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Abstract. We present a novel approach for reducing manual effort when testing 

autonomous robot control algorithms. We use procedural content generation, as 

developed for the film and video game industries, to create a diverse range of 

test situations. We execute these in the Player/Stage robot simulator and auto-

matically rate them for their safety significance using an event-based scoring 

system. Situations exhibiting dangerous behaviour will score highly, and are 

thus flagged for the attention of a safety engineer. This process removes the 

time-consuming tasks of hand-crafting and monitoring situations while testing 

an autonomous robot control algorithm. We present a case study of the pro-

posed approach – we generated 500 randomised situations, and our prototype 

tool simulated and rated them. We have analysed the three highest rated situa-

tions in depth, and this analysis revealed weaknesses in the smoothed nearness-

diagram control algorithm. 
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1     Introduction 

There is much work afoot to bring autonomous robots (AR) into public spaces, 

both on the ground and in the air. We therefore need high confidence that their behav-

iour will be safe. This is difficult, however, given the complexity of environments that 

the robots must interact with, and the scope of authority that they need in order to 

effectively respond to those environments. There have already been minor accidents 

caused by the control software of autonomous vehicles, for example in the DARPA 

Urban Challenge [1], and there are likely to be more as their numbers increase. We 

need ways to verify and validate such control software, finding ways in which it could 

cause an accident, whether due to intrinsic algorithmic limitations or implementation-

specific faults. 

One approach would be testing AR by putting them through linear scenarios, rep-

resented as a sequence of stimuli, and checking the safety of the resulting behaviour. 

This is inadequate, however: AR will influence their environment, and that will influ-

ence their own future behaviour. This is true, of course, for any reactive system, but 

AR may have many ways to influence their environment (e.g. movement, manipulator 
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arms, communication) and many ways to respond to those changes (through sensing, 

model-building and prediction). We thus need to understand how the behaviour of the 

AR will develop from a given starting point. We therefore need to test AR by generat-

ing situations – combinations of maps, peer entities, and missions or objectives, into 

which a (simulated) AR can be placed. Rather than providing a fixed sequence of 

stimuli, simulated situations can react to the AR’s actions. Given such a situation, we 

can assess whether the AR achieves safe behaviour.  

For example, one situation might have an autonomous ground vehicle driving 

down an empty motorway to deliver a package. Another might modify the mission to 

have a tight time limit and stationary traffic jam. A third situation might instead pep-

per the motorway with abandoned cars and spilt fuel. Each of these would test differ-

ent aspects of the vehicle’s control software. 
We can observe that a situation-based approach can provide a degree of both veri-

fication (of the implementation against a vehicle behaviour specification) and valida-

tion (of the behaviour specification against the behaviour that we, in retrospect, want 

from it, now that we’ve seen the consequences). 

There are two major obstacles for situation-based testing. First, useful situation-

based testing will require a wide variety of situations, and creating those in a simula-

tion requires considerable effort – for example, engineers need to list the precise posi-

tion, heading and plan of each vehicle involved in each situation. This involves a lot 

of work, perhaps engineer-weeks for a complex situation, and this thus limits the 

range of situations that can be studied. Martin and Hughes report similar problems 

with scenarios for training simulations [2]. 

Second, the diversity of generated situations is important. In particular, we do not 

want biases in the generation of situations that mirror the biases of the designers of 

the control algorithms; we do not want our test set to have the same ‘blind spots’ as 
the software. Research on n-version programming suggests that this is likely – in 

Knight and Leveson’s classic experiment [3], different programmers working from 

the same specification produced programs that had largely similar errors. It may be 

that different situation designers produce situation sets which miss similar challenges. 

A response to these two problems is to generate situations automatically. This is 

the response taken in the simulation-for-training field, where it is called Automatic 

Situation Generation (ASG) e.g. Martin and Hughes [2] and in the video games field, 

where it is called Procedural Content Generation (PCG) e.g. Togelius et al [4, 5]. 

PCG is often used in situations where the manual creation of content would be pro-

hibitively time-consuming or expensive [6]. It also allows highly detailed content to 

be stored extremely efficiently—only the parameter values input into the algorithms 

need to be stored. PCG has the potential to produce output that surprises the PCG 

engine developers; this has often been observed in video game uses [7]. 

In this paper we show how PCG techniques can be adapted to test AR control 

software, and demonstrate this by application to a small case study. In section 2 we 

identify the requirements for such an approach, in section 3 we explain what we have 

implemented, and in section 4 we describe an initial experimental evaluation. Section 

5 compares our approach against previous work; section 6 summarises the paper and 

identifies future possibilities. 



2     Requirements for a PCG Testing Approach 

The major criterion for evaluating a situation-based testing approach is its ability to 

find the kind of problem behaviours that AR may exhibit. Here, for simplicity, we 

have limited our scope; we only consider how the combination of sensing, sensor 

processing and driving algorithms can lead to dangerous movement behaviour. To 

support this, our situation generator needs the ability to generate static terrain, includ-

ing plausible variations of terrain type such as rocky deserts, cave systems, and urban 

areas. It also needs to generate moving obstacles, such as peer robots, as these are 

particularly difficult to sense and respond to appropriately. 

A key requirement is that the PCG technique generates a wide range of diverse sit-

uations. Beyond mere diversity, it is also important to generate situations that have a 

high likelihood of finding dangerous behaviour; it would be easy for PCG to spend 

most of its time generating safe situations, which is computationally inefficient.  

Regardless of the efficiency of the generator, an effective PCG technique will gen-

erate a great many situations, necessitating a great many simulation runs, and hence 

generating a very large amount of data. We thus need a way to rationalise the output 

before it is presented to human engineers. At a minimum, this must filter out runs that 

are safe and as expected. Beyond that, the tool must prioritise the runs in some way, 

allowing the humans to focus first on the most interesting ones. 

Ideally, we would want to gain confidence that the set of situations generated is in 

some sense ‘complete’, at least for the scope of situations being considered. This 
could be approached by  measuring the “situation coverage” achieved by a set of situ-

ations – given the range of situations that could potentially be generated, the propor-

tion that actually have been generated. This could be composed from a variety of 

components such as potential for pair-wise interactions between entity types, where 

entities include (for example) the AR, peer vehicles, roads, walls, and solid obstacles, 

and interactions include (for example) sensing, proximity, collision avoidance and 

“moving in formation with”. Previous work on agent interaction ontologies (e.g. 
Nguyen [8]) and on road-traffic interaction patterns and accident proximity measures 

(e.g. Archer [9]) will be relevant here. 

Given the proof-of-concept nature of the work described here, we have not at-

tempted to address the completeness issue. Instead, we have limited ourselves to the 

assertion that if the method discovers any specification or implementation flaws then 

it has some value. The decision to use it then becomes a return-on-investment ques-

tion.  

3     Proposed Method  

The basic idea is to use PCG to create situations, and then run them in the simula-

tor to observe how the robot (specifically, its control software in command of the 

robot) behaves in them. The process takes place in three stages. 

The first stage uses PCG algorithms to create a binary terrain map, i.e., terrain is 

either navigable or obstructed. A mission generator then reads the map and places a 



number of robots within the environment, ensuring they are initially unobstructed. It 

then assigns each robot a randomised route, which the robot control algorithm must 

follow during the second stage. The output of the first stage is a complete situation: a 

fully-populated environment with robots, obstructions and mission allocations. 

The second stage involves executing a situation within a simulated environment. 

During its execution, the progress and behaviour of the robots within the simulation 

are monitored to determine whether any hazardous behaviour is exhibited. Monitoring 

is done by a daemon process which interfaces with the simulation. The daemon in-

spects the state of the robots to detect whenever an event occurs that corresponds to a 

member of a defined set of unwanted behaviours, such as colliding with a wall. The 

occurrence of such an event would indicate a failure of the control algorithm.  

Once a run is complete, a third stage processes the event log produced by the dae-

mon. The processing analyses the sequence of events within the run and ranks its 

overall significance, based on the likelihood that faults or weaknesses of the robot 

control algorithm were exhibited.  

The output of the third stage is a ranked list of situations, ordered by their signifi-

cance. A domain expert can use this to indicate which situations are most likely to be 

worth investing further time and resources in, using more labour-intensive techniques. 

In the current work, we used Player/Stage [10] as our implementation platform. 

Player is an abstraction library that provides a standardised interface to robot sensor 

and actuator hardware. Player also features a client/server architecture, allowing con-

trol code to execute across a network connection, rather than only running on-board a 

robot. It is widely used by robotics researchers as it enables a seamless transition be-

tween simulation and physical hardware. This allows developers to, for example, 

identify a weakness in a control algorithm in simulation, then directly test it in the real 

world to verify that there is really a problem.  

Stage is an open-source robot simulation environment that allows one or more ro-

bots to explore and interact within a 2D world. It is often used in conjunction with the 

Player project, as it provides virtualised hardware for many of the interfaces Player 

defines. Stage accurately models a range of sensors often found on physical hardware, 

such as laser rangefinders, and it simulates realistic physics with accurate collision 

detection. The limitation to a 2D world is pertinent, but is not a major limitation for 

this proof-of-concept study, and Player is fully compatible with 3D simulations in-

cluding Gazebo (http://www.gazebosim.org/). 

To generate an environment representing terrain and built structures the tool first 

creates a 2D noise map using a Perlin noise process [11]. As with most PCG tech-

niques, this is used as a base for subsequent post-processing. Using a simple pipe-and-

filter architecture, filter effects can be applied and chained arbitrarily to produce the 

final output that represents terrain. In the current tool we use two filters: a pixelisation 

filter to make the noise more granular and a thresholding filter to convert the noise 

into binary occupied/unoccupied. The latter is a wrapped by a coverage constraint 

algorithm that randomly varies the threshold used by the filter until the coverage of 

the space reaches a suitable mix of occupied and unoccupied space (as defined in a 

parameter file). Fig. 1 shows the effects of the filters. 



(a) Base Noise Map (b) Pixelated (c) Thresholded (d) Constrained 10–
20% 

Fig. 1. – Effects of post-processing filters available during environment generation 

The tool is configured by a situation file, which specifies various parameters to use 

during generation, such as the size of the map and the settings for the filters. The 

combination of these parameters and random variation gives rise to several different 

types of environment – examples are given in Fig. 2. 

 

 
 

Cave Neighbourhood Rocky desert 

Fig. 2. – Range of possible environments (with suggestive names) 

The mission planning tool takes as input the map generated by the environment 

generator and a second configuration file. The configuration file specifies the number 

of robots that need missions, including any (optional) minimal route length con-

straints. The mission planner then places each robot within the environment, ensuring 

they are not wholly or partially within an obstruction. It then generates a randomised 

route, defined by an ordered sequence of waypoints, for each robot. 

To generate a route, the planner picks an unobstructed point at random, then ap-

plies the A* path-finding algorithm [12] between a robot’s initial position and the 
selected point. If no navigable route can be found then the end point is discarded and 

a new one selected. If a minimum route length is specified in the configuration file, 

additional end points are appended until the constraint is satisfied. In practice, this 

lead to routes that closely traced the edges of terrain features, which is not sensible 

given that the robot needs to maintain useful lines of sight. For the purpose of route 

planning, therefore, we therefore performed a binary dilation on the map to exagger-



ate the size of terrain objects and thus force the routes to be plotted through more 

open space. 

The pathfinding algorithm generates complete, navigable routes with a great many 

waypoints. The Ramer–Douglas–Peucker
1
 algorithm is used to reduce the number of 

waypoints, both to reduce storage space for the situation and to force robots to do 

some online global path-planning to avoid obstacles, thus increasing the challenge for 

their movement algorithms. The algorithm’s epsilon parameter, which determines the 
amount by which the simplified path can deviate from the original (and thus the 

amount of global planning that can be required), can be set in the configuration file. 

Failures are detected by a daemon that continuously monitors the simulation envi-

ronment. The daemon is independent of the robot controller code and can detect loi-

tering, route completion, stalls (which are produced by Stage when the robot collides 

with terrain or another robot), waypoint arrival and unsafe proximity (between two 

robots). These are a mixture of safety, mission and performance events; in future 

work we plan to expand the range of safety-specific measures. In effect, it filters the 

fine detail of the simulation to produce a simpler textual representation (an event log) 

of each run.  

The logs are human readable, but very long, and one log is produced for every sit-

uation that is run. In order to guide engineers to the most interesting runs in the log, 

we developed a process for scoring runs according the interestingness (i.e. safety-

significance) of each the log events in that run. The score for each run is derived by 

applying event-specific penalties each time an event is triggered.  

Appropriate values to use for these penalties are subjective and highly dependent 

on both the features of the control algorithm being assessed and the context under 

which a robot will operate. The values used during the case study for this project were 

tuned using trial and error. For example, a penalty of 10 points is added if two robots 

enter an unsafe proximity, and a further penalty of 1 point per second is applied for 

the duration of the proximity. An idea for evolving or learning weights is presented in 

section 6. 

We can note that any controller that this implementation was applied to would 

have to support the Player/Stage-supplied virtual hardware and 2D environment, but 

otherwise the robot software is independent of our approach and the tool implementa-

tion is completely independent of the specific control software used. It could easily be 

applied to alternative algorithms or rival software designs. 

The full source code for our implementation is available at http://www-

users.cs.york.ac.uk/~rda/arnold_sitgen_src.zip, under a BSD 

licence.  

                                                           
1 Also known as the “split-and-merge” algorithm 
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4     Experiment & Results  

4.1 Experiment 

For the case study, we implemented a simple robot controller that combined simple 

path-following with smoothed nearness diagrams (SNDs) [13] for collision avoidance 

and basic reactive navigation. SNDs are well-understood and have been designed to 

work in both open and confined environments, including those with dynamic obsta-

cles. This meant that they were suitable for any of the environments created by the 

environment generator and mission planner. SNDs are often used in robotics research, 

thus an implementation is bundled with the Player distribution. Finding any weak-

nesses or faults in that would be evidence in favour the approach taken by this project 

on a real world and well-tested control algorithm, and it would also provide useful 

feedback for the Player developers. 

The controller was implemented on a virtual Pioneer 3-AT robot 

(http://www.mobilerobots.com/ResearchRobots/P3AT.aspx) equipped 

with a SICK LMS200 laser rangefinder; a model for this is provided by Stage. The 

robot is four-wheel drive, uses skid-steering and is capable of speeds of up to 0.8m/s. 

Although equipped with a sonar array, we used the laser range finder for obstacle 

detection as it gave us a forward-facing 180° field of view, a maximum sense range of 

10m and precision to the nearest cm (surpassing the capabilities of the sonar array). 

For the experiment, we generated and ran 500 unique situations, each with random-

ised parameters such as map size, obstacle density and minimum route lengths. Each 

situation was run as fast as Stage could simulate, before being terminated after 120 

seconds of wall-clock time
2
. Additionally, each situation contained a single AR and 

between zero and five ‘dumb’ robots; the latter acted as dynamic obstacles. The dumb 

robots had collision avoidance disabled and were only allocated routes that did not 

require any path-planning, i.e., adjacent waypoints could always be reached as the 

crow flies. Failure detection was only performed for the AR; events concerning only 

dumb robots did not contribute to the rating of a situation. 

The source code and Player/Stage configuration files used for the case study are 

included in the code distribution linked earlier. Further details are given in [14]. 

4.2 Results 

The risk scores for the different runs were widely distributed; indeed they appeared 

to follow a power-law distribution with a long tail of low-scoring (low-risk) runs. We 

investigated several of them in detail, and will discuss the highest-scoring three here. 

These scored 3064, 1574 and 988 respectively, versus a mean of 61.0. All of these 

high-scoring runs involved collisions between the AR and one of the dumb robots. 

The maps and initial mission plans for these runs are shown in figures 3-5. Robot 

starting points are shown by squares, robot goals are shown by circles; those for the 

                                                           
2
 The final simulation time of each run varied, but it tended to be on the order of 10 

minutes, a simulation performance of around 5x real time. 

http://www.mobilerobots.com/ResearchRobots/P3AT.aspx


AR are filled shapes, those for the dumb robot are hollow. The green lines represent 

the route plans provided to the robots; those for the AR have been simplified (as de-

scribed in section 3) and thus cannot be completed without obstacle avoidance. 

In run 207 (ranked first), a repeat collision occurred because the AR rounded a 

corner and collided with a dumb robot that was outside its field of view. As the dumb 

robot was still out of view after the collision, the AR continued to try to drive through 

it, thus continually pushing against it (which was logged as a very large number of 

collisions). This is a simple example of a hazard. 

 

Fig. 3. – environment and mission plan for situation 207 

In run 219 (ranked second), the AR and a dumb peer were started very close to 

each other on routes that took them through each other. There was space for them to 

avoid each other and pass successfully, but they started too close for the AR’s avoid-

ance algorithms to work properly. The AR therefore oscillated between trying to pass 

to the left and trying to pass to the right, colliding repeatedly with the dumb robot. 

 

Fig. 4. – environment and mission plan for situation 219 

This is interesting because smoothed nearness diagrams were meant to fix the os-

cillation proneness of the original nearness diagram concept, but here this was defeat-

ed because the AR could not see enough free space. The problem could be solved if 



the AR could comprehend the problem and back up slightly, but the AR’s control 
system does not have that feature. 

Run 231 (ranked third) was similar to run 207, except that the AR could see the 

dumb robot. It could have avoided a collision by moving at full speed, thus getting out 

of the way before the dumb robot reached it. SND, however, is designed to command 

low speed in “high risk” areas (ones near obstacles). In this case, the obstacle was 

itself moving towards the SND-equipped robot so high speed was necessary to avoid 

it. SND guided the AR to move slowly, thus colliding with the dumb robot. 

 

Fig. 5. – environment and mission plan for situation 231 

Run 231 is perhaps the most interesting of the three runs, as it reveals a weakness 

in the established SND concept, not just with the robot’s perception (run 207) or with 
its specific control implementation (run 219). Despite this, it is only scored at one-

third the value of run 207. It is therefore clear that some fine-tuning of the scoring 

system is desirable; with this in mind, we looked at the overall picture of whether the 

scoring had sorted runs into roughly the right order. 

The three runs described above are examples of true positives – runs scored highly 

that contain accidents. To search for false positives, we randomly sampled 10 runs 

from the top-rated 50 (excluding the three already discussed) and studied them in 

some detail. All of the 10 exhibited accidents or other abnormal behaviour, suggesting 

that the false positive rate was low. 

True negatives (runs that have no accidents and produce a low score) are perhaps 

the least significant category. However, the higher the proportion of true negatives, 

the more situations need to be generated (and runs performed) before problems are 

identified. In total, 227 runs (45% of the total) were assigned a score of less than ten 

points. 10% of these were sampled, and in all cases the low ratings were justified. 

This sampling also suggests that the false negative rate was low.    



5     Related Work 

As noted earlier, there are many applications of procedural generation in video 

games and virtual environment training (e.g. [2, 4-7]). These, however, aim for an 

optimum appearance or a slightly varied play experience, rather than the highly di-

verse challenges that concern us here. The use of Parish and Müller [15] in the 

CityEngine urban planning system is closer to our concerns, but still not directly ap-

plicable to creating challenging environments for robots. 

Ashlock et al. [16] presented a technique for generating mazes to test the effective-

ness of robot path planning algorithms. They evolved mazes which they then statical-

ly analysed to check they meet specific constraints, such as a minimum number of 

turns or a minimum optimal route length. Unfortunately, they did not evaluate any 

path-planners in the generated mazes – the merely conclude that high fitness scores 

were achieved and that the visualised output was varied and (intuitively) challenging. 

Nguyen et al. [17] apply a similar approach, using evolutionary optimisation to 

create challenging test situations for an AR. They then take it one step further, putting 

simulated AR within the situations to test how well they perform. The robot’s perfor-

mance is measured using a fitness function based on stakeholder-derived “soft goals”, 
and this is used to guide the optimisation. In this their technique is successful (it pro-

duces high fitness values), but they do not explore whether the runs are revealing 

diverse faults or merely exploiting progressively worse consequences of a single fault.  

There are a variety of approaches to runtime safety of AR (e.g. Wardziński [18]). 

These are orthogonal to the design-time analysis described in this paper; both are 

necessary for safe AR. Indeed, there would be interesting further work in applying our 

approach to analysis of a system that included such a runtime safety system, looking 

for situations that could cause the runtime system to dangerously fail.    

6     Conclusions  

We have described a PCG approach for generating situations to find faults in robot 

control software, and shown through a small case study that the basic approach can 

find faults in some cases. The case study found faults in the standard SND algorithm, 

without being tuned specifically for application to SND. The method is not fully au-

tomated – it requires a human engineer to study accident runs and discover exactly 

what is causing the problems – but the tool generates situations, executes them, and 

prioritises the results for human attention. 

Because the method tests purely by generating environments, it could be used to 

test any robot that is written for Player/Stage. Similarly, it can be used on a simple 

prototype in order to test and algorithm or an overall control strategy – a lot can be 

learned (fundamental algorithm flaws can be found) without needing a fully devel-

oped and mature implementation. 

As further work, this approach could be implemented in a higher-fidelity simula-

tion. This is perhaps best done by industry or as a commercialisation effort; further 

academic work should focus on refining the situation generation and result prioritisa-



tion algorithms, and understanding the space of environments that cause problems for 

major AR algorithms and strategies. 

An empirical evaluation of the method’s fault-finding power would be valuable. It 

could be compared to conventional testing approaches, and to manual situation gener-

ation. The comparative testing work by Nguyen et al [19] is useful template – in par-

ticular, note the way that they assess proportion of known faults found rather than 

relying on arbitrary measures such as run scores or search fitness functions. 

As further evaluation, there are many robot algorithms and control strategies that 

this approach could be applied to. One interesting case would be to apply it to the 

initial formulation of Velocity Obstacles, as presented by Fiorini and Shiller [20], and 

check whether it reveals the known flaws in that algorithm (see [21], [22]). 

Although the case study showed the run scoring system producing useful results, it 

is not clear whether it is well-calibrated to the scores that a human expert would as-

sign had they studied the situation in detail. It may be possible to learn or evolve the 

parameters of the scoring system (event weightings) by having human experts rate a 

large set of runs, then letting the learner or optimiser derive a scoring system that 

reproduces those scores for those runs. Such scoring system could be used as a fitness 

function for an optimisation technique that tuned the parameters of the situation gen-

erator. Although trying to maximise the scores achieved might lead to a narrow focus 

on a few high-impact faults, tuning the generator to minimise the number of low 

scores achieved might greatly increase the performance of the approach without com-

promising the diversity.     
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