (combination) to the pitch around 75, which corresponds to the annotated
melody pitch. After the addition, we extract the N highest peaks with a min-
imum difference of a quarter tone between them. We denote this method as:
COMB.

A further refinement step is then performed to remove the f0 estimates
inconsistent with their neighbours, with a method similar to the one employed
in MP-DUA-Ref (Duan, Pardo, and Zhang 2010). Our contribution is to weight
each of the estimated pitches with its salience when computing the histogram,
as opposed to the original method, which gives the same weight to all estimated
pitches in a frame, regardless of their (estimated) salience. We denote this
method as RCOMB. In the evaluation, the maximum number of peaks extracted
was set to N=10. Higher values of N did not change in any significant way the
obtained results. The same maximum value is also used for the rest of salience
functions and multipitch algorithms.

We tested several combinations of SF-DUR, SF-CAN, SF-SAL and SF-MAR
with different weights, in order to find the best performing configuration. We
conducted a 5 fold cross validation with 20% of the dataset for training, and
80% for testing. The combinations are named: COMB, and RCOMB for the
refined version, followed by the α value and the identifier of each of the salience
functions (e.g. COMB-0.5SAL-1DUR). We also use the name: RNSCOMB
for the combination refined with the original method from (Duan, Pardo, and
Zhang 2010) (which is the same as RCOMB but does not use estimated salience
information).

4 Evaluation Methodology

Three types (SF, MP, ME) of pitch estimation algorithms are evaluated on the
proposed dataset. We are interested on the evaluation of both complete melody
extraction algorithms, as well as intermediate representational levels in order
to better understand the origin of differences between methods’ results. Specif-
ically, we evaluate the ability of salience functions and multipitch methods to
output the ground truth pitch of the melody within the N most salient estimates.
The motivation behind this evaluation strategy is twofold: first to understand
which methods obtain better accuracy when estimating the melody pitch, and
second to analyse the number of estimates that each of the methods needs to
output, in order to have the ground truth pitch among the pitch estimates. This
would be useful for tasks such as pitch tracking, since we would like to reduce
the number of f0’s to be tracked.

Considering the characteristics of the dataset, the subjective nature of some
part of the annotations (octave selection), and the objectives of the benchmark,
we conducted an evaluation based on the combination of well-established eval-
uation metrics and additional metrics, which provide more information about
the algorithms’ performance and characteristics.
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4.1 Standard Metrics

Melody extraction algorithms are commonly evaluated by comparing their out-
put against a ground truth, corresponding to the sequence of pitches that the
main instrument plays. Such pitch sequence is usually created by employing a
monophonic pitch estimator on the solo recording of the instrument playing the
melody (Bittner et al. 2014). Pitch estimation errors are then usually corrected
by the annotators. In our case, the ground truth is a sequence of notes corre-
sponding to the annotated melody, from which we derived a sequence of pitches
at intervals of 0.01s.

The evaluation in MIREX8 focuses on both voicing detection and pitch es-
timation itself. An algorithm may report an estimated melody pitch even for a
frame which is considered unvoiced. This allows the evaluation of voicing and
pitch estimation separately. Voicing detection is evaluated using metrics from
detection theory, such as voicing recall (Rvx) and voicing false alarm (FAvx)
rates. We define a voicing indicator vector v, whose τ th element (υτ ) has a value
of 1 when the frame contains a melody pitch (voiced), and 0 when it does not
(unvoiced). We define the ground truth of such vector as v∗. We also define
ῡτ = 1− υτ as an unvoicing indicator.

• Voicing recall rate is the proportion of frames labelled as melody frames
in the ground truth that are estimated as melody frames by the algorithm.

Rvx =

∑
τ υτυ

∗

τ∑
τ υ

∗
τ

(1)

• Voicing false alarm rate is the proportion of frames labelled as non-
melody in the ground truth that are mistakenly estimated as melody
frames by the algorithm.

FAvx =

∑
τ υτ ῡ

∗

τ∑
τ ῡ

∗
τ

(2)

Pitch estimation is evaluated by comparing the estimated and the ground
truth pitch vectors, whose τ th elements are fτ and f∗

τ respectively. Most com-
monly used accuracy metrics are raw pitch (RP) and raw chroma accuracy (RC).
Another metric used in the literature is the concordance measure, or weighted
raw pitch (WRP) which linearly weights the score of a correctly detected pitch
by its distance in cents to the ground truth pitch. Finally, the overall accu-
racy (OA) is used as a single measure to measure the performance of the whole
system:

• Raw Pitch accuracy (RP) is the proportion of melody frames in the
ground truth for which the estimation is considered correct (within half a
semitone of the ground truth).

RP =

∑
τ υ

∗

τT [M(fτ )−M(f∗

τ )]∑
τ υ

∗
τ

(3)

T and M are defined as:

8http://www.music-ir.org/mirex/wiki/2014:Audio Melody Extraction
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T [a] =

{
1, if |a| < 0.5

0, else
(4)

M(f) = 12 log2 (f) (5)

where f is a frequency value in Hertz.

• Raw Chroma accuracy (RC) is a measure of pitch accuracy, in which
both estimated and ground truth pitches are mapped into one octave, thus
ignoring the commonly found octave errors.

RC =

∑
τ υ

∗

τT [‖ M(fτ )−M(f∗

τ ) ‖12]∑
τ υ

∗
τ

=
Nch∑
τ υ

∗
τ

(6)

where ‖ a ‖12= a−12⌊ a
12+0.5⌋, and Nch represents the number of chroma

matches.

• Overall Accuracy (OA) measures the proportion of frames that were
correctly labelled in terms of both pitch and voicing

OA =
1

Nfr

∑

τ

υ∗

τT [M(fτ )−M(f∗

τ )] + υτ
∗υτ (7)

where Nfr is the total number of frames.

In the case of pitch salience functions and multipitch algorithms, only the
estimated pitch which is closest to the ground truth (in cents) is used in each
frame for the calculation of raw pitch related measures (equation 3). For chroma

related measures, we create the sequence p̂ch by keeping in each frame the pitch
(in cents) which is both correct in chroma (chroma match) and closer in cents
to the ground truth, or we set a 0 otherwise. For instance, if the ground truth
is 440 Hz, and the output pitches are 111 Hz, 498 Hz and 882 Hz (N=3) we
would keep the last one.

In a similar way as with the proposed combination method, for pitch salience
functions we also extract the N=10 highest peaks with a minimum difference
of a quarter tone between them, and order them by salience. For multipitch
algorithms, we select a maximum of 10 estimates (commonly they output less
than 10 pitches). In the case of MP-DRE, pitches are not ordered by salience,
so we just consider N=10.

4.2 Proposed Metrics

In order to further analyse algorithms’ performance, we propose an additional
set of metrics. The motivation behind these metrics comes from the fact that
the metrics used in MIREX do not inform about the continuity of the correctly
estimated pitches (either in pitch or chroma), which is very relevant for tasks
such as automatic transcription, source separation or the visualisation of melodic
information. We consider continuity in both pitch and time with three different
metrics:
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• Weighted Raw Chroma accuracy (WRC) measures the distance in
octaves (ODi) between the correct chroma estimates and the ground truth
pitches. The parameter β ∈ [0, 1] is introduced to control the penalisation
weight due to the difference in octaves. If β is low the value of WRC
tends to RC, and if β is high WRC tends to RP .

ODi = round
[
(p̂chi − pi)/1200

]
(8)

Echi = min(1, β · |ODi|) (9)

WRC =

∑
i(1− Echi)

Nvx

· 100 (10)

where i is the index of a voiced frame with a chroma match, pi is the

value in frame i of the ground truth pitch, p̂chi is the value in frame i of

the sequence p̂ch, Nvx is the number of voiced frames.

• Octave Jumps (OJ) is the ratio between the number of voiced frames
in which there is a jump between consecutive correct estimates in chroma,
and the number of chroma matches (Nch).

Ji = (ODi −ODi−1) (11)

OJ = count(|Ji| > 0)/Nch · 100 (12)

• Chroma Continuity (CC) quantifies errors due to octave jumps (EJ),
and is influenced by their localization with respect to other octave jumps,
as well as by the difference in octaves between estimated and ground truth
pitch (Echi). The parameter λ is introduced to control the penalty weight
due to the amount of octaves difference in an octave jump (Ji), and ranges
from 0 to 1. The lower the value of λ, the more CC tends to WRC.

EJi = min (1, λ · |Ji|) (13)

MEJi = max
k∈[i−w,i]

(EJk) (14)

CCi = 1−min(1, Echi +MEJi) (15)

CC =

∑
i(CCi)

Nvx

· 100 (16)

where w = min(F, i), F = round [L/H], L is the length in seconds of the
region of influence of an octave jump, and H is the hop size in seconds. The
lower the value of L the more CC tends to WRC.

The chroma continuity metric, assigns the highest score to a result that is
equivalent to the ground truth in terms of raw pitch. The score is also high if the
extracted sequence of pitches is transposed by one octave, but decreases if the
octave distance is higher. The score also decreases with the amount of jumps
between correct chroma estimates. If the same number of errors are concentrated
in one part of the excerpt, it is less penalised than if they are distributed over
the excerpt (errors propagate to the neighbouring frames, therefore localisation
of errors also affects the metric).
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The values of λ, β and L should be tuned according to the application
where the algorithms will be used. The pitch range of analysis in our case spans
4.5 octaves, and thus the maximum distance between correct chroma estimates
is ODmax

i = 4 octaves. We decide to linearly divide the error Echi, and thus
we set a value of β = 1/ODmax

i = 0.25. We equally weight both octave jumps
and octave errors β = λ = 0.25, and set L = 0.2 s.

5 Results and Discussion

In this section we present and discuss our evaluation results. Section 5.1 provides
an overview of algorithm performance. Section 5.2 provides a deeper analysis
and discussion on the results obtained by melody extraction methods, including
the influence of instrumentation, melodic features and energetic predominance
of the melody. Section 5.3 presents an analysis of how different methods can be
combined in order to take advantage of the agreement between them. Section
5.4 discusses algorithms’ results with the proposed evaluation measures. Finally,
Section 5.5 presents a generalizability study in order to assess the significance
of these results.

5.1 Overview

Table 2 summarizes the evaluation results of all considered methods for a single
pitch estimate. Results for each evaluation metric are computed as an average
of the results for each excerpt in the dataset. Additionally, standard devia-
tions are presented between parentheses. We observe that the best performance
is obtained by the melody extraction method ME-DUR for all metrics. Its
raw pitch accuracy (RP) is equal to 66.9%. The difficulty of this material for
state of the art approaches is evident since ME-SAL obtains up to 91% RP in
the MIREX09+5dB dataset, and only 28.4% in our dataset. SF-DUR obtains
the highest RP among all evaluated salience functions and multipitch methods
(61.8%). Table 2 also presents results obtained with a combination of two meth-
ods (SF-MAR and SF-DUR) with equal weight (α = 1) and two combination
strategies: original (COMB) and with the proposed salience-based neighbour-
hood refinement (RCOMB). The refined combination method increases the RP
obtained with SF-DUR up to 64.8%. Further analysis about the proposed com-
bination method is provided in Section 5.3.

Figure 8 shows the mean raw pitch (RP) accuracy for all methods. For
salience functions and multipitch estimation methods, RP is computed for N=
1, 2, 4 and 10 estimated pitches. The methods obtaining highest accuracies with
many pitch candidates are salience functions since multipitch methods often
perform a candidate filtering step (e.g. MP-DRE or MP-DUA), which may
erroneously discard the ground truth melody pitch. As expected, an increase in
N provides an increase in accuracy, up to 94.2% for SF-MAR with N=10, closely
followed by SF-DUR. With N=4, the maximum RP decreases 6.1%, obtained by
SF-DUR, followed by SF-MAR and SF-CAN. The lowest accuracy is obtained
by SF-SAL, for N = 1, 2 and 4. These results indicate that although these
methods do not generally estimate the melody pitch as the most salient, they
usually find it within the 10 most salient ones. In section 5.2 we analyse the
influence of the salience functions in complete melody extraction algorithms.
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In the case of multipitch estimation algorithms, the best accuracy for any
value of N is obtained with MP-BEN, but is lower than any of the salience func-
tions, possibly due to the fact that the instrument basis used is not applicable
in large orchestral settings. MP-DRE obtains slightly lower results for N=10.
Since this algorithm does not output pitch estimates ordered by salience, it is
not possible to know accuracy results for lower values of N. MP-DUA does not
perform as accurately even with refinement (MP-DUA-Ref). Possible causes
include the use of a binary mask for the peak region in the definition of the
likelihood, and the shape of the peaks, which may be significantly different than
expected (Duan, Pardo, and Zhang 2010).

Given the potential of combining different methods, we further study the
accuracy of the combination method with different weights. We performed a
grid search with α ∈ {0, 0.5, 1}, for each of the 4 salience functions (SF-MAR,
SF-DUR, SF-CAN, SF-CLA). The highest raw pitch accuracies were always ob-
tained with αDUR = 1, and αMAR, αSAL, αCAN = 0.5 or 0. We then performed
a finer search, with αDUR = 1, and αMAR, αSAL, αCAN ∈ {0, 0.2, 0.4, 0.6}.
Figure 9 shows the results obtained in the testing set by the best performing
combinations in the training set. We chose several combinations, with a differ-
ent number of algorithms (from 2 up to 4). Results obtained with the proposed
refinement method (RCOMB-) are also presented for two of the approaches, and
results of SF-DUR are additionally included as a reference. The accuracy ob-
tained with the weighted combination increases in comparison to the individual
methods, specially with the proposed salience-based neighbourhood refinement,
for all values of N.

A manual examination of the estimation errors suggests that the most chal-
lenging excerpts contain chords and harmonisations of the melody, a highly
energetic accompaniment, and in some cases percussion. Most accurate estima-
tions are generally obtained in excerpts with a very predominant melody (e.g.
those in which the orchestra plays in unison). A more detailed analysis of the
influence of several musical characteristics is presented in the following section.

5.2 Discussion

5.2.1 Comparison between melody extraction methods

We here study the performance of melody extraction methods, and analyse the
influence of their salience functions. The focus is set on ME-DUR and ME-SAL
since their respective salience functions are also available for evaluation.

The best results for a single pitch candidate are obtained with ME-DUR, par-
tially due to the very good performance of its melody oriented salience function
(SF-DUR) (Durrieu, David, and Richard 2011), which has relaxed constraints
in the source filter model compared to (Durrieu, Richard, et al. 2010). This
allows modelling several harmonic sources and makes this approach applicable
to a broader range of signals. According to Table 2, SF-DUR obtains 61.7%
raw pitch accuracy even without any smoothing, and with the full melody ex-
traction method (using Viterbi algorithm for tracking), ME-DUR obtains the
highest raw pitch accuracy: 66.9%. In the case of the overall accuracy (OA),
ME-DUR also benefits from the fact that it estimates nearly all frames (99.8%)
as voiced, which is appropriate for the low percentage of unvoiced frames of this
dataset.
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The accuracy obtained with SF-SAL, is the lowest compared to the rest
of salience functions. In comparison to SF-DUR, it achieves 27.4 percentage
points (pp) less RP for N=1, which partially explains that the complete melody
extraction method (ME-SAL) also performs much worse in comparison to ME-
DUR (38.5 pp. less RP). Additionally, this rule-based approach (which obtained
the highest overall accuracy in MIREX) seems to be tuned to the pitch contour
features of vocal music (pop, jazz), and is not able to generalise to the character-
istics of our dataset. The salience-based voicing detection is quite conservative
in this dataset, and classifies only 57.4% of the frames as voiced, possibly due
to the high dynamic range in symphonic music. For this reason, both false
alarm rate and voicing recall are the lowest from all methods. Since the pro-
posed dataset contains a high ratio of voiced versus unvoiced frames, the overall
accuracy obtained with ME-SAL is more reduced than with other methods com-
pared to the raw pitch accuracy. It is important to recall that even if only a
part (57.4%) of the frames are estimated as melody pitches, for the calculation
of metrics not related to voicing, we use both voiced and unvoiced estimated
pitches (98.8% of frames in our dataset). The difference in the raw pitch esti-
mation accuracy between ME-DUR and ME-SAL is thus not due to errors in
voicing detection.

ME-DRE achieves higher accuracy than ME-SAL, possibly due to the fact
that it does not assume specific features of human voice, and is thus more
general. This agrees with the results obtained in datasets used in MIREX
which contain non-vocal melodies, such as ADC2004 and MIREX05 (Salamon,
Gómez, et al. 2014). However, the results in our dataset are not as good as
those obtained with ME-DUR. Since we do not have access to the salience
function used by ME-DRE (based on the pair-wise analysis of spectral peaks), it
is difficult to get further insights on the limitations of this approach. A possible
explanation of the better performance is the fact that the source filter model
used by Durrieu adapts to the spectrum of the melody source even if it does
not correspond to a single instrument, or even to a single instrumental section.
Finally, ME-FUE presents the lowest accuracy in this dataset. Its probabilistic
model and the smoothing method employed seem not to be adequate for this
kind of data.

In order to study octave errors produced by melody extraction methods, we
observe the difference between raw pitch and raw chroma accuracy in Table
2. The smallest difference (and thus lowest amount of octave errors) is found
in ME-DUR, and the highest one in ME-SAL and ME-FUE. As already ob-
served in Durrieu, David, and Richard 2011, the signal representation employed
in SF-DUR produces few octave errors. A possible explanation is that SF-
DUR performs a joint estimation of the salience of all possible pitch candidates.
Additionally this method jointly estimates the timbre of the pitch candidates
corresponding to the melody over a long time span, which also helps reducing
the amount of octave errors. This suggests that ME-DUR has reduced octave
errors since the pitches are correctly estimated from the first step, and there
is no need for any further octave correction. Estimating salience of each pitch
candidate independently with harmonic summation, and performing an octave
error removal step afterwards (as in ME-SAL) leads to a lower accuracy in our
dataset.
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5.2.2 Influence of instrumentation

In order to illustrate the influence of instrumentation in algorithm performance,
Table 3 presents mean RP results for excerpts with a melody predominantly
played by either strings, brass or woodwinds sections. We also compute the
mean RP for excerpts with a melody which is alternatingly played by two or
more instrument sections, and compare it against results obtained from excerpts
with no alternation. Although there is only a small number of excerpts for cer-
tain instrument sections, we still identify some trends in algorithm performance.
For instance, Table 3 shows that ME-SAL or ME-FUE are less influenced by
the alternation of melody between instrument sections, while ME-DUR presents
a higher difference in accuracy. This is probably due to the fact that SF-DUR
aims to learn the timbre of the lead instrument for each excerpt, and if the tim-
bre of the instrument playing the main melody changes throughout the excerpt,
the extraction may be affected. However, even with alternating instruments,
SF-DUR learns timbral basis that are generic (Durrieu, Richard, et al. 2010),
and creates a salience function that outperforms the rest of algorithms in terms
of pitch estimation accuracy. In contrast, ME-SAL does not exploit timbre,
which explains why there is just a small difference between excerpts alternating
and non-alternating instrumentation with both SF-SAL and ME-SAL.

According to Table 3, it is generally easier to extract the melody in excerpts
in which it is played by the brass section, while in the case of the strings section,
accuracies are generally lower. The relative decrease in accuracy reaches up to
almost 50% in the case of ME-FUE. An important exception is ME-DUR, for
which melodies played by strings are equally well recognised as with brass,
probably due to the fact that timbral information is exploited by learning the
lead instrument filter basis for each excerpt. This aspect has a large influence on
the average results of this dataset, given the high percentage of excerpts which
contain a string section playing the melody.

5.2.3 Influence of melodic characteristics

In order to study the influence of melodic characteristics (described in Section
2.1) on algorithm performance, we present a correlation analysis in Table 4. For
the sake of simplicity, we analyse only melody extraction methods (ME-DUR,
ME-DRE, ME-SAL, ME-FUE). Results obtained with three different correlation
measures show that note density and pitch complexity are the features that most
affect accuracy, while melodic originality and tessitura have almost no effect on
it. Correlations are stronger with RC compared to RP, since some algorithms
commonly produce octave errors (difference between RC and RP in Table 2).

5.2.4 Influence of energetic predominance of the melody

Finally, we study how the energetic predominance of the melody pitch affects
algorithm performance. We estimate the ratio (from 0 to 1) between the energy
of the melodic source(s) and the overall energy. The energy of the melody is
estimated frame-by-frame by applying an informed source separation method
that isolates the melody signal from the background using the ground truth
pitches (Durrieu, Richard, et al. 2010). The ratio is computed for each excerpt
as the mean of the ratios in each voiced frame (containing melody), so as not
to be influenced by the amount of unvoiced segments. We then compute the
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correlation between the estimated ratio and the accuracy results of each ex-
cerpt, as shown in Table 5. In the case of salience functions (with N=1), we
observe that SF-SAL has the highest correlation (0.83). On the other hand, SF-
DUR presents the lowest correlation (0.44). Other approaches such as SF-MAR
(0.51) or SF-CAN (0.53) obtain intermediate correlations. This shows that the
harmonic salience function used by SF-SAL is less capable than SF-DUR to
identify melodic pitches as the most salient when they are not energetically
predominant over the accompaniment. Since salience functions strongly affect
the performance of whole melody extraction algorithm, ME-DUR presents the
smallest correlation among them (0.36), while ME-SAL (0.76), ME-FUE (0.75)
and ME-DRE (0.71) present much stronger correlations. These results sug-
gest that separation-based approaches such as ME-DUR are specially useful
in the context of orchestral classical music, since they are better able to ex-
tract melodies played by non-predominant instruments, partially thanks to the
melody-oriented pitch salience function.

5.3 Proposed combination method

In this section we analyse the performance obtained by combining the results
of different algorithms, using the methodology presented in Section 3.4. The
highest RP obtained in the training data with N=1, and no refinement reached
62.7%, with COMB-0.6MAR-1DUR-0.2CAN. This combination increases the
accuracy obtained with SF-DUR alone in more than 1 pp. However, 7 different
combinations obtained a RP with a difference of less than 0.1 pp compared to
the maximum, all of them with αDUR = 1, and several combinations of weights
for the rest of algorithms. The best combination using only two algorithms was
among them: COMB-0.6MAR-1DUR. For N = 2, best RP in the training set
was obtained with: COMB-0.4MAR-1DUR-0.6CAN-0.2SAL, reaching 80.4%.
The best combination with 3 algorithms is: COMB-0.5MAR-1DUR-0.5CAN,
achieving 80.3% and with 2 algorithms, COMB-0.5MAR-1DUR achieved 79.5%.
It is worth noting that other combinations, with different algorithms also pro-
duce similar results: COMB-1DUR-0.4CAN-0.4SAL obtains 80.1%. For N=4
and N= 10, SF-DUR obtained 87.7%, 93.7% respectively, and the best combina-
tions obtained a 3% absolute improvement in RP. Figure 9 shows the evaluation
results for the test set. It is worth mentioning that raw pitch accuracies are very
similar to the ones obtained in the training set. Also note that the best perform-
ing combinations are those that give the highest weight to the salience function
with highest raw pitch accuracy (SF-DUR), and lower weights to other salience
functions (different ones depending on the value of N). As future work, we would
like to study the influence of pitch range in the performance of each method,
and use this to improve the combination method.

Results can be further improved using the salience-based neighbourhood re-
finement method (RCOMB) presented in Section 3.4. For a single estimate,
this is observed in Table 2, where the combination RCOMB-1MAR-1DUR ob-
tains around 3% more raw pitch accuracy than the best performing salience
function (SF-DUR), and 22.7% higher than the method which achieves the
second highest accuracy (SF-MAR). Figure 9 shows that a weighted combi-
nation (e.g. RCOMB-0.5MAR-1DUR-0.2CAN) can improve the results from
SF-DUR around 7% with N>1, or up to 4.5% with N=1. The refined combina-
tion achieves up to 99.2% raw pitch accuracy with N=10, while the best salience
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function (SF-MAR) obtains 94.2%. Additionally, the 95% confidence interval
is smaller with the combination (98.9% - 99.5%) than with SF-SAL (93.1% -
95.3%). We also observed that considering the salience of pitch estimates in the
refinement step is crucial for a better performance, specially for small values
of N, as we can see in the difference between RCOMB (refinement considering
pitch salience) and RNSCOMB (refinement without considering pitch salience)
in Figure 9.

Finally, we study the influence of the width of the Gaussian function used in
the combination method. We evaluate the estimations obtained with different
values of the standard deviation (σ), ranging from 0.05 to 1 in semitones. Even
though the results vary slightly with the specific combination, we observe some
general trends. The highest accuracy for N=10 is obtained with the default value
σ = 0.2. The accuracy decreases with lower values of σ, since the combination
only creates salience peaks if the pitches estimated by different methods are very
close to each other. On the other hand, wider Gaussians (up to σ=0.8) allow
some increase in accuracy for N=1 (less than 1 pp), since more distant pitches
can be combined. However, if N increases, the accuracy decreases with wider
Gaussians, because of the higher interference between all combined pitches.

5.4 Proposed evaluation measures

We have focused so far on two evaluation measures, raw pitch accuracy and over-
all accuracy, which are useful to get a general understanding of the performance
of the algorithms. However, we can gain further insights on their behaviour by
means of the proposed metrics. For instance, the octave jumps ratio (OJ) is
higher in methods where no tracking is performed, such as salience functions,
as opposed to melody extraction algorithms. We also observe that the proposed
neighbourhood refinement technique increases pitch continuity between correct
estimates in chroma, since RCOMB has a lower OJ than COMB according to
Table 2. The difference between WRC and RC shows that algorithms such as
ME-DUR and ME-DRE estimate pitches at a closer octave to the ground truth
octave, in comparison to ME-SAL or ME-FUE, since the latter present a higher
difference. The CC measure is useful to obtain information about both smooth-
ness and accuracy of the extracted melodic contour, since it combines WRC,
NJ and localisation of jumps. As an example of the usefulness of this mea-
sure, we observe that it allows us to differentiate between COMB and RCOMB,
and to gain knowledge about their behaviour which can not be obtained with
traditional MIREX measures. Both methods obtain quite similar RP and RC
scores, but there is an important difference in CC. The novel metric reflects the
fact that the pitch sequences estimated by RCOMB are much smoother thanks
to the application of the refinement, which is a desirable property of a pitch
estimation method, specially for visualisation purposes.

5.5 Generalisability Study

In order to measure the reliability of the proposed dataset, and thus the validity
of the obtained results, we performed a study based on Generalisability Theory
(GT) (Urbano, Marrero, and Mart́ın 2013). GT is based on Analysis of Vari-
ance (ANOVA) procedures, and allows to differentiate between the sources of
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variability in evaluation results, which could arise from differences between algo-
rithms, music excerpts, or the interaction effect between algorithms and music
excerpts. Ideally, all variance should be due to differences between algorithms
and not due to variability of the excerpts. If the considered music excerpts are
very varied, or if differences between systems are too small, then we need many
excerpts to ensure that our results are reliable.

The GT study has two stages: a Generalisability study (G-study), which
estimates variance components on the evaluation results for each of the metrics,
and a Decision study (D-study), which computes reliability indicators for a
larger set of excerpts, based on the previous analysis of variance. We calculated
two commonly used indicators: the index of dependability Φ, which provides a
measure of the stability of absolute scores, and the generalisability coefficient
Eρ2, which provides a measure of the stability of relative differences between
systems (the closer to one the better). For our collection, we obtained values of
Φ and Eρ2 over 0.97 for CC, as well as for pitch and voicing detection metrics.
This indicates that the variability of the scores was mostly due to differences
between algorithms and not to differences between excerpts, which validates
the obtained results. According to Salamon and Urbano (2012), some of the
melody extraction datasets used in MIREX obtain the following values of Φ for
raw pitch accuracy, when evaluating a larger set of state-of-the-art algorithms:
ADC04 (Φ=0.86), MIREX05 (Φ=0.81), or INDIAN08 (Φ=0.72). Large scale
collections for text information retrieval, obtain on average Eρ2 = 0.88 and
Φ=0.72 (Urbano, Marrero, and Mart́ın 2013). The proposed dataset is thus
very reliable (Urbano, Marrero, and Mart́ın 2013), specially in comparison with
commonly used collections for melody extraction evaluation.

6 Conclusions and Future Work

This work presents an evaluation of state-of-the-art pitch estimation algorithms
for melody extraction in symphonic classical music. An important contribution
is the proposed dataset, which we proved to be very stable using generalisability
theory. We also presented a novel methodology for the gathering and annotation
of this data. By analysing both excerpts and annotations, we confirmed that
melody in symphonic music is played by different instrument sections, some-
times in alternation, and that the melody is not always predominant in terms
of energy. Additionally, we proposed a set of evaluation metrics which allow to
better represent the characteristics of melody extraction methods, and are well
suited for the characteristics of this repertoire. Analysing the performance of
pitch salience functions, multipitch estimation and melody extraction algorithms
we observed that this is a very challenging dataset, and that some methods are
not able to generalise well from the datasets in MIREX to our particular con-
text. Best results are obtained by methods which are less influenced by the
energetic predominance of the melody, and model the signal in a way which is
applicable to many types of data. Conversely, algorithms specifically designed
for vocal data seem to be less appropriate for melody extraction in symphonic
music. We also observed that excerpts with high note density or pitch complex-
ity are specially challenging for automatic melody extraction. Another set of
challenging excerpts are those in which the instruments playing the melody are
not predominant in terms of energy. We additionally proposed a method for
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the combination of pitch estimation algorithms, which uses pitch salience for
refinement, decreases the variance of the results and improves the accuracy.

In future work, the knowledge obtained in this evaluation will be used to
design a specific approach for this repertoire. We also foresee exploiting the
combination method to build a complete melody extraction method, and for
other tasks such as audio-score alignment. It would also be of interest to conduct
listening experiments to contrast evaluation metrics with human perception of
algorithm quality. These results will be used to create a music visualisation
system able to deal with the challenges of symphonic music.
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Type (Pre Proc.)+Transform Salience/Multif0 Estim. Tracking Voicing/Polyph.

Cancela, López, and Rocamora (2010) SF* CQT FChT - -
Durrieu, David, and Richard (2011) SF* STFT NMF on S/F model - -

Marxer (2013) SF* (ELF)+STFT TR - -
Salamon and Gómez (2012) SF* (ELF)+STFT+IF Harmonic summ. - -
Benetos and Dixon (2011) MP CQT SIPLCA [HMM] [HMM]

Dressler (2012b) and Dressler (2012a) MP&ME MRFFT Spectral peaks comparison Streaming rules Dynamic thd.
Duan, Pardo, and Zhang (2010) MP STFT ML in frequency [Neighbourhood refin.] [Likelihood thd].
Durrieu, Richard, et al. (2010) ME STFT NMF on S/F model HMM Energy thd.

Fuentes et al. (2012) ME CQT PLCA on the CQT HMM Energy thd.
Salamon and Gómez (2012) ME (ELF)+STFT+IF Harmonic summ. Contour-based Salience-based

Table 1: Overview of evaluated approaches. The star (*) symbol denotes that pitch salience values were extracted for each of the
estimated pitches. Square brackets denote that either tracking or polyphony estimation is not used in the evaluation. In the case of
MP-DUA, two versions are considered, with and without refinement. STFT: Short Time Fourier Transform, IF: Instantaneous Frequency
estimation, CQT: Constant-Q Transform, AF: Auditory Filterbank, NT: Neural Transduction, ELF: Equal-Loudness Filters, MRFFT:
Multi-Resolution Fast Fourier Transform, FChT: Fan Chirp Transform, NMF: Non-negative Matrix Factorisation, TR: Tikhonov Regu-
larisation, (SI)PLCA: (Shift-Invariant) Probabilistic Latent Component Analysis, S/F: Source/Filter, ML: Maximum Likelihood, HMM:
Hidden Markov Model.
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RP WRP RC WRC OA OJ CC

RCOMB-1MAR-1DUR 64.8 (18.6) 47.2 (15.6) 79.3 (12.8) 75.5 (13.2) 60.6 (18.9) 2.2 (1.9) 70.6 (14.4)

COMB-1MAR-1DUR 61.6 (17.4) 44.8 (14.6) 77.5 (11.9) 73.3 (12.2) 57.5 (17.7) 11.3 (8.0) 62.7 (14.3)

SF-DUR 61.8 (18.4) 43.2 (14.2) 77.1 (12.5) 73.0 (13.0) 57.8 (18.7) 11.7 (8.3) 62.5 (15.1)

SF-MAR 42.1 (14.5) 30.7 (12.3) 68.9 (14.3) 61.6 (13.3) 39.3 (14.4) 11.1 (4.9) 48.4 (12.2)

SF-CAN 51.2 (21.1) 35.1 (16.9) 74.8 (13.1) 68.4 (13.0) 48.0 (20.7) 12.3 (9.4) 57.0 (16.2)

SF-SAL 34.4 (21.1) 25.3 (16.6) 62.7 (18.5) 54.1 (17.8) 32.3 (20.5) 18.0 (9.3) 41.4 (17.8)

MP-DRE 14.6 (9.9) 11.0 (7.9) 31.2 (15.1) 26.3 (13.0) 13.6 (8.9) 4.6 (3.7) 23.4 (12.3)

MP-DUA-Ref 21.7 (11.0) 14.7 (8.1) 47.6 (15.0) 39.0 (12.7) 21.5 (10.8) 8.1 (3.0) 29.7 (11.0)

MP-DUA 6.5 (10.5) 5.2 (8.3) 34.5 (16.6) 23.3 (14.5) 8.4 (10.8) 43.2 (23.8) 13.7 (13.6)

MP-BEN 24.2 (18.4) 12.3 (10.5) 51.0 (20.1) 40.7 (18.7) 22.8 (18.0) 6.8 (3.6) 32.0 (17.9)

ME-DUR 66.9 (20.6) 47.1 (16.0) 80.6 (12.4) 76.8 (13.2) 62.6 (20.8) 1.7 (2.2) 73.3 (15.2)

ME-DRE 49.4 (26.7) 37.4 (21.3) 66.5 (20.5) 61.9 (20.7) 46.0 (25.4) 2.2 (2.8) 59.3 (21.6)

ME-FUE 26.9 (31.1) 22.5 (26.7) 59.4 (25.0) 49.7 (24.5) 23.4 (26.5) 5.1 (5.5) 45.0 (26.0)

ME-SAL 28.4 (25.4) 21.4 (19.6) 57.0 (20.7) 48.2 (20.8) 23.5 (19.2) 4.3 (3.8) 43.4 (22.0)

Table 2: Evaluation results for a single pitch estimation (N=1), for metrics presented in Section 4. RP: Raw Pitch accuracy, WRP:
Weighted Raw Pitch accuracy, RC: Raw Chroma accuracy, WRC: Weighted Raw Chroma accuracy, OA: Overall Accuracy, OJ: Octave
Jumps, CC: Chroma Continuity. Mean values (and standard deviation) over all excerpts in the dataset are presented. Bold fond indicates
specially relevant results, such as the maximum value for each metric.
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ST BR WW Non-Alt Alt

SF-DUR 67.4 66.1 53.8 65.3 56.7

SF-MAR 45.2 46.6 38.0 45.6 36.9

SF-SAL 34.9 53.6 24.0 35.5 32.8

SF-CAN 55.9 65.3 39.9 53.5 47.7

MP-DRE 12.8 21.2 16.4 15.1 13.8

MP-DUA 7.0 9.8 1.9 6.1 7.1

MP-DUA-Ref 24.6 27.1 6.2 22.6 20.3

MP-BEN 25.4 45.0 16.6 26.7 20.5

ME-DRE 49.5 71.2 40.6 51.8 45.9

ME-DUR 70.7 73.0 58.8 70.4 61.8

ME-FUE 26.5 50.1 14.5 26.4 27.7

ME-SAL 27.7 44.7 22.7 28.7 28.0

Table 3: Raw pitch accuracy results for all evaluated methods (with N=1 for SF
and MP), in relation to the predominant instruments playing the melody: ST -
strings, BR - brass, WW - woodwinds, as well as the division between alternating
(Alt) and non-alternating instruments (Non-Alt). Bold fond indicates specially
relevant results.
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RP(r) RP(τ) RP(ρ) RC(r) RC(τ) RC(ρ)

range -0.04 -0.05 -0.09 -0.13 -0.12 -0.18

density -0.2 -0.14 -0.19 -0.44 -0.33 -0.48

tessitura 0.04 -0.01 -0.02 0.06 -0.03 -0.05

pitch complexity -0.18 -0.13 -0.18 -0.43 -0.32 -0.46

rhythm complexity -0.09 -0.05 -0.07 -0.24 -0.15 -0.22

mixed complexity -0.17 -0.11 -0.15 -0.41 -0.29 -0.42

melodiousness 0.04 0.02 0.03 -0.05 -0.03 -0.05

originality -0.04 -0.05 -0.07 -0.12 -0.09 -0.13

Table 4: Correlations between raw pitch and chroma accuracy of the considered
melody extraction methods (ME-DUR, ME-DRE, ME-SAL, ME-FUE) with
the extracted melodic features, for 3 different correlation types: Pearson (r),
Kendall (τ), Spearman (ρ). Bold fonts indicate highest (negative) correlation
values.
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Correlation

SF-DUR 0.45

SF-MAR 0.51

SF-SAL 0.83

SF-CAN 0.53

MP-DRE 0.53

MP-DUA 0.67

MP-DUA-Ref 0.54

MP-BEN 0.86

ME-DRE 0.71

ME-DUR 0.36

ME-FUE 0.76

ME-SAL 0.77

Table 5: Correlation between the raw pitch accuracy (with N=1) and the ratio
between the energy of the melodic source(s) and the overall energy. The lowest
correlation is marked in bold.
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Figure 1: Dataset creation process. H1, H2, etc. refer to the recordings of
each of the annotators, which correspond to several excerpts. Group1, Group2
and Group3 refer to different sets of subjects, and Annotator1 refers to the main
author, who annotated all excerpts.

Figure 2: Distribution of the sections of the instruments playing the main
melody (left) (ST: Strings, BR: Brass, WW: Woodwinds), where Alt- denotes
that the sections alternate within the excerpt. Distribution and Gaussian model
of the annotated ‘melody’ pitches (right).

Figure 3: Distribution of the melodic features.

Figure 4: Recordings and annotation of the melody in a Digital Audio Work-
station.

Figure 5: Pitches sung by four subjects and annotation of the melody, for
an excerpt of the 4th movement of Dvořák’s 9th Symphony (top). Pitches
estimated by four melody extraction methods and melody annotation for the
same excerpt (bottom).

Figure 6: Pitch salience functions estimated from an excerpt of the 1st move-
ment of Beethoven’s 3rd symphony. They were computed with MELODIA (top)
and Durrieu’s approach (bottom), as VAMP plugins in Sonic Visualiser. Verti-
cal axis corresponds to the frequency between 55 and 1760 Hz, in logarithmic
scale. Horizontal axis corresponds to time, from 0 to 10 seconds. Both salience
functions have been normalised per frame, for a better visualisation.

Figure 7: Gaussians centred at the pitches estimated by three salience func-
tions (SF-MAR, SF-DUR and SF-CAN) at a given frame, and the sum of them
(COMB). The maximum peak of the combination is found at the annotation of
the melody pitch (vertical dashed line).

Figure 8: Mean raw pitch accuracy for N=1,2,4 and 10 pitch estimates. Bars
represent 95% confidence intervals. For MP-DRE we only provide the measure
for N=10 as the output pitches are not ordered by salience.

Figure 9: Mean raw pitch accuracy (RP) for the combination of four salience
functions: DUR, MAR, SAL and CAN for N= 1, 2, 4 and 10 pitch estimates.
Bars represent 95% confidence intervals. RCOMB denotes a combination with
the proposed neighbour refinement method. RNSCOMB correspond to the re-
fined estimation with the method proposed in (Duan, Pardo, and Zhang 2010).
The values of α are indicated before the name of each method. SF-DUR is
shown as a reference.
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Figure 1: Dataset creation process. H1, H2, etc. refer to the recordings of each
of the annotators, which correspond to several excerpts. Group1, Group2 and
Group3 refer to different sets of subjects, and Annotator1 refers to the main
author, who annotated all excerpts.
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Figure 2: Distribution of the sections of the instruments playing the main
melody (left) (ST: Strings, BR: Brass, WW: Woodwinds), where Alt- denotes
that the sections alternate within the excerpt. Distribution and Gaussian model
of the annotated ‘melody’ pitches (right).
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Figure 3: Distribution of the melodic features.
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Figure 4: Recordings and MIDI annotation of the melody in a Digital Audio
Workstation.
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Figure 5: Pitches sung by four subjects and annotation of the melody, for an
excerpt of the 4th movement of Dvořák’s 9th Symphony (top). Pitches estimated
by four melody extraction methods and melody annotation for the same excerpt
(bottom)
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Figure 6: Pitch salience functions estimated from an excerpt of the 1st move-
ment of Beethoven’s 3rd symphony. They were computed with MELODIA (top)
and Durrieu’s approach (bottom), as VAMP plugins in Sonic Visualiser. The
vertical axis corresponds to the frequency between 55 and 1760 Hz, in logarith-
mic scale. Horizontal axis corresponds to time, from 0 to 10 seconds. Both
salience functions have been normalised per frame, for a better visualisation.

34



74 76 78 80 82 84 86 88

0

0.1

0.2

0.3

0.4

0.5

0.6

MIDI Note

S
a
li
e
n
c
e

 

 

Marxer

Durrieu

Cancela

COMB

Figure 7: Gaussians centred at the pitches estimated by three salience func-
tions (SF-MAR, SF-DUR and SF-CAN) at a given frame, and the sum of them
(COMB). The maximum peak of the combination is found at the annotation of
the melody pitch (vertical dashed line).
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Figure 8: Mean raw pitch accuracy for N=1,2,4 and 10 pitch estimates. Bars
represent 95% confidence intervals. For MP-DRE we only provide the measure
for N=10 as the output pitches are not ordered by salience.
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Figure 9: Mean raw pitch accuracy (RP) for the combination of four salience
functions: DUR, MAR, SAL and CAN for N= 1, 2, 4 and 10 pitch estimates.
Bars represent 95% confidence intervals. RCOMB denotes a combination with
the proposed neighbour refinement method. RNSCOMB correspond to the re-
fined estimation with the method proposed in (Duan, Pardo, and Zhang 2010).
The values of α are indicated before the name of each method. SF-DUR is
shown as a reference.
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