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Abstract: This paper presents a novel design of a High Impedance Surface (HIS) to improve the

magnetic field strength of a Radio Frequency (RF) coil at 63.8 MHz, suitable for 1.5T magnetic res-

onance imaging (MRI) systems. The HIS is miniaturized using distributed interdigital capacitors.

A HIS with an electrically small unit cell (λ/94) and is positioned between a RF transmit-receive

(TR) coil and an RF shield. The magnitude of the magnetic field from an RF coil when coupled to a

dielectric phantom load (mimicking a biological sample) was estimated using numerical simulation

(finite integral methods) and corroborated with measurements. Simulated median improvements

in magnetic field inside a dielectric phantom range from approximately 18% to 32% depending on

the area of the HIS.

1. Introduction

Magnetic Resonance Imaging (MRI) is a technology which yields tomographic information of

the distribution of hydrogen atoms in a biological sample [1, 2]. The MRI technique is based on

Nuclear Magnetic Resonance (NMR) phenomenon that excites the nuclear spin alignment in the

presence of a static magnetic field and detects the subsequent Larmor precession of the nuclear

spin magnetic moment by the process of Free Induction Decay (FID). In conventional MRI the

protons within the water content of biological tissues are the nuclei of interest. MRI has been

used for many diagnostic medical imaging applications in multiple organs in the human body,

[3]. Spin excitation and subsequent signal detection of the FID is achieved with Radio Frequency

(RF) coils resonating at the Larmor frequency of the relevant nucleus being imaged, which scales

linearly with the applied static magnetic field strength. These coils are typically placed inside a

Perfect Electrical Conductor (PEC) ground plane (the RF shield) in order to shield the resonators

from other conducting objects inside the MRI system such as the gradient field. A typical RF coil

will be proximal to the subjects anatomy in order to maximize the coupling to the sample. The

signal-to-noise ratio (SNR) of the sampled signal is determined by the sensitivity of the RF coil

to the biological sample, which is a function of the RF magnetic field. The Larmor precession in

the biological sample not only induces RF current in the RF coil but also induces an out-of-phase

RF current in the PEC shield which reduces the maximum available SNR, thus reducing the MRI
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image quality, [4].

Previous research has shown that metamaterials, [5], can be used to improve the SNR of RF

coils in MRI systems. A metamaterial is a periodic arrangement of resonant elements to achieve

properties such as negative permeability and permittivity which are not observable otherwise. Pre-

vious studies have explored several techniques which include lattice of parallel and conducting

thin wires [6], wave flux guides and lenses, specifically Swiss rolls, [7], and capacitively loaded

metallic rings (CLRs) [8], which have a key advantage over other devices when they are designed

as in a cubic lattice as they achieve 3D isotropy (homogeneity) which is essential for uniform H1

RF field coverage over the biological sample, [9]. It was proposed in, [9], to use a magneto induc-

tive (MI) lens to improve SNR of the images obtained by a RF surface coil operating at different

Larmor frequencies. This study found that the SNR of the MR image could be increased by using

a combination of a RF coil with a MI lens on a 3T MRI system, however, improvements at 0.5T

and 1.5T were not as high. Recent research, [10], has investigated the use of a metasurface inside a

dielectric medium with a biological sample showing an 2.7 fold increase in SNR. RF surface coils

are usually placed at close proximity to the patient, whereas, metamaterial flux guides have also

been used to couple the signal from the sample to an RF coil that is less proximal thus enabling

interesting receiver possibilities for enhanced SNR e.g. by cryogenic cooling of the RF coil, [7].

Although the use of metamaterial lenses has advantages, the homogeneity of the delivered RF field

is an area which could be improved through the use of High Impedance Surface (HIS) which can

offer non-focused enhancements of magnetic fields.

The purpose of this study was to investigate the potential benefits of the use of HIS and to

present a design methodology for improving the strength of the H1 RF field inside a dielectric

phantom (acting as human body or equivalent in an MRI scan). A Perfect Magnetic Conductor

(PMC) has a reflection phase of 0◦, whilst a PEC has a 180◦ reflection phase for a generally

incident plane wave, [11]. The properties of a PMC can be produced using a HIS which is an

Artificial Magnetic Conductor (AMC) that exhibits in-phase reflection properties over a specific

frequency range, [12]. Previous studies, [13, 14], have reported the properties of HIS with RF

coils on a 7T MRI system operating at 300MHz which used electrically small HIS unit cells of

only 7.5% of free space wavelength. Using this method the H1-field magnitude was improved by

47%. The challenge for successful implementation of HIS at lower RF frequencies of the order

60 MHz to 130 MHz which are the operating frequencies of a typical clinical MR scanner is the

miniaturization of the HIS unit cells. Techniques for reducing the cell size dimensions of AMCs

have been presented using multilayer structures, [15], lumped elements, [16, 17], and interdigital

capacitance [18, 19]. This study aims to improve the magnetic field strength of the RF field of coils

operational on a 1.5T MRI system at 63.8MHz. To accomplish this, an interdigital capacitance

approach is used for the unit cell of the HIS. The efficacy of the approach is demonstrated with

simulations and measurements of the magnetic field within a dielectric phantom for various design

parameters of the proposed HIS.

2. MRI Concept and HIS Design

Fig.1a shows a schematic representation of a shielded (PEC) RF coil which is proximal to a di-

electric phantom where the implementation is appropriate for a classic planar surface coil imaging

approach. Fig. 1b shows the proposed system which includes a capacitive layer between the RF

coil and PEC shield. The cross-sectional area (X2
HIS) of the capacitive layer and PEC shield are

equal and it is assumed that the thickness of the capacitive and PEC layers are electrically small.
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The combination of the capacitive layer and the PEC shield forms a high impedance surface (HIS).

The properties of the dielectric phantom were ǫr = 65 and σ = 0.4 S/m, [20], with dimensions

x=14cm, y=33.5cm and z=23cm. The distance between the coil and phantom, s, was 5mm which

is similar to practical MRI systems for safety reasons [21].

x
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z

(a) PEC shield 
only

h+d

hd

s

s

PEC

Capacitor layer RF coilHuman body 
Phantom

(b) HIS model

XHIS

Fig. 1. Cross-sectional view of the RF system (a) PEC shield only (b) HIS model.

Fig.2 shows (a) the cross section of the HIS (Y0 denotes the admittance of freespace), (b) a unit

cell of the proposed capacitive layer which comprises of inter-digital metallic elements and (c)

the equivalent circuit of the HIS. The PEC layer, spaced a distance, h, away from the capacitive

layer, has an equivalent admittance that is inductive (YPEC = −jcot(βh)) where β is the freespace

propagation constant. The capacitive surface acts as a shunt admittance such that the total input

admittance is given by Yin = YPEC + YC .

The inter-digital capacitive surface was adopted in order to maximize the capacitance density,

[18], and provide an electrically small unit cell design. It was assumed that the capacitive layer

has a 0.8mm thick FR4 substrate (ǫr = 4.3, tanδ = 0.025) and that it is placed 50mm away from

the RF shield which acts as the ground plane for the HIS. This thickness is commensurate with

the practical dimensions that might be found in MRI systems. In order to achieve a dual polarised

HIS a second capacitive surface, labelled ”back surface” in Fig. 2a, is on the reverse of the FR4

substrate, however, the back surface is rotated through 90◦ and as such the unit cell is rotationally

symmetric. An illustration of the orientations of the digits is shown in Fig. 2b.

Front surfaceBack surface

h

PEC Y0

(a)

gd

wd

D

(b)

YinYcYPEC

(c)

Fig. 2. (a) Cross section of HIS, (b) front layer of capacitive surface and (c) equivalent circuit of

HIS

Initially the design of the HIS was carried out using approximations for interdigital capacitance,

[22], using (1) where the units of capacitance are pF. When using the approximation equations it
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was assumed that the second capacitive layer on the back surface was transparent.

C =
ǫeff (N − 1)D

18π
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k = tan2
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, a = wd/2, b =
wd + gd

2
, k′ =

√
1− k2 (3)

where K(k) is the complete elliptic integral of the first kind and its complement is K’(k), D is the

digit length, N is the number of digits, ǫeff = ǫr+1

2
, wd is the width of the digits and gd is the space

between the digits. In the approximation the loss of the substrate is not included, however, this

was included in later full field simulations. The reflection coefficient of the HIS can be calculated

using (4). This approximation considerably simplifies the design process when compared to a full

field analysis and optimization.

ρ =
Y0 − Yin

Y0 + Yin

(4)

Fig. 3 shows the reflection phase for the proposed dual polarised HIS where D=48.5mm, with

a 0.5mm gap between the end of the digits and the metallic horizontal strip. The number of digits,

N=64, wd= 0.5mm, gd= 0.25mm, the unit cell inter element spacing is 1mm resulting in a unit

cell periodicity of 50mm which is λ/94 at 63.8MHz. For comparison CST Microwave Studio

frequency domain simulations were carried out using periodic Floquet mode boundary conditions

to approximate an infinite HIS and the CST simulations included the substrate and copper losses

and both capacitive layers were incorporated into the simulation. It can be seen that there is good

agreement between the approximate equivalent circuit model and the CST simulations. Fig. 4

shows a photograph of the manufactured HIS to be used in later measurements.

3. RF Coil Design and Characterisation

Fig. 5 shows an schematic of a single loop RF transmit/receive surface coil which is realized with

lumped capacitance to tune the resonance of the coil to the appropriate Larmor frequency, specif-

ically 63.8MHz for a 1.5T MRI system. The coil has an equivalent circuit of a series inductance

and capacitance where the inductance (nH) can be estimated using (5), [23] where the dimensions

are in mm. The required capacitance to tune the resonant frequency to 63.8MHz can be calculated

accordingly. Fig. 5 also shows the manufactured coil including lumped components and balun.

L =
0.921

[

(S1 + S2) log
(

2S1S2

b+c

)

− S1 log(S1 + g)− S2 log(S2 + g)
]

+0.4
[

2g − S1+S2

2
+ 0.447(b+ c)

] (5)
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Fig. 3. Reflection phase of proposed dual polarised HIS

Fig. 4. Front layer of manufactured dual polarised capacitive surface.
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Fig. 5. (a) Schematic and (b) manufacture RF coil
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The dimensions of the coil are shown in Fig. 5 with a coil metal thickness, b. The designed coil

has dimensions, S1=120mm, S2=150 mm, b=32µm, g=192 mm and c=6mm with a 1.6mm thick

FR4 substrate. The coil material was assumed to be copper with no surface roughness and a con-

ductivity of 5.8*107 S/m. The resulting equivalent inductance and total capacitance are (L=414nH)

and (Ct=15pF) respectively. The coil was simulated using CST Microwave Studio incorporating

seven capacitors (C1 to C5, Cm and Ctune as illustrated in Fig. 5). The fixed capacitors, C1 to C5,

are 100pF and Cm and Ctune are variable capacitors (7-100) pF. Cm is used to match the coil in the

presence of the dielectric phantom and HIS and Ctune is used to tune the resonant frequency of the

RF coil. The RF power was fed to the coil through a balun circuit which is connected either side

of Cm.

Fig. 6 shows the simulated and measured input match (S11) when the coil is spaced 5mm away

from a dielectric phantom consisting of 5L distilled water and 200g Sodium Chloride which was

placed inside a plastic container with the same dimensions as used in Fig. 1. In the experimen-

tal system the manufactured coil was connected to an Agilent E5071B Vector Network Analyser

(VNA) and the resonant frequency was tuned to 63.8MHz using the variable capacitor, Ctune, in

the presence of the HIS and dielectric phantom and the magnitude of S11 was controlled using

Cm. Also presented is the S11 when the HIS is removed which has the effect of shifting the

measured resonance from 63.8MHz to 64.6MHz. It was possible to tune the resonant frequency

back to 63.8MHz with the use of Ctune for later field measurements. The difference between mea-

surement and simulation is due to tolerances in the lumped capacitor values, the coil inductance

approximation and material property assumptions.
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Fig. 6. Simulation and measurement of input match of RF coil

4. Simulated results with a dielectric phantom

In order to reduce simulation complexity for the scenario shown in Fig. 1 the capacitive layer

was implemented as an effective surface impedance model which has been previously shown to be

an effective approach [8, 14]. The surface impedance was determined using full field simulations

of the dual polarised unit cell of the capacitive layer using CST. The impedance is complex and

includes the losses due to the FR4 substrate and copper losses. Fig. 7 shows the CST simulation

geometry including the dielectric phantom, RF coil, capacitive layer and PEC shield.

CST simulations were carried out for both models in Fig. 1 where the magnitude of the magnetic
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Dielectric 

phantom

RF coil

Fig. 7. CST simulation geometry.

field inside the dielectric phantom was monitored along the x-axis (y=z=0) and y-axis (x=140mm,

z=0) assuming s=d=5mm and the RF coil was fed by a 1W, 50Ω source. For a fair comparison the

magnetic field was normalised to the square root of the accepted power in the phantom.
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Fig. 8. Normalised magnitude of simulated magnetic field (left) and improvement in normalised

magnetic field (right), along x axis for varying HIS area.

Of particular interest is the impact of the cross-sectional area of the HIS where in practice there

would be a trade off between magnetic field enhancement and available space in an MRI system

which typically have internal diameters of approximately 60cm. Fig. 8 (left) shows the normalised

magnetic field when XHIS =40cm and the PEC only case, along the x-axis. It can be seen that there

is an improvement over the full range of the x-axis. A more in-depth analysis is shown in Fig. 8

(right) which shows the improvement in magnetic field compared to a PEC shield of the same

cross section. As XHIS increases the improvement in magnetic field increases. Similar results are

observed along the y-axis, shown in Fig. 9.

Further analysis of the magnetic field throughout the volume of the dielectric phantom, in the

form a cumulative density function of the magnetic field, is shown in Fig. 10 and the median

improvement in magnetic field inside the dielectric phantom, compared to the PEC only case,

versus cross-sectional dimension is shown in Table 1. Fig.11 shows the magnitude of the magnetic

field in xy plane and further illustrates the improvement which can be achieved.
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Table 1 Simulated median improvement in RF magnetic field (%) versus XHIS

XHIS 20cm 30cm 40cm 50cm 60cm

% improvement 18 22 24 31 32

5. Experimental Results with a Dielectric Phantom

To demonstrate the concept a capacitive layer was manufactured for XHIS=40cm using a chemi-

cally etched 32µm copper layer on a FR4 substrate comprising of four (20cm x 20cm) individual

surfaces. Fig. 12 shows a photograph of the experimental set-up.

A 5cm diameter magnetic flux probe which was built in-house using semi-rigid coaxial cable

was manufactured and the transmission coefficient (S21) between the RF coil and flux probe was

measured such that comparisons between the models in Fig. 1 could be carried out. As the flux

probe is an electrically small loop, where the resonant frequency of the loop was measured to

be 2.2GHz, it was assumed that the probe will have negligible effect on the measurements and

the comparisons against simulations is valid. Fig. 13 (left) shows the normalised measured S21

along the x-axis (y = z = 0) and Fig. 13 (right) shows the normalised S21 along the y-axis

(x = 140mm, z = 0). The S21 was normalised to the maximum of the PEC case for ease of

comparison. The improvement in magnetic field (x=5mm and x=140mm, y=z=0) is 27% and 23%
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respectively which is lower than the simulations due to tolerances in fabrication and uncertainties

in material losses, however, the overall trends are similar.

6. Conclusion

In this paper, numerical simulations and experimental results show that a miniaturized HIS can be

used for improving the magnetic field for MRI applications where the proposed HIS has a unit cell

size of λ/94 at 63.8MHz. Moreover, our work has investigated the normalised H1 field provided

by an RF coil with a HIS and homogeneous dielectric phantom for a range of HIS cross-sectional

area, showing that the improvement in magnetic field increases with HIS area. The concept has

been demonstrated through measurements. Future work will focus on demonstrating the approach

9



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140

N
o

rm
il

ze
d

 S
2

1

x(mm)

PEC 40cm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

-150 -100 -50 0 50 100 150

N
o

rm
il

iz
e

d
 S

2
1

y(mm)

PEC 40cm

Fig. 13. Normalised magnitude of measured S21 along x axis (left) and y axis (right)

in a MRI scanner, extending the approach to a cylindrical MRI geometry, using RF coil arrays and

multi-nuclear MRI applications.
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