
This is a repository copy of Value and energy optimizing dynamic resource allocation in 
many-core HPC systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/103295/

Version: Accepted Version

Proceedings Paper:
Singh, Amit Kumar, Dziurzanski, Piotr and Indrusiak, Leandro Soares orcid.org/0000-0002-
9938-2920 (2016) Value and energy optimizing dynamic resource allocation in many-core 
HPC systems. In: 2015 IEEE 7th International Conference on Cloud Computing 
Technology and Science (CloudCom). 7th IEEE International Conference on Cloud 
Computing Technology and Science, CloudCom 2015, 30 Nov - 03 Dec 2015 IEEE , CAN ,
pp. 180-185. 

https://doi.org/10.1109/CloudCom.2015.22

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Value and Energy Optimizing Dynamic Resource
Allocation in Many-core HPC Systems

Amit Kumar Singh, Piotr Dziurzanski and Leandro Soares Indrusiak

Department of Computer Science, University of York, Deramore Lane, Heslington, York, YO10 5GH, UK.

Email: {amit.singh, piotr.dziurzanski, leandro.indrusiak}@york.ac.uk

Abstract—The conventional approaches to reduce the energy
consumption of high performance computing (HPC) data centers
focus on consolidation and dynamic voltage and frequency scaling
(DVFS). Most of these approaches consider independent tasks (or
jobs) and do not jointly optimize for energy and value. In this
paper, we propose DVFS-aware profiling and non-profiling based
approaches that use design-time profiling results and perform all
the computations at run-time, respectively. The profiling based
approach is suitable for the scenarios when the jobs or their
structure is known at design-time; otherwise, the non-profiling
based approach is more suitable. Both the approaches consider
jobs containing dependent tasks and exploit efficient allocation
combined with identification of voltage/frequency levels of used
system cores to jointly optimize value and energy. Experiments
show that the proposed approaches reduce energy consumption
by 15% when compared to existing approaches while achieving
significant amount of value and reducing percentage of rejected
jobs leading to zero value.

Keywords—Many-core, High Performance Computing, Re-
source allocation, Value, Energy consumption, Value curves.

I. INTRODUCTION

Large scale HPC systems have become increasingly pow-
erful by incorporating many-core architectures, but there is
a huge concern about the energy required to operate such
systems [1]. The reports indicate the energy consumption of
data centers to be between 1.1% and 1.5% of the worldwide
electricity consumption [2]. Further, the power requirements
of these systems are increasing rapidly. Thus, minimizing
energy consumption during the operation of these systems is
of paramount importance.

Many processor cores support different power levels during
operation by employing dynamic voltage and frequency scaling
(DVFS) or dynamic frequency scaling (DFS) [3]. The power
consumption during operation, i.e. execution, is referred to
as dynamic power and a lower operating voltage and fre-
quency represents lower dynamic power consumption level.
The voltage and frequency of one or more cores can be
adjusted depending upon their workload in order to reduce
energy consumption while not violating timing constraints [4].
Further, cores unused for a long time can go in sleep mode to
further reduce energy consumption.

In a many-core HPC system, jobs arrive at different mo-
ments of time and they need to be serviced by allocating on
the available system cores at run-time. In doing so, the value
(utility) achieved by servicing the jobs should be maximized
while trying to minimize the overall energy consumption
during system operation as mentioned earlier. A job may
contain a number of dependent/independent tasks or processes
to be allocated on the system cores. The allocation results for
each job determine the value to be achieved and also energy
consumption, and thus allocation process needs to optimize
both the metrics (value and energy).

Previous researchers have introduced notion of values
(economic or otherwise) of the jobs to define their importance

level [5]. In overload situations where demand for available
resources is higher than the supply, such a notion facilitates
in deciding to hold the low value jobs for late allocation
and allocating limited resources to the high value jobs. The
value of a job can change over time to reflect the impact
of the computation over the business processes, which adds
complexity to the allocation process.

Existing dynamic resource allocation approaches allocate
dynamically arriving jobs to the platform resources by employ-
ing light-weight heuristics that can find an allocation quickly.
There have also been efforts to utilize design-time profiled
results to facilitate efficient resource allocation and reduce the
computations at run-time [6]. These efforts seem promising
to design job-specific-clouds, where the clients (or customers)
and their jobs to be submitted for execution are pre-defined,
which can be realized from the historical data. However,
they optimize only for value. Further, existing approaches
optimizing for both value and energy cannot be applied to
dependent tasks. Since an HPC job may contain a set of
dependent tasks, there is a need to devise resource allocation
approaches to be applied on dependent tasks while optimizing
both value and energy.

Contribution: This paper addresses shortcomings of ex-
isting resource allocation approaches and proposes a profiling
based and a non-profiling based approach. They exploit ef-
ficient allocation combined with identification of appropriate
voltage/frequency levels of used platform cores in order to
jointly optimize value (utility) and energy. For each job, the
profiling based approach utilizes design-time profiled results
obtained by a technique that provides value and energy opti-
mized operating points. The allocation and voltage/frequency
levels are identified by exploring the search space including
various allocations and possible voltage/frequency levels. In
the non-profiling based approach, at run-time, the allocation is
identified by considering load balancing and communication
optimization, and voltage/frequency levels by exploring the
search space.

Paper Organization: Section II presents related works.
The models of job, value of a job and HPC platform along with
the problem definition are introduced in Section III. Proposed
approaches are introduced in Section IV. Section V presents
experimental results and Section VI concludes the paper.

II. RELATED WORK

Market-inspired resource allocation heuristics are proven
to provide promising results in the overload situation that
is normally encountered in HPC system [7]. The heuristics
employ notion of values of jobs, where values represent
importance levels. Some researchers assume fixed value of a
job [8], whereas others consider values that can change with
time [5].

Market-inspired heuristics allocate jobs in several ways.
For example, the highest value job is chosen first [8]. This
approach might lead to small amount of available resources if



PE PE

PE PE

PE

PE

Node PG1 Node PGN

. . .

Platform Resource Manager
(Resource Allocation for Arrived Jobs)

M
a
n
y
-c
o
re

H
P
C
P
la
tf
o
rm

J
O
B

2

J
O
B

3

J
O
B

4

J
O
B

L

J
O
B

M

J
O
B

1

Jo
b
s

Arrival Time

. . .

. . .

Interconnect

. . .

. . . PE PE

PE PE

PE

PE

Interconnect

. . .

. . .

U
se
rs

. . .

Fig. 1. System model adopted in this paper. A cloud data center containing
different nodes (servers) with dedicated cores (PEs) to execute jobs submitted
by multiple users.

a high value job requires a large amount of resources. To over-
come above problem, the job having maximum value density
can be chosen first [9], where the value density is computed
as value divided by the amount of required computational
resources Another heuristic to choose the job having minimum
remaining value first is also proposed [10]. The remaining
value is calculated as the area under the value curve from the
current time to the time when its value is zero. These heuristics
try to optimize overall value, but they do not consider energy
consumption optimization and DVFS capable cores.

Energy optimization approaches for HPC data centers
have focused mainly on VMs consolidation and DVFS. In
consolidation, VMs with low utilization are placed together
on a single host so that other used hosts can be freed to
shut them down [11]–[13]. DVFS based approaches have been
explored to reduce energy consumption is several areas, e.g.,
clusters [14], [15], web servers [16] and HPC data centers
[4]. The approaches for HPC data centers (e.g., [4]) do not
consider jobs containing dependent tasks. For other application
domains, DVFS techniques for dependent tasks are explored
(e.g., [17]), but optimization is not performed for value.

Some heuristics considering DVFS and optimizing both the
value and energy consumption are reported in [5]. However,
they consider independent tasks or jobs containing independent
tasks. There are some additional multi-criteria optimization
approaches, but they perform static resource allocation [18],
[19]. Further, in dynamic resource allocation process, they
do not use design-time profiling results, which can provide
optimized value and energy. In contrast, our profiling and
non-profiling based dynamic resource allocation approaches
consider jobs containing dependent tasks and jointly optimizes
for both value and energy while applying DVFS.

III. SYSTEM MODEL AND PROBLEM DEFINITION

Figure 1 shows our target system model, which is based
on typical industrial HPC scenario. The system contains a
many-core HPC platform that executes a set of jobs submitted
by various users at different moments of time. The jobs are
submitted to the platform resource manager that allocates
resources to them. This section provides a brief overview of
the platform and workload model along with the problem
definition.

A. Many-core HPC Platform Model

The HPC platform HP contains a set of nodes
(PG1, ..., PGN ), where each node (server) contains a set

(a) Job (b) Value curve of the Job

0

100

200

300

400

500

600

15 25 35 45 55 65 75 85

Time (in time-units)

V
a
lu
e
(c
u
rr
e
n
cy
)

Fig. 2. An example job model and its value curve.

of homogeneous cores, referred to as processing elements
(PEs), as shown in the bottom part of Figure 1. A node
n is represented as a set of cores Cn, which communicate
via an interconnect. Each core is assumed to support DVFS.
A platform resource manager controls access of platform
resources and coordinates the execution of jobs submitted by
the users, which facilitates efficient management of resources
and incoming requests.

B. Job Model

Each job j in the HPC workload is modelled as a directed
graph TG = (T ;E), where T is the set of tasks of the job
and E is the set of directed edges representing dependencies
amongst the tasks. Figure 2 (a) shows an example job that
contains 7 tasks (t1,..,t7) connected by a set of edges. Each
task t ∈ T is associated with its execution time (ExecTime,
measured as worst-case execution time (WCET)), when allo-
cated on a core operating at a particular voltage level. Such
information can be obtained from previous executions of the
tasks. Each edge e ∈ E represents data that is communicated
between the dependent tasks. A job j is also associated with
its arrival time ATj .

C. Value Curve of a Job

For each job j, the value curve V Cj is a function of the
value of the job to the user depending on the completion time
of the job [5]. The value curve is usually a monotonically-
decreasing function and trends towards zero with the increasing
completion time, as shown in Figure 2 (b). We assume a
value curve is given for each job, as this reflects its business
importance as assessed by the end user (i.e. domain specific
economic model). The description of the economic model is
orthogonal to our approach and out of scope of this paper.

Each job is considered to have a soft deadline [4]. This
implies that the violation of deadline does not make the
computation irrelevant, but reduces its value for the user
[5], [20]. Deadlines missed by large margins may result in
zero value and thus the computation becomes useless for the
user. Further, the energy spent on such computation can be
considered as wasted. Therefore, the job request should be
rejected if no (zero) value can be obtained by executing it.

D. Energy Consumption of a Job

The total energy consumption (Etotal) of a job is computed
as the sum of dynamic and static energy as follows.

Etotal = Edynamic + Estatic (1)

The dynamic energy consumption for all the tasks in the
job is estimated from equation (2).

Edynamic =
∑

∀t∈T

(ExecT ime[t] → cv) · (pow → cv)] (2)

where ExecT ime[t] → cv and pow → cv are the execution
time of task t mapped on core c operating at voltage v, and



respective power consumption, respectively. The ExecT ime
measures are provided in the job model. It is assumed that the
power consumption at different operating voltages is known in
advance and taken from chip manufacturer’s data sheet.

The Estatic for each core is computed as the product of
overall execution time of the job and static power consumption
of the used cores. Unused cores are considered as power
gated so that they do not contribute to the overall energy
consumption.

E. Problem Definition

The resource allocation problem targeted in this paper is to
jointly optimize value and energy while servicing arrived jobs.
To summarize, the targeted problem considers the following set
of input, constraints and objective.

• Input: Workload, i.e., Job set (j1, ..., jM ), Value curve
of each job V Cj , Arrival time of each job ATj

(j ∈ 1, . . . ,M ), Cores of the HPC platform nodes
(PG1, ..., PGN ), Voltage levels (v1, ..., vl) supported
by each core.

• Constraints: Limited resources (cores) on each node
of HP .

• Objective: Maximize overall value V altotal and min-
imize energy consumption Etotal.

For an arrived job, the allocation process followed by
the global resource manager needs to identify the node to
execute the job, tasks to cores allocation inside the node, and
the voltage/frequency levels of the cores executing tasks of
the job. We assume negligible time for switching between
voltage/frequency levels of a core as it is in the order of
nanoseconds while tasks execution is in the order of minutes or
hours [21]. Since there are several possible allocations (tasks
to cores assignment) for a job and several voltage scaling
(VS) options for each allocation, exploring the complete design
space to identify the optimal design in terms of value and
energy might not be feasible within acceptable time. Therefore,
only efficient allocations and appropriate VS options need to
be evaluated. Further, for dependent tasks, applying VS on a
core is rather challenging as one needs to capture the VS effect
on the execution of dependent tasks allocated on other cores.

IV. PROPOSED VALUE AND ENERGY OPTIMIZING

RESOURCE ALLOCATION APPROACHES

This section describes our proposed approaches. In contrast
to conventional existing efforts, our approaches differ mainly
in following aspects: 1) consider jobs containing dependent
tasks, 2) apply DVFS, 3) jointly optimize value and energy,
and 4) utilize profiling results in case the jobs are known in
advance and profiled.

In order to allocate platform cores to the incoming jobs at
run-time, the platform resource manager is invoked to find
allocations. The manager follows profiling or non-profiling
based approach, as shown in Figure 3. The details of these
approaches are as follows.

A. Profiling Based Approach (PBA)

This approach uses design-time profiling results of the jobs
in the historical data to perform run-time resource alloca-
tion for the incoming jobs, as shown in Figure 3 (a). For
each job, the profiling process identifies the allocation and
voltage/frequency levels leading to optimized response time
(determines value) and energy consumption when utilizing
different amount of computing power in terms of number

Run-time Platform

Resource Manager

Incoming Jobs

& Value Curves

Allocation Result

HPC Platform

Profiling

Results

Run-time Platform

Resource Manager

Incoming Jobs

& Value Curves

Allocation Result

HPC Platform

(a) Profiling Based Approach (b) Non-profiling Based Approach

Fig. 3. Profiling and non-profiling based approaches.

of cores. The response time is calculated as the difference
between the end and start time of the job execution after
allocating resources to it and should be minimized to optimize
value. To jointly optimize value and energy, we consider
to minimize the product of response time and energy con-
sumption. At different number of cores, the allocation and
voltage/frequency levels leading to minimum product value
are identified by employing a genetic algorithm (GA) based
evaluation, similarly as in [22]. The number of cores is varied
from one to the number of tasks in the job. Such variation can
exploit all the potential parallelism present in the job as each
task can occupy only one core. For each job, the allocation,
voltage/frequency levels, value corresponding to the response
time and energy consumption at different number of cores are
stored as the profiling results.

To perform resource allocation by using the profiling
results, the manager follows Algorithm 1. The algorithm takes
profiling results of the jobs from the storage along with
their value curves and arrival times, and the HPC Platform
HP as input and identifies the value and energy optimizing
allocation for each job based on the number of available cores
at different nodes in the platform. The algorithm checks mainly
for two events as follows: 1) any already allocated job(s) finish
execution to update the platform resources (lines 1-3), and 2)
any job(s) arrive into the platform to put into a job queue
(lines 4-6). If any of the two events or both of them occurs, the
algorithm tries to perform resource allocation for the queues
job(s) having non-zero values (lines 7-17).

To perform resource allocation for all valuable queued jobs
(i.e., jobs having positive values), all of them (count = 0
to JobQueue.size(), line 8) are tried to be allocated on the
platform resources as along as any core is available. It is
ensured that a queued job having zero value at the allocation
time is dropped from the queue as no value can be made out
of it. The allocation process continues until all the arrived
jobs are allocated or dropped due to having zero value while
waiting in the job queue. First, bids (in terms of number of
available cores) from different platform nodes are collected,
then the maximum bid (maxBid) and the corresponding node
is selected (line 9). Choosing such a node to use its cores
helps to achieve better load balancing amongst nodes and thus
better resource utilization. In case more than one nodes have
the same amount of bid, any of them is chosen. If the estimate
of maxBid is greater than zero (maxBid > 0, line 10), i.e.,
at least one core is available in the platform, the value/energy
estimates of jobs utilizing maxBid cores are computed and
the job leading to maximum value per energy consumption
(maxV aluePerEnergyJob) is selected to be scheduled to
the node having maxBid cores by following the allocation
and voltage/frequency levels leading to the optimized value
and energy. The computation of value/energy for each job
considers its value at the allocation time and the exact number
of cores to be used by the job computed as minimum between
maxBid and the number of cores to be used to achieve max-
imum value/energy. The platform resources are updated after



ALGORITHM 1: Profiling Based Resource Allocation

Input: Incoming Jobs with arrival times, Jobs’ profiling
results and value curves, HPC Platform HP .

Output: Resource Allocation for Incoming Jobs.
1 if allocated job(s) finish execution then
2 Update platform resources;
3 end
4 if job(s) arrive then
5 Put the job(s) in JobQueue;
6 end
7 if JobQueue contains job(s) having positive values then
8 for count = 0 to JobQueue.size() do
9 Collect bids from all nodes and select maxBid;

10 if maxBid > 0 then
11 Compute value/energy estimates of

unscheduled jobs when utilizing maxBid cores;
12 Select maxV aluePerEnergyJob and its

value, energy, allocation, and
voltage/frequency levels from profiling
results ;

13 Schedule maxV aluePerEnergyJob on node
having maxBid cores by following the
allocation to perform execution at
voltage/frequency levels;

14 Update platform resources;
15 end
16 end
17 end

scheduling each job to have up to date resources’ availability
information for the next allocation instance. This helps to
achieve an accurate and efficient allocation. Similar process
is repeated for all the arrived jobs.

B. Non-profiling Based Approach (NBA)

The NBA approach does not use profiling results as no
historical pattern of jobs is available to perform advance
profiling. Rather, all the computations are performed at run-
time. The steps followed by the NBA are similar to PBA and
sketched in Algorithm 2. Here, if maxBid is greater than zero
(maxBid > 0), the following two main steps are employed:
i) Compute values of unscheduled jobs by finding allocations
on maxBid cores (line 6), and ii) Identify voltage/frequency
levels of used cores to execute allocated tasks to maximize
value over energy (line 8), which are described subsequently.

In step i), firstly, an appropriate allocation for each job
is identified by allocating on maxBid cores. The allocation
considers the exact number of cores to be used, which is the
minimum between maxBid cores and the number of cores
equivalent to the number of tasks in the job. The exact number
of cores could be higher than that of PBA as no profiling
information is available to identify it exploiting the maximum
parallelism. To find an efficient allocation, we try to balance
load across the used cores. Every task of the job is allocated
to a core such that the processing load is balanced over the
cores. In case the number of tasks in the job is higher than the
number of cores, the approach allocates highly communicating
tasks on the same core to reduce the communication overhead.
These considerations can lead to minimal response time and
thus completion time of the job, resulting in maximum value.
After finding the allocation, the value is computed as the value
in the corresponding value curve at the completion time by
taking the arrival time into account. Similarly, value achieved
by each job is computed.

From all the jobs, the one leading to the maximum value
(maxV aluableJob), corresponding allocation and value is

ALGORITHM 2: Non-profiling Based Resource Allo-
cation

Input: Incoming Jobs with arrival times, Value curves of
Jobs, HPC Platform HP .

Output: Resource Allocation for Incoming Jobs.
1 Steps 1 to 6 of Algorithm 1;
2 if JobQueue contains job(s) having positive values then
3 for count = 0 to JobQueue.size() do
4 Collect bids from all nodes and select maxBid;
5 if maxBid > 0 then
6 Compute values of unscheduled jobs by finding

allocations on maxBid cores;
7 Select maxV aluableJob, its allocation and

respective value;
8 Identify voltage/frequency levels of used cores in

the allocation to execute allocated tasks to
optimize value and energy;

9 Schedule maxV aluableJob on node having
maxBid cores by following the allocation to
perform execution at found voltage/frequency
levels;

10 Update platform resources;
11 end
12 end
13 end

selected (line 7). Then, voltage/frequency levels are identified
in step ii) as described subsequently.

Step ii) follows Algorithm 3, which takes the set of voltage
scaling (VS) levels V available for cores as input and identifies
the VS levels to be applied on cores to execute allocated tasks.
For each task t, available VS levels are applied, and response
time and value of the job at its completion is computed.
From here onwards, applying voltage scaling on a task implies
applying voltage scaling on the allocated core for the task.
Similarly, VS level of a task implies VS level of the allocated
core to execute the task. The value at completion is estimated
by looking into the corresponding value curve while taking
the arrival time of the job into account. If an applied VS on a
task is valuable (valuejob completition > 0), then total energy
consumption of the job is calculated from Equation (1). Next,
value at per unit of energy consumption (V alPerUnitEnerg)
is computed. Thereafter, the task and its VS level corre-
sponding to maximum V alPerUnitEnerg is found to fix the
voltage level to execute the task. The same process is repeated
to find VS levels of other tasks. Once voltage/frequency levels
are identified, the maxV aluableJob is scheduled on the node
having maxBid cores based on the allocation to perform
execution at the identified voltage/frequency levels (Algorithm
2).

V. EXPERIMENTAL RESULTS

The proposed value and energy optimizing resource allo-
cation approaches have been implemented in a C++ prototype
and integrated with a SystemC functional simulator. As a
workload, job models from historical data of an industrial
HPC system at High Performance Computing Center Stuttgart
(HLRS) are considered. The jobs in the workload have varying
arrival time. It is considered that higher numbers of jobs arrive
in peak times as compared to off-peak times. To sufficiently
stress the platform, we consider all the jobs arriving over a day,
i.e., 24-hour period. Each job contains a set of dependent tasks
as described earlier. For each task, the worst-case execution
time (WCET) is known a priori and specified in the job model.
The number of tasks in the jobs varies from 5 to 10. Further,
it is assumed that the value curve of each job is given.

To evaluate our approaches under different load conditions,



ALGORITHM 3: Voltage/frequency Identification

Input: V = {vi|∀i ∈ [1, · · · , n]}.
Output: VS levels of tasks.

1 repeat
2 for each task t whose VS level is not fixed do
3 for each VS level vi do
4 Apply VS vi on t, and compute response time

and valuejob completition;
5 if valuejob completition > 0 then
6 Calculate total energy consumption Etotal

(by Equation 1) when applying vi on t;

7 V alPerUnitEnerg =
valuejob completition

Etotal
;

8 end
9 end

10 end
11 Find task tf & VS level vf corresponding to maximum

V alPerUnitEnerg;
12 Fix voltage of tf to vf ;
13 until VS levels of all tasks are not fixed;

we conducted experiments with varied arrival rates of jobs
while keeping higher number of arrivals during peak times over
off-peak times. We have considered low, moderate and high
arrival rates, where jobs arrive in the orders of a few seconds,
dozens of seconds and minutes, respectively. It is assured that
the total number of jobs for different arrival rates remains
the same as the number of jobs considered for 24 hours.
To evaluate our approaches for different number of available
servers (nodes), varying number of nodes are considered in
the HPC platform. Further, the number of cores at each node
is also varied to evaluate the approaches for assorted chip
manufacturing technologies, where different number of cores
can be integrated within a physical chip. The platform cores
are assumed as the cores of Intel Core M processor, which
supports 6 voltage/frequency levels of operation.

In addition to overall value achieved by executing the
arrived jobs and required energy consumption for the exe-
cution, we also evaluate the percentage of rejected jobs that
are removed from the job queue as their value becomes zero
before the resources become available to allocate them. The
rejected jobs also include jobs achieving zero value after
their execution, which can be prevented by employing proper
admission control and schedulability analysis.

A. Experimental Baselines

As discussed in Section II, the existing algorithms applying
DVFS to execute jobs optimize either only for value [8] or
energy [17], and both value and energy optimizing approaches
do not consider jobs containing dependent tasks [5]. We
compare results obtained from our approaches (PBA and NBA)
to those of [8] and [17] as they can be applied to jobs
containing dependent tasks. In [8], the cores are assumed
to operate at the highest supported voltage level to optimize
the value. This approach is referred to as ValOpt and helps
to recognize energy savings by approaches applying DVFS.
To employ ValOpt, the voltage/frequency identification step
(line 8, in Algorithm 2) has been removed. The approach of
[17] identifies voltage/frequency levels of cores to execute the
allocated tasks in order to optimize only energy consumption
and all the allocated tasks on a core execute on a fixed
identified voltage/frequency level, referred to as fixing cores
power states (FCPS). Therefore, it has been extended to
optimize both the value and energy for a fair comparison. To
employ this approach, the greedy algorithm of [17] that fixes
voltage/frequency levels of cores one-by-one during consec-
utive iterations is called for voltage/frequency identification

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

High Medium Low

E
n
e
rg
y
�

(n
o
rm

a
li
ze
d
�w
.r
.t
�V
a
lO
p
t�
a
t�
H
ig
h
�R
a
te
)

V
a
lu
e
�

(n
o
rm

a
li
ze
d
�w
.r
.t
.�
V
a
lO
p
t�
a
t�
H
ig
h
�R
a
te
)

Jobs�Arrival�Rate

NBA�FCPS NBA�FTPS PBA

NBA�FCPS NBA�FTPS PBA

Value

Energy

Fig. 4. Value and Energy at different arrival rates.

in Algorithm 2 (line 8) and the approach is referred to as
NBA-FCPS. Our approach identifies voltage/frequency levels
of tasks in the similar manner, where tasks scheduled on a core
can be executed on different voltages, referred to as fixing tasks
power states (FTPS). In this case, our NBA approach has been
referred to as NBA-FTPS.

B. Value and energy consumption at different arrival rates

Figure 4 shows the overall value and energy consumption
when various approaches are employed for different arrival
rates of jobs. A high arrival rate indicates that the jobs arrive
quite frequently, whereas less frequently in low arrival rate.
The value and energy estimates are normalized with respect
to (w.r.t.) the value and energy by ValOpt approach at high
arrival rate. The shown results have been computed for 3 nodes,
where each node contains 8 cores. A couple of observations
can be made from the figure. 1) The value obtained by all
the approaches increases from high to low arrival rates as
more jobs are processed before their value becomes zero due
to late availability of cores. 2) The value obtained by PBA
approach is always higher than that of other approaches due
to joint optimization effect. On an average, PBA achieves 5.6%
higher value than that of ValOpt. The joint optimization also
leads to higher energy consumption when jobs arrival rate is
not high. 3) The energy consumption by NBA-FCTS and NB-
FTPS is close to each other and lower than that of ValOpt. On
an average, NBA-FCTS and PBA reduce energy consumption
by 15.8% and 5.8%, respectively, when compared to ValOpt.
Therefore, for the sake of both value and energy optimization,
PBA is recommended to be employed.

C. Value and energy consumption with varying number of
nodes and varying number of cores in each node

Figure 5 shows the influence of the number of nodes
(servers) on the overall value and energy consumption. At each
node, a total of 8 cores are considered. The shown results
are for high arrival rate of the jobs. The value and energy
results are normalized w.r.t. the value and energy by ValOpt
approach at 2 nodes. It can be observed that the overall value
by all the approaches increases with the number of nodes due
to increased processing capability leading to completion of
higher number of jobs before their value becomes zero. It can
also be observed that PBA achieves higher overall value than
other approaches. Further, on an average, PBA performs better
than other approaches if both the value and energy metrics are
jointly evaluated as value divided by energy.

We also have computed overall value and energy consump-
tion when number of cores at each node is varied for a fixed
number of nodes. It has been observed that the value by all
the approaches increases with the number of cores due to



0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5 6

E
n
e
rg
y
�

(n
o
rm

a
li
ze
d
�w
.r
.t
�V
a
lO
p
t
a
t�
2
�N
o
d
e
s)

V
a
lu
e
�

(n
o
rm

a
li
ze
d
�w
.r
.t
.�
V
a
lO
p
t
a
t�
2
�N
o
d
e
s)

#�Nodes

NBA�FCPS NBA�FTPS PBA

NBA�FCPS NBA�FTPS PBA

Value

Energy

Fig. 5. Value and Energy with varying number of nodes.

TABLE I. PERCENTAGE OF REJECTED JOBS AT DIFFERENT ARRIVAL

RATES

ValOpt NBA-FCPS NBA-FTPS PBA

High 49.0% 49.4% 48.8% 46.8%
Medium 29.2% 30.8% 30.0% 22.0%

Low 13.0% 12.8% 12.2% 00.0%

Average 30.4% 31.0% 30.3% 22.9%

increased processing capability. Further, PBA achieves higher
overall value than other approaches and better results when
both the value and energy need to be considered. However, in
case advance profiling of jobs is not possible, NBA-FTPS can
be employed to achieve a better trade-off between value and
energy.

D. Percentage of rejected jobs

Table I shows the rejected jobs (%) at different arrival
rates when various approaches are employed. The average over
different arrival rates is also shown for all the approaches.
The tabulated results have been computed by considering 3
nodes, where each node contains 8 cores. It can be observed
that, on an average, our proposed approaches NBA-FTPS and
PBA reject lesser number of jobs as compared to baseline
approaches. The PBA has the lowest rejection of jobs as each
job is allocated on the exact number of cores exploiting all
the potential parallelism with the help of design-time profiled
results. This result in cores availability for higher number of
jobs before their value become zero and thus lowers rejections.
It should be noted that rejection rate by PBA for low arrival
rate is not always zero and varies with number of cores/nodes.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed value and energy optimizing resource
allocation approaches for HPC data centers. We show that
the approaches combine identification of efficient allocation
and appropriate voltage/frequency levels to jointly optimize
value and energy consumption for executing jobs containing
dependent tasks. It has been shown that our approaches sig-
nificantly reduce energy consumption and improve value. In
future, we plan to extend our approaches to heterogeneous
HPC data centers, where servers may contain different types
of processing cores.

ACKNOWLEDGMENT

This work is funded by EU FP7 DreamCloud project under
grant agreement no. 611411.

REFERENCES

[1] I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole,
“Energy-efficient application-aware online provisioning for virtualized
clouds and data centers,” in International Green Computing Conference
(IGCC), 2010, pp. 31–45.

[2] J. Koomey, “Growth in data center electricity use 2005 to 2010,” A
report by Analytical Press, completed at the request of The New York
Times, 2011.

[3] Intel Core i7 Processor Series Datasheet, Vol. 1, Intel Corporation,
2010, http://www.intel.com/.

[4] R. N. Calheiros and R. Buyya, “Energy-Efficient Scheduling of Urgent
Bag-of-Tasks Applications in Clouds Through DVFS,” in Proceedings
of IEEE International Conference on Cloud Computing Technology and
Science (CLOUDCOM), 2014, pp. 342–349.

[5] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel,
G. A. Koenig, S. Powers, M. Hilton, R. Rambharos, and S. Poole,
“Utility maximizing dynamic resource management in an oversub-
scribed energy-constrained heterogeneous computing system,” Sustain-
able Computing: Informatics and Systems, vol. 5, pp. 14–30, 2015.

[6] A. K. Singh, P. Dziurzanski, and L. S. Indrusiak, “Market-inspired Dy-
namic Resource Allocation in Many-core High Performance Computing
Systems,” in IEEE International Conference on High Performance
Computing & Simulation (HPCS), 2015, pp. 413–420.

[7] C. S. Yeo and R. Buyya, “A Taxonomy of Market-based Resource
Management Systems for Utility-driven Cluster Computing,” Softw.
Pract. Exper., vol. 36, no. 13, pp. 1381–1419, 2006.

[8] T. Theocharides, M. K. Michael, M. Polycarpou, and A. Dingankar,
“Hardware-enabled Dynamic Resource Allocation for Manycore Sys-
tems Using Bidding-based System Feedback,” EURASIP J. Embedded
Syst., vol. 2010, pp. 3:1–3:21, 2010.

[9] C. D. Locke, “Best-effort Decision-making for Real-time Scheduling,”
Ph.D. dissertation, Pittsburgh, PA, USA, 1986, aAI8702895.

[10] A. M. Burkimsher, “Fair, responsive scheduling of engineering work-
flows on computing grids,” Ph.D. dissertation, UK, 2014.

[11] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing,” in Proceedings of Conference on Power Aware
Computing and Systems (HotPower), 2008, pp. 10–10.

[12] A. Beloglazov and R. Buyya, “Optimal Online Deterministic Algo-
rithms and Adaptive Heuristics for Energy and Performance Efficient
Dynamic Consolidation of Virtual Machines in Cloud Data Centers,”
Concurr. Comput. : Pract. Exper., vol. 24, no. 13, pp. 1397–1420, 2012.

[13] G. von Laszewski, L. Wang, A. Younge, and X. He, “Power-aware
scheduling of virtual machines in DVFS-enabled clusters,” in Pro-
ceedings of IEEE International Conference on Cluster Computing and
Workshops (CLUSTER), 2009, pp. 1–10.

[14] X. Ruan, X. Qin, Z. Zong, K. Bellam, and M. Nijim, “An Energy-
Efficient Scheduling Algorithm Using Dynamic Voltage Scaling for
Parallel Applications on Clusters,” in Proceedings of International
Conference on Computer Communications and Networks (ICCCN),
2007, pp. 735–740.

[15] L. Wang, G. von Laszewski, J. Dayal, and F. Wang, “Towards Energy
Aware Scheduling for Precedence Constrained Parallel Tasks in a Clus-
ter with DVFS,” in Proceedings of IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGRID), 2010, pp. 368–377.

[16] Y. Tian, C. Lin, Z. Chen, J. Wan, and X. Peng, “Performance evaluation
and dynamic optimization of speed scaling on web servers in cloud
computing,” Tsinghua Science and Technology, pp. 298–307, 2013.

[17] A. K. Singh, A. Das, and A. Kumar, “Energy Optimization by Ex-
ploiting Execution Slacks in Streaming Applications on Multiprocessor
Systems,” in Proceedings of ACM Design Automation Conference
(DAC), 2013, pp. 115:1–115:7.

[18] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, “A
multi-objective approach for workflow scheduling in heterogeneous
environments,” in IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2012, pp. 300–309.

[19] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and
R. Sakellariou, “Energy-constrained provisioning for scientific workflow
ensembles,” in IEEE International Conference on Cloud and Green
Computing (CGC), 2013, pp. 34–41.

[20] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing Risk and Reward
in a Market-Based Task Service,” in IEEE International Symposium on
High Performance Distributed Computing (HPDC), 2004, pp. 160–169.

[21] S. Eyerman and L. Eeckhout, “Fine-grained DVFS Using On-chip
Regulators,” ACM Trans. Archit. Code Optim., vol. 8, no. 1, pp. 1:1–
1:24, 2011.

[22] M. Sayuti and L. Indrusiak, “Real-time low-power task mapping in
Networks-on-Chip,” in Proceedings of IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2013, pp. 14–19.


