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Abstract

Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories

across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or

lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG

response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they

have many of the visual properties found in intact images, but do not convey any semantic information. Images from

different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A

multivariate pattern analysis revealed categorical patterns of response to intact images emerged �80–100 ms after

stimulus onset and were still evident when the stimulus was no longer present (�800 ms). Next, we measured the

patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged

�80–100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to

scrambled images were mostly evident while the stimulus was present (�400 ms). Moreover, scrambled images were

able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of

visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to

which different stages of processing are dependent on lower-level or higher-level properties of the image.

Key words: category; EEG; image; MVPA; object

Introduction
A variety of evidence has shown that spatially distinct

regions of the ventral occipitotemporal cortex are selec-
tive for different categories of objects (Kanwisher, 2010).

Lesions to this region often result in difficulties in recog-
nizing and naming specific object categories (Farah,
1990; McNeil and Warrington, 1993; Moscovitch et al.,
1997). The notion that discrete areas of the temporal lobe
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Significance Statement

Previous studies have shown distinct spatial and temporal patterns of response to different object

categories. However, the extent to which these patterns are based on lower-level visual properties

compared with high-level semantic information remains unclear. To address this question, we used

scrambled objects that preserve visual properties but do not convey any semantic information. We found

distinct patterns of response to intact images from different object categories. Patterns of response to

scrambled images from different categories emerge in a way that is similar to those of intact images but do

not persist for the same duration. These findings demonstrate the relative importance of both lower-level

visual and higher-level semantic properties in the neural response to objects.
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are specialized for different categories of objects receives
support from functional imaging studies that show that
some regions in the temporal lobe are more responsive to
faces than to other categories (Allison et al., 1994; Kan-
wisher et al., 1997). Other imaging studies have found
similar category-specific responses for inanimate objects
(Malach et al., 1995), scenes (Epstein and Kanwisher,
1998), and human body parts (Downing et al., 2001).
Although specialized regions have only been reported for
a limited number of objects, the spatial pattern of re-
sponse across the entire ventral stream can distinguish a
wider range of categories (Haxby et al., 2001; Krieges-
korte et al., 2008; Connolly et al., 2012; Clarke and Tyler,
2014; Rice et al., 2014).

A full understanding of object perception requires the
ability to discriminate object-specific brain states with
both spatial and temporal resolution. Recently, reliable
patterns of neural response to images from different ob-
ject categories have been shown with MEG and EEG
(Carlson et al., 2011, 2013; Cauchoix et al., 2014; Cichy
et al., 2014; Clarke et al., 2015). These techniques com-
plement previous MRI studies by providing temporal in-
formation about when these categorical patterns of
response emerge and how long they are sustained. Tem-
poral properties are important, as they place constraints
on models of object recognition (Mur and Kriegeskorte,
2014). Such models suggest a dynamic process in which
there is a transformation from a visual representation
(based on the statistics of the image) to a semantic rep-
resentation (reflecting the meaning of the object; Clarke
and Tyler, 2014). It is thought that the initial component of
the response reflects fast feedforward processing that is
related to visual properties, whereas later patterns reflect
recurrent processing that might be related to semantic
properties of the stimulus (Lamme and Roelfsema, 2000;
Hochstein and Ahissar, 2002; Bar et al., 2006; DiCarlo and
Cox, 2007).

The aim of this study was to investigate the relative
importance of visual and semantic properties of objects in
the emergence of categorical patterns of neural response.
However, a fundamental problem in this endeavor is that
the visual and semantic properties of objects often co-
vary, making it difficult to resolve the relative contribution
of these sources of information to patterns of neural
response. So, it is not clear from many previous studies
whether the distinct patterns of response to different
object categories reflect visual or semantic properties
(Carlson et al., 2011, 2013; Cauchoix et al., 2014; Cichy

et al., 2014). In a recent MEG study, Clarke et al. (2015)
addressed this issue by showing that the categorization of
objects based on the neural response could be predicted
by the visual properties of the image. However, they also
found that accuracy could enhanced by including seman-
tic properties, particularly at later stages of processing.
Although this suggests that visual and semantic proper-
ties are both important for the neural representation of
objects, this approach is not able to show a causal link.

To address this issue, we measured patterns of EEG
response to intact images from different object catego-
ries, as well as versions of these images that had been
phase scrambled on a global or local basis. Our rationale
for using scrambled images is that they have many of the
visual properties found in intact images, but they do not
convey any semantic information (Coggan et al., 2016).
This allows us to determine the extent to which the pre-
served visual properties contribute to the neural represen-
tation of objects in the absence of any semantic content.
The comparison between the locally scrambled and glob-
ally scrambled images also allows us to explore the im-
portance of spatial image properties, which are preserved
in the locally scrambled condition. In a recent fMRI study,
we found similar spatial patterns of response to intact and
scrambled images across the ventral visual pathway
(Coggan et al., 2016). This study demonstrated the impor-
tance of low-level visual properties in the patterns of
response in the ventral visual pathway. By comparing the
similarity of the responses to intact and scrambled images
using EEG, we aim to determine the relative contribution
of visual properties to categorical patterns of response at
different time points.

Materials and Methods

Stimuli
On hundred five images of three object categories

(face, bottle, and house) were taken from an object–image
stimulus set (Rice et al., 2014). All images were grayscale,
were superimposed on a middle gray background, and
had a resolution of 400 � 400 pixels (Fig. 1). For each of
these original images, two different phase-scrambled ver-
sions were generated. A global-scrambling method in-
volved a typical Fourier scramble (i.e., keeping the global
power of each two-dimensional frequency component
constant while randomizing the phase of the compo-
nents). A local-scrambling method involved windowing
the original image into an 8 � 8 grid and applying the
phase scramble to each 50 � 50 pixel window indepen-
dently. In a previous study (Coggan et al., 2016), we
showed that these scrambling methods effectively re-
move any semantic or categorical content in the im-
ages. Stimuli were presented using a gamma-corrected
VIEWPixx display (VPixx Technologies) with a resolution
of 1920 � 1200 pixels and a refresh rate of 120 Hz.
Images were viewed at a distance of �57 cm and sub-
tended a retinal angle of 8°.

Participants
Twenty participants (3 males; mean age, 20.6 years; SD,
2.6 years) with normal or corrected-to-normal vision took
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part in the experiment. Participants gave written, informed
consent. The study was approved by the University of
York Department of Psychology Ethics Committee. The
data for one participant (female) were removed from the
analysis due to partial data loss.

Design and procedure
The experiment involved the following three runs: the first
run contained globally scrambled images; the second run
contained locally scrambled images; and the third run
contained intact images. Therefore, participants were un-
aware of the object categories in our stimulus set prior to
viewing the scrambled images. Each run contained 35
blocks. There were 10 trials in each block. In each trial, an
image from one of the three object categories was pre-
sented for 400 ms. There was a jittered intertrial interval
that had a mean duration of 1 s and an SD of 200 ms. The
duration of the interblock interval was 3 s. Participants
fixated a cross in the center of the screen between trials.
To maintain attention, participants were instructed to click
a mouse whenever a red dot appeared on an image. One
image in each block contained a red dot. Self-timed rests
were taken between runs.

EEG recording
EEG waveforms were recorded from 64 scalp locations
laid out according to the 10/20 system in a WaveGuard
cap (ANT Neuro). Data from each electrode were refer-
enced against a whole-head average. We also monitored
blinks through bipolar electro-oculogram (EOG) elec-
trodes placed above and below the left eye. Signals were
amplified and digitized at 1000 Hz and recorded using
the ANT Neuroscan software (ANT Neuro). Stimulus-
contingent triggers were sent from the VIEWPixx device

to the EEG amplifier using a 25-pin parallel port with
microsecond-accurate synchronization to the display re-
fresh sequence. The PsychToolbox routines (Brainard,
1997; Pelli, 1997) running in Matlab were used to control
the display hardware and to send triggers.

EEG preprocessing
The EEG traces from each run were concatenated and
bandpass filtered between 0.01 and 30 Hz prior to epoch-
ing. Blink artifacts were corrected using independent
components analysis (ICA). This involved running ICA
across data from all electrodes, including the vertical
EOG, and manually selecting the components that cap-
tured blink artifacts. These components were then sub-
tracted from the EEG trace at each electrode site
according to their weighting. This approach meant that no
trials were rejected. The EEG trace was then divided into
epochs ranging from 200 ms before stimulus onset to 800
ms after stimulus onset. All trials containing a red dot were
removed prior to further analysis.

EEG MVPA analysis
All data processing was performed in Matlab using cus-
tom scripts. To measure the spatial patterns of EEG re-
sponse for each participant, trials were collapsed into
mean ERPs for odd and even trials for each condition and
at each electrode site. These condition-averaged ERPs
were then baselined by subtracting the mean amplitude
during the 200 ms prior to stimulus onset (across both
odd and even trials) from the response at each time point.
From these ERPs, a 64-value vector representing the
spatial pattern of response across all electrodes was
extracted for odd and even trials for each object category
at each time point.

Figure 1. Exemplars of intact, locally scrambled, and globally scrambled images from the different object categories.
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Pattern vectors were normalized within each participant
using the following method. First, vectors were selected
from one time point and one image type. This gave a total
of six patterns (odd/even � face/bottle/house). For each
electrode site, the mean amplitude across all six patterns
was subtracted from its amplitude in each pattern. This
process was repeated for each image type at each time
point.

To see whether different object categories evoke dis-
tinct patterns of EEG response, we ran a correlation-
based MVPA separately for each image type and time
point (Fig. 2A). This involved measuring the correlation
between pattern vectors within and among the three ob-
ject categories. For within-category correlations (e.g.,
face vs face), we measured the correlation between odd
and even trials. For between-category correlations (e.g.,
bottle vs house), we used the mean correlation between
odd trials of the first category and even trials of the
second, and between even trials of the first category and
odd trials of the second. The distinctiveness of the pat-
terns of EEG response was then measured by subtracting
between-category correlations from within-category cor-
relations. The 95% confidence intervals (CIs) for this dif-
ference were then obtained by bootstrapping across
participants. Points at which different object categories
evoked significantly distinct patterns of EEG response
were defined by the lower confidence interval being �0.

To measure the similarity between responses to intact
and scrambled images from the same object category, we
first collapsed patterns across odd and even trials to
create one pattern per condition per time point. We then
correlated the patterns of response at each time point
separately for the intact locally scrambled and the intact
globally scrambled contrasts for each category. A group
mean was calculated across categories, and 95% confi-
dence intervals were obtained by bootstrapping across
participants.

To determine whether the response to intact images
could be explained by the response to scrambled images,
we calculated a noise ceiling. This estimates that maxi-
mum correlation that could be expected. The noise ceiling
was calculated by measuring the correlation between the
responses at odd and even trials within each category in
the intact condition. At the individual level, we take a
mean of the within-category correlations (face–face, bot-
tle–bottle, house–house) for each time point. We then
average across subjects to obtain one noise ceiling esti-
mate at each time point. Time points at which this value
fell within the 95% CI for the correlation between intact
and scrambled images demonstrate when all the variance
in the intact images was explained by the scrambled
images.

The correlation-based method was complemented with
a classification-based approach involving a support vec-
tor machine, producing similar results. To see whether
different object categories evoked distinct patterns of
response, classification was performed separately for
each participant, image type, and time point (see Fig. 6).
First, patterns of EEG response were extracted for each
trial of each category. Two “training” patterns and one

“testing” pattern for each category were generated by
randomly dividing the 105 trials into three equal sets and
taking an average. A support vector machine was then
trained on the six training patterns, and tested on the
three testing patterns. This procedure was repeated 100
times, with different subsets of trials used for training and
testing in each iteration. To see whether similar patterns
of response were evoked by intact and scrambled images
from the same category, the classifier was altered so that
test patterns were substituted with those from another
image type. This was performed for each pairwise con-
trast between image types, and accuracy was averaged
across both directions (e.g., train on intact, test on locally
scrambled; and train on locally scrambled, test on intact).

Finally, to examine transient and persistent neural ac-
tivity in response to each condition, we conducted a
temporal cross-correlation. This involved measuring the
correlation between response patterns for odd and even
trials for the same condition, iterating over each possible
pair of time points. Correlations were represented in a
1000 � 1000 similarity matrix, and data were averaged
across the positive diagonal. Matrices were then col-
lapsed across categories to give one matrix per image
type.

Results
First, we asked whether different intact object categories
produced distinct spatial patterns of EEG response (Fig.
2). To address this question, we compared the similarity
of patterns of response to images from the same category
(e.g., face vs face) with the similarity of patterns to images
of different categories (e.g., face vs house). Categorical
patterns of response were demonstrated when the within-
category correlations were significantly greater than the
between-category correlations. Categorical patterns of
response to intact images emerged 80 ms after stimulus
onset. The patterns were maximally distinct at �150 ms
and persisted until at least 800 ms (Fig. 2B). A classification-
based approach was then used to complement the
correlation-based method. In this analysis, a classifier
was trained on a subset of the data and tested on the
remaining data. This showed a pattern that was similar to
that derived from the correlation-based analysis. Accu-
racy above the level of chance emerged 80 ms after
stimulus onset, peaked at about 150 ms, and persisted
until 800 ms (Fig. 3A).

To measure the extent to which these category-specific
patterns of response were based on lower-level visual
properties, we first asked whether locally scrambled
and globally scrambled images also produced distinct
category-specific patterns of EEG response using both
the correlation-based (Fig. 2C,D) and classification-based
(Fig. 3B,C) analyses. Distinct category-specific patterns of
response for locally scrambled images emerged at �80
ms after stimulus onset. They were maximally distinct at
�110 ms and persisted until �400–500 ms. Distinct
category-specific patterns of response for globally scram-
bled images emerged at �100 ms after stimulus onset.
They were maximally distinct at �190 ms and persisted
until �300 ms.
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Figure 2. Category-specific patterns of EEG response to intact and scrambled images. A, For each time point, normalized patterns

of response to odd and even trials of each category were compared across 64 electrodes. The correlation coefficients were then

represented in a similarity matrix for that time point. Distinct category-specific patterns of response were defined by higher

within-category (e.g., face–face) compared to between-category (e.g., face–bottle) correlations. B–D, Correlation time-courses are

shown for the intact (B), locally scrambled (C), and globally scrambled (D) image types. The shaded region represents 95% CIs

obtained by bootstrapping across participants. Group mean correlation matrices at 100 ms intervals are shown above the plot. Gray
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Although distinct patterns of response were evident to
scrambled images from different categories (i.e., within-
category � between-category correlations), it is not clear

whether the patterns were similar to those elicited from
the intact images. To address this question, we correlated
patterns of response to the same object category across

continued

box at the base of the plot represents the time points at which the stimulus was present. Blue bar at the base of the plot represents

time points at which the lower bound of the CI is �0, indicating significantly higher within-category correlations than between-

category correlations.

Figure 3. A–C, Classifier accuracy for between-category discrimination (blue line) with intact (A), locally scrambled (B), and globally

scrambled (C) images (chance � 33%, gray line). The blue-shaded regions represent 95% CIs obtained through bootstrapping across

participants. The blue bar at the top of the plot represents time points at which the lower bound of the CI is above chance. The gray

box on the axes of the plot represents the stimulus duration.
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different levels of scrambling at different time points. Fig-
ure 4A (blue horizontal bar) shows that the correlation
between intact and locally scrambled images became
significant at �80 ms after stimulus onset, and peaked at
�110 and 190 ms. The percentage duration that the
locally scrambled patterns were correlated with the intact
patterns was greater during the stimulus period (0–400
ms, 27%) compared with the poststimulus period (400–
800 ms, 10%). A similar pattern of results was evident
when we trained a classifier on intact or locally scrambled
images and then tested on locally scrambled or intact
images, respectively (Fig. 5A). The duration of accuracy
above the level of chance with the locally scrambled and
intact conditions was similar during the stimulus period
(0–400 ms, 40%) and the poststimulus period (400–800
ms, 49%).

Next, we explored the similarity between the intact and
globally scrambled images (Figs. 4B, 5B ). The correlation
between responses to intact and globally scrambled im-
ages became significant (blue horizontal bar) �90 ms
after stimulus onset, peaked at �110 ms, and persisted
until �120 ms. The percentage duration that the locally
scrambled patterns were correlated with the intact pat-
terns was greater during the stimulus period (0–400 ms,
4%) compared with the poststimulus period (400–800
ms, 0%). A similar pattern of results was evident when we

trained a classifier on intact or locally scrambled images
and then tested it on locally scrambled or intact images,
respectively (Fig. 5A). The duration of accuracy above the
level of chance with the locally scrambled and intact
conditions was greater during the stimulus period (0–400
ms, 4%) compared with the poststimulus period (400–
800 ms, 0%).

To directly compare the similarity between intact im-
ages and either locally scrambled or globally scrambled
images, the average correlation (Fig. 4) or accuracy (Fig.
5) was compared across individuals. The average corre-
lation between intact and locally scrambled images was
significantly higher than the correlation between intact
and globally scrambled images (t(18) � 3.29, p � 0.005).
Similarly, the average accuracy (Fig. 5) with intact and
locally scrambled images was significantly higher than
with intact and globally scrambled images (t(18) � 5.34,
p � 0 .0001).

We then asked whether the explainable variance in
intact responses was fully accounted for by the responses
to scrambled images, given the level of noise in the data.
This was achieved by calculating a noise ceiling (Nili et al.,
2014). This involved measuring the correlation to intact
images from the same category across odd and even
trials of the same category. The noise ceiling was not
fixed, but varied across time. We then determined

Figure 4. Similarity between patterns of EEG response to intact images and locally scrambled (A) or globally scrambled (B) images

from the same object category. Blue-shaded regions represent 95% CIs across participants. The blue bar at the top of the plot

indicates time points at which the correlation is significantly �0. The orange bar indicates the time points at which the correlation is

not significantly different from the noise ceiling. The gray box represents the stimulus duration.
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whether the correlation between intact and scrambled
images was not significantly different from the noise ceil-
ing for each time point. For locally scrambled images, the
95% CIs of the correlations overlapped until �120 ms
after stimulus onset (Fig. 4A). The percentage duration
that the locally scrambled patterns were not significantly
different from the noise ceiling was similar during the
stimulus period (0–400 ms, 9%) and the poststimulus
period (400–800 ms, 9%). For globally scrambled images,
the confidence intervals overlapped until �100 ms after
stimulus onset (Fig. 4B). The percentage duration that the
globally scrambled patterns were not significantly differ-
ent from the noise ceiling was greater during the stimulus
period (0–400 ms, 1%) compared with the poststimulus
period (400–800 ms, 0%).

Finally, we investigated the stability of the category-
specific patterns of response for each image manipulation
(Cichy et al., 2014). This involved measuring the correla-
tion between the patterns of EEG response within each
condition across different time points. The results were
then averaged across categories for each image type and
represented in time–time similarity matrices (Fig. 6). Here,
the diagonal for intact images corresponds to the noise-
ceiling estimate used in Figure 4. For intact images, the
pattern of response from 100 to 150 ms was positively

correlated with patterns found from �250 to 600 ms. The
continuation of this neural activity far beyond stimulus
offset suggests that this does not reflect prolonged visual
input during image presentation. The locally scrambled
matrix shows no evidence of persistent neural activity as
seen in the intact matrix, but does exhibit transient neural
activity between �100 and 250 ms after stimulus onset.
Interestingly, time point combinations of �150 and �200
ms show negative correlations, suggesting a polarity re-
versal in the potentials between these latencies. The glob-
ally scrambled matrix shows weak correlations across all
combinations of time points.

Discussion
The aim of this study was to determine the contribution of
lower-level visual and higher-level semantic properties to
the emergence of categorical patterns of neural response.
To address this question, we compared patterns of EEG
response to intact and scrambled images from different
object categories. Scrambled images were used because
they contain visual properties similar to those of intact
images but do not convey any semantic information
(Coggan et al., 2016). Our results show similar category-
specific patterns of response at early stages of processing.
However, these patterns were sustained for a longer time

Figure 5. Classifier performance across different image types. A, Accuracy in classifying responses to either intact or locally

scrambled images when trained on locally scrambled or intact images, respectively. B, Accuracy in classifying responses to either

intact or globally scrambled images when trained on globally scrambled or intact images, respectively. The blue line indicates

classifier accuracy across time, with shaded regions representing 95% CIs obtained through bootstrapping across participants. The

blue bar at the top of the plot represents the time points at which the lower bound of the CI is above chance. The gray box shows

stimulus duration.
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with intact images compared with scrambled images.
These results show the importance of visual properties in
the emergence of categorical patterns of response, but
also show the importance of semantic properties in the
recurrent processing that sustains these patterns.

The emergence of category-specific patterns of EEG
response to intact images is comparable to previous stud-
ies using MEG that found that categorical distinctions can
be decoded prior to 100 ms after stimulus onset and
become maximally distinct at �140 ms (Carlson et al.,
2013; Cauchoix et al., 2014; Cichy et al., 2014). However,
most previous studies have not directly determined
whether these patterns of response reflect lower-level
visual properties or higher-level semantic properties of the
image. Recently, Clarke et al. (2015) addressed this issue
with MEG showing that visual properties can explain pat-
terns of response to different categories of objects. How-
ever, they also showed that the semantic properties of
objects were able to explain additional variance in the
pattern of response, particularly at later stages of the
response. In our study, we were also able to show that
the patterns of response to images from different object
categories are driven predominantly by the lower-level
visual properties at early stages of visual processing (up
to 150 ms). Visual properties were also able to partially
account for the variance in the response to intact images
at later stages of processing.

Patterns of response to intact images were correlated
more strongly and for a longer period of time with re-
sponses to locally scrambled images than with globally
scrambled images. One key difference between these two
conditions is that the spatial properties, such as the shape
(or spatial envelope) of the image, are somewhat pre-
served in the locally scrambled images, but not in the
globally scrambled images. In a recent fMRI study, we
showed that the spatial pattern of response in the ventral
stream to different categories of intact objects was more
similar to the pattern elicited by locally scrambled objects
compared with globally scrambled objects. The greater
similarity between responses to intact locally scrambled

images is consistent with previous studies that have

shown a modulatory effect of spatial properties on pat-

terns of response in the ventral visual pathway (Levy et al.,

2001; Golomb and Kanwisher, 2012; Silson et al., 2015;

Bracci and Op de Beeck, 2016; Watson et al., 2016).

Although lower-level image properties account for the

majority of the variance in responses to intact images at

early stages, there remains a significant amount of vari-

ance to be explained at later stages of processing. For

example, although category-specific patterns of response

to intact images persisted well beyond the duration of the

stimulus, patterns of response to scrambled images were

evident only when the stimulus was present. The persis-

tence of these neural responses to intact images suggests

an important role for recurrent processing of the image,

which is likely to be driven by top-down semantic repre-

sentations (Lamme and Roelfsema, 2000; DiCarlo and

Cox, 2007; Kriegeskorte et al., 2008; Naselaris et al.,

2009; Connolly et al., 2012; Mur and Kriegeskorte, 2014).

Indeed, Clarke et al. (2015) showed that accuracy in

categorization using MEG data was enhanced by com-

bining visual and semantic models.

It is also possible that differences in the patterns of

response between intact and scrambled images reflect

sensitivity to image properties that are disrupted by either

scrambling process. An important property of natural im-

ages is that they contain strong statistical dependencies,

such as location-specific combinations of orientation and

spatial frequency corresponding to image features such

as edges (Marr and Hildreth, 1980). Indeed, the character

and extent of these statistical dependencies is likely to be

diagnostic for different classes of images (O’Toole et al.,

2005; Rice et al., 2014). The scrambling procedure dis-

rupts many of the statistical relationships between the

elements. So, it is possible that image manipulations that

can preserve these higher-level visual properties (Free-

man and Simoncelli, 2011) might generate responses that

are more similar to the intact images. Indeed, it is possible

that neural representations underlying higher-level visual

Figure 6. Temporal cross-correlation matrices for each image type. Responses to trials of the same condition were correlated over

each combination of time points. A–C, Correlations were collapsed across categories to give one matrix per image type [intact (A),

locally scrambled (B), globally scrambled (C)]. The colorbar represents Pearson’s correlation coefficients. Matrices were thresholded

by obtaining 95% CIs at each coordinate by bootstrapping across participants. Coordinates at which these intervals overlapped with

0 are shown in white. The gray box represents the stimulus duration.
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properties and the corresponding semantic properties
that they convey may be the same.

In conclusion, we have found that distinct category-
specific patterns of neural response emerge at �80 ms
after stimulus onset and can persist for at least 800 ms.
Using scrambled images, we show that early stages of
these category-specific patterns can be explained by
lower-level image properties. However, the differences in
the neural responses to intact and scrambled images at
later stages of processing also reveal the importance of
higher-level semantic properties.
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