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Analyzing Graph Time Series Using

a Generative Model

Cheng Ye, Richard C. Wilson and Edwin R. Hancock

Department of Computer Science, University of York, York, YO10 5GH, UK.

Abstract—In this paper, we present a novel method for
constructing a generative model to analyze the structure of
labeled data. Given a time-series of sample graphs, we aim to
learn a so-called “supergraph” that best describes the underlying
average connectivity structure present in the data. In this time-
series the vertex set is fixed and labeled and the set of possible
connections between vertices change with time. The supergraph
represents these changes with a Gaussian probability distribution
for the connection weights on each individual edge. This structure
is fitted to the time-series data by minimizing a description
length criterion, with the von Neumann entropy controlling the
complexity of the fitted model structure and the Gaussian log-
likelihood controlling the mean edge weights and variances. We
further show this fitting process can be optimized by using a new
fixed-point iteration scheme which locates the elements of the
optimal weighted adjacency matrix of the supergraph. We show
the iteration process is in fact governed by the partial derivative
of the von Neumann entropy. In the experiments, the resulting
generative model is shown to be an effective tool for analyzing
the underlying connectivity structure of time-evolving networks
in the financial domain, and in particular locating critical events
and distinct time epochs in their evolution.

I. INTRODUCTION

Time-evolving networks are important in several real-world
domains including the analysis of citation networks, commu-
nications networks, neural networks and financial networks,
to name just a few [1]. A time-evolving network gives rise
to structural patterns that change over time [2]. In order to
analyze such systems, efficient tools for understanding their
time-dependent structure and function are required. In general,
graph evolution can be approached from both macroscopic
and microscopic directions. On the one hand, the macroscopic
approach aims at studying how the global parameters of a
dynamic graph evolve from one time step to another. This can
be accomplished by directly employing a number of graph
characterizations that are developed on static graphs to each
time step, and then analyzing the time evolution of these
characterizations. For instance, Ye et. al [3] present a novel
method for characterizing the evolution of time-varying com-
plex networks by adopting a thermodynamic representation of
network structure computed from a polynomial (or algebraic)
characterization of graph structure. This approach combines
the theoretical tools developed for studying graph structure
in the context of statistical mechanics of complex networks
and clearly point the potentials of the current approach to
study real-world time-varying networks. On the other hand,
at the microscopic level, it is the birth-death dynamics of
individual vertex or edge in the graph evolution that are under
study. In the classical Barabási-Albert model [4], dynamic
properties are ascribed to a preferential attachment mechanism
for graph growth, i.e., the addition of new vertices that connect

to the vertices already in the graph. In detail, the preferential
attachment mechanism shows that the probability of an existing
vertex that connects to the newly added one is proportional to
its degree.

This paper focuses on the challenge of learning a generative
model which best captures the underlying edge connectivity in
a set of labeled graphs. Broadly speaking, there have been two
main approaches to characterizing edge structure variations in
graphs, namely a) graph spectral methods and b) probabilistic
methods. Although the spectral approach is simple and effec-
tive in developing generative models based on the Laplacian
eigenvectors, the method is limited by a lack of stability of the
Laplacian spectrum under perturbations in graph structure [5].
The probabilistic approach, on the other hand, is potentially
more robust, but requires accurate correspondence information
to be inferred from the available graph structure [6]. It is
important to stress that the graph under study is an ordered
collection consisting of a vertex set, an edge set and a vertex
label set which maps the vertices to a set of labels. The
vertex labels of the graphs give important information on
the vertex correspondences between data, which plays a vital
role in problems such as graph matching. In our analysis,
we focus on a simpler case where the vertex number and
vertex label information do not change between sample graphs.
In other words, we are dealing with graphs whose vertex
correspondences are to hand, and particularly are concentrating
on the edge patterns present in those graphs.

The outline of the paper is as follows. In Sec.II, we will
give the detailed development of how to construct a generative
model for a time-series of weighted and labeled graphs using
an information theoretic framework. In Sec.III, we will investi-
gate the practical utility of our proposed method in analyzing
the time evolution of real-world dynamical systems. Finally,
we conclude the paper with a summary of our contribution
and suggestions for future work.

II. GENERATIVE MODEL LEARNING

To commence the development, we define some notations.
Let G = {G1,G2, · · · ,Gt, · · · ,GN} represent the time-series
graph dataset under study, and Gt is used to denote the t-th
sample graph in the time-series. The generative model, or the
supergraph, which we aim to learn from the sample data is

denoted by G̃ = (Ṽ, Ẽ), with vertex set Ṽ and edge set Ẽ .

We are dealing with labeled graphs. Each vertex in a
network has a unique label. In our application involving the
New York Stock Exchange data, there are stocks trading in
the New York Stock Exchange market. The vertex indices are
denoted by lower-case letters including u, v, a, b, α and β, and
will interchange these vertex indices with the vertex labels.
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We represent the connectivity structure of the sample graph
Gt using a weighted adjacency matrix tW whose (u, v)-th
entry tWuv indicates the connectivity between vertices u and v
in the graph, and clearly, we have tWuv ∈ [0, 1]. Similarly, we

use the matrix W̃ to represent the structure of the supergraph

G̃.

A. Probabilistic Framework

Having introduced the necessary formalism, we now pro-
ceed to develop the probabilistic framework for the generative
model learning method. To commence, we require the posterior
probability of the observed sample graphs given the structure

of the generative model p(G|Ĝ). Then, the problem of finding
the optimal supergraph can be posed in terms of seeking the

structure G̃ that satisfies the condition

G̃ = argmax
Ĝ

p(G|Ĝ).

We follow the standard approach to constructing the likelihood
function, which has been previously used in [6][5]. This
involves factorizing the likelihood function over the observed
data graphs and making use of the assumption that each indi-
vidual edge in the sample graphs is conditionally independent
of the remainder, given the structure of the supergraph. As a
result, we have

p(G|G̃) =
∏

t

p(Gt|G̃) =
∏

t

∏

u

∏

v

p(tWuv|W̃uv), (1)

where t = 1, 2, · · · , N . Moreover, p(tWuv|W̃uv) is the prob-
ability that the connectivity between u and v in the sample
graph Gt is equal to tWuv , given that the edge (u, v) in the

supergraph G̃ has connectivity W̃uv .

To proceed, a model for the observation density

p(tWuv|W̃uv) is required. Luo and Hancock [6] have shown
that for unweighted graphs where the individual edge connec-

tivity of both the supergraph Ãuv and the sample graph tAuv

is either 0 or 1, the probability distribution p(tAuv|Ãuv) can
be modeled by a Bernoulli distribution. The idea behind this
model is that the connectivity of a particular edge in the data
graph is derived from that of the same edge in the supergraph
through a Bernoulli distribution. In their work, such model
has proved to be effective in inexact graph matching. Recently,
Martin et al. [7] have used a similar model to develop methods
for inferring structure for uncertain networks and particularly,
for solving community detection problems.

Since we are dealing with graphs whose edge connectivity
is weighted, i.e., takes on a value between 0 and 1. As a
result the Bernoulli distribution is not appropriate to model
the observation density in our analysis. To overcome this
problem, we note that according to the central limit theorem,
the distribution of the average of a large number of inde-
pendent, identically distributed variables is approximately a
Gaussian distribution, regardless of the underlying distribution.
Therefore, to simplify matters, here we model the distribution

p(tWuv|W̃uv) by adopting a Gaussian distribution N (µ, σ2) of
the connection weights whose mean is the weight for the edge

(u, v) in the supergraph, i.e., µ = W̃uv and whose variance is
σ2. It is worth noting that the choice of σ does not make a
significant difference in our development (we will show this

later). Even if we choose an inappropriate σ which makes the
generated edge connectivity exceed the valid weight interval
from 0 to 1, we could use data re-normalization techniques to
guarantee that the connectivity is on a scale of 0 to 1.

Finally, with the observation density model to hand, we
write

p(tWuv|W̃uv) =
1√
2πσ

e−(tWuv−W̃uv)
2/2σ2

.

With these ingredients, the likelihood function given in Eq. (1)
then becomes

p(G|G̃) =
∏

t

∏

u

∏

v

1√
2πσ

e−(tWuv−W̃uv)
2/2σ2

. (2)

To optimize the supergraph G̃, we maximize this likelihood
function with respect to the elements of the weighted adjacency

matrix W̃uv . This can be accomplished by straightforwardly
employing a maximum-likelihood estimation (MLE) method.
However, this leads to the result that the generative structure of
the graph time-series is simply the mean of the data graphs, i.e.,

the weighted adjacency matrix of the supergraph W̃ is obtained
by taking the average of the data graph adjacency matrices
tWuv . Clearly, such a structure does not capture sufficient
structural properties of the observed data graphs and thus
cannot represent the underlying connectivity structure of the
time-series of graphs. Thus a more meaningful and effective
method for estimating the generative model is required.

B. Minimum Description Length Coding

To locate the optimal supergraph. we adopt an information
theoretic approach and use a two-part minimum description
length (MDL) criterion. Underpinning MDL is the principle
that the best hypothesis for a given set of data is the one
that leads to the shortest code length of the observed data.
To formalize this idea, we encode and transmit the data Gt

together with the hypothesis G̃, leading to a two-part message
whose total length is given by

L(G, G̃) = L(G|G̃) + L(G̃),
where L(G|G̃) is the code length of the data graphs given

the supergraph and L(G̃) is the code length of the estimated
supergraph. Determining the most likely supergraph structure
can be viewed as seeking the one that minimizes the total code
length of the likelihood function. To this end, we take into ac-
count the total code length and apply the MDL principle to the
model, this allows us to construct a supergraph representation
that trades off goodness-of-fit with the sample graphs against
the complexity of the model.

To apply the two-part MDL principle, we commence by
computing the code length of the data graphs given the
supergraph. This can be achieved by simply using the average
of the negative logarithm of the likelihood function given in
Eq. (2), with the result that

L(G|G̃) = − 1

N
ln p(G|G̃)

= − 1

N

∑

t

∑

u

∑

v

{

ln
1√
2πσ

− (tWuv − W̃uv)2

2σ2

}

, (3)

where N is the length of the observed time-series data G.
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Next, we compute the code length of the supergraph
structure. Traditionally, the complexity of a model is measured
by counting the number of parameters in the model. However,
this does not generalize well for graphs since the true graph
complexity cannot be accurately reflected by information such
as the numbers of vertices or edges in the graph. To overcome
this problem, we adopt a more meaningful measure of graph
complexity, namely the von Neumann entropy, to encode
the complexity of the supergraph structure (see [8] and [9]
for detailed information of this entropy). Then, we have the
supergraph complexity code length as follows,

L(G̃) = 1− 1

|Ṽ|
− 1

|Ṽ|2
∑

(u,v)∈Ẽ

W̃uv

wuwv
, (4)

where wu =
∑

(u,v)∈Ẽ
W̃uv is the weighted degree of vertex

u, which is defined as the sum of the connectivity weights of
the edges connected to u and wv is similarly defined. In effect,
the complexity of the supergraph depends on two factors. The
first is the order of the supergraph, i.e., the number of the
vertices while the second is based on the degree statistics of
the vertices in the supergraph.

Finally, by adding together the two contributions to the total
code length, the overall code length of the likelihood function
is

L(G, G̃) = − 1

N

∑

t

∑

u

∑

v

{

ln
1√
2πσ

− (tWuv − W̃uv)2

2σ2

}

+1− 1

|Ṽ|
− 1

|Ṽ|2
∑

(u,v)∈Ẽ

W̃uv

wuwv

. (5)

To recover the supergraph we must optimize the above code
length criterion with respect to the weighted adjacency matrix

W̃ . This can be done in a number of ways. These include
gradient descent and soft assign [10]. However here we use a
simple fixed-point iteration scheme. To proceed with the devel-
opment of a useful optimization scheme we must compute the

partial derivative of the code length criterion L(G|G̃) given in
Eq. (3) with respect to the elements of the weighted adjacency

matrix W̃ab. After some analysis the required derivative is

∂L(G, G̃)
∂W̃ab

=
1

Nσ2

∑

t

(W̃ab −t Wab)−
1

|Ṽ|2

{

1

wawb

− 1

w2
a

∑

(a,β)∈Ẽ

W̃aβ

wβ

− 1

w2
b

∑

(α,b)∈Ẽ

W̃αb

wα

}

. (6)

where β denote the neighbour vertices of a and α are the
neighbours of b.

To set up our fixed-point iteration scheme, we set the above
derivative to zero, and re-organize the resulting equation to

obtain an update equation of the form W̃
(n+1)
ab = g(W̃

(n)
ab ),

where g(· · · ) is the iteration function and n is iteration
number. There is of course no unique way of doing this,

and for convergence the iteration function g(W̃ab) must have
a derivative of magnitude less then unity at the fixed point
corresponding to the required solution. One such scheme is

W̃
(n+1)
ab

=
1

Nσ2

∑

t

tWab +
1

|Ṽ|2

{

1

w
(n)
a w

(n)
b

− 1

w
(n)
a

2

∑

(a,β)∈Ẽ(n)

W̃
(n)
aβ

w
(n)
β

− 1

w
(n)
b

2

∑

(α,b)∈Ẽ(n)

W̃
(n)
αb

w
(n)
α

}

. (7)

The update process is governed by two terms. The first
is computed from the local windowed mean of the time-
series 1

Nσ2

∑
t
tWab, while the second term is a step away

from the local time-series mean determined by the partial
derivative of the von Neumann entropy. This latter update
term depends on the local pattern of vertex degrees. The
convergence properties of the above fixed-point scheme are
clearly critical. In general, a fixed-point iteration process
xn+1 = g(xn), n = 0, 1, 2, · · · will converge to the fixed
point x⋆ = g(x⋆) provided that |g′(x⋆)| < 1, and g(x)
has exactly one fixed point in [a, b] and the sequence xn is
initialized with x0 ∈ [a, b]. In our case, from Eq. (7), we have

W̃
(n+1)
ab = g(W̃

(n)
ab ).

Computing the derivative of g(W̃ab) gives

g′(W̃ab) =
2

|Ṽ|2

{

W̃ab − wa − wb

w2
aw

2
b

+
1

w3
a

∑

(a,β)∈Ẽ

W̃aβ

wβ

+
1

w3
b

∑

(α,b)∈Ẽ

W̃αb

wα

}

.

Since W̃ab ≤ wa and W̃ab ≤ wb, and the vertex weighted
degree is normally not small, the derivative satisfies the con-

dition g′(W̃ab) ∈ [−1, 0] for all W̃ab ∈ [0, 1], and we are
assured convergence of the fixed-point iteration scheme. Since

the derivative of g(W̃ab) is negative in sign, the convergence
pattern is cobweb, i.e., from alternating sides of the fixed point.

There are a number of important points to note concerning
the above analysis. First, our goal is to develop a generative
model (or supergraph) that can be used to best explain the
structural variations present in a time-series of graphs. To
this end, we commence from a probabilistic framework which
describes the likelihood of the observed data given the model
structure. We then pose the problem of determining the optimal
model structure as one of minimizing a code length criterion.
To solve this problem numerically, we develop a simple fixed-
point iteration scheme for optimizing the weighted adjacency
matrix of the supergraph. The supergraph is initialized using
the mean weighted adjacency matrix for the time-series, and
then optimized at each time step to best fit the data in a time-
window, the adjustment is determined by the von Neumann
entropy.

III. EXPERIMENTS

To evaluate the properties of the generative model and
explore its practical utility on real-world data, in this section
we report experimental results on time-evolving financial net-
works representing stock trading in the NYSE Stock Market
Network Dataset. We first examine the validity of the pro-
posed model learning method by exploring its convergence
properties. Then, we compare the data graph structure with
the supergraph learned from a time window of fixed length
for a number of financial crisis time-series, and the result
shows the supergraph is able to smooth the time-series data and
more importantly, is more effective in locating critical events
and distinct time epochs in financial crises. Also shown in
the experiments is that by comparing the generative structure
learned from different time-series data, we can better visualize
and understand the structural difference of the stock market
network in different time periods.
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Fig. 1. Normalized histogram of the connectivity of two randomly selected
edges (u, v) in the time-evolving stock correlation network and the Gaussian
distribution fitting.

NYSE Stock Market Network Dataset. Is extracted from a
database consisting of the daily prices of 3799 stocks traded
on the New York Stock Exchange (NYSE). This data has
been well analyzed in [11], which has provided an empirical
investigation studying the role of communities in the structure
of the inferred NYSE stock market. The authors have also
defined a community-based model to represent the topological
variations of the market during financial crises. Here we make
use of a similar representation of the financial database, and
employ the correlation-based network to represent the structure
of the stock market since many meaningful economic insights
can be extracted from the stock correlation matrices [12].
Particularly, to construct the dynamic network, 347 stocks that
have historical data from January 1986 to February 2011 are
selected [13][11]. Then, we use a time window of 28 days
and move this window along time to obtain a sequence (from
day 29 to day 6004) in which each temporal window contains
a time-series of the daily return stock values over a 28-day
period. We represent trades between different stocks as a net-
work. For each time window, we compute the cross-correlation
coefficients between the time-series for each pair of stocks,
and create connections between them if the maximum absolute
value of the correlation coefficient is among the highest 5%
of the total cross correlation coefficients. This yields a time-
varying stock market network with a fixed number of 347
vertices and varying edge structure for each of 5976 trading
days.

A. Convergence

The first part of our experimental investigation aims to
explore the convergence properties of the fixed-point iteration
scheme. To this end, we first investigate whether the choice
of Gaussian distribution adopted for modeling the observation

density p(tWuv|W̃uv) is valid. Figure 1 gives the normal-
ized histogram of the edge connectivity of two randomly
selected edges in the time-evolving financial network and the
probability density function curve of a Gaussian distribution
whose mean is equal to the mean value of the corresponding
edge connectivity and whose standard deviation is set to be
a small value (0.1 here). Clearly, both plots show the normal
“bell curve” or Gaussian distribution curve fits the data well,
which means that using Gaussian distribution to model the
probability of the observed data graph edge connectivity given
the corresponding supergraph edge connectivity is effective.

To better visualize how the fixed-point iteration converges,
we test the iteration process on a number of time-series graph
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Fig. 2. Convergence properties of fixed-point iteration process as a function
of iteration number for data graphs of different financial crises.

data of different financial crises, including the Black Monday,
Friday the 13th mini-crash. For each financial crisis time-

series, we initialize the supergraph W̃0 with the mean data
graph, which is obtained by taking the average of the structure
of the sample graphs in the time-series. Then we process

the iteration scheme W̃
(n+1)
ab = g(W̃

(n)
ab ), n = 0, 1, 2, · · · ,

which is given in Eq. (7) and observe how the complexity
of the supergraph, the average log-likelihood of the sample
graphs and the total code length of the likelihood function vary
with the iteration number. Here, the standard deviation of the
Gaussian distribution is set to be σ = 0.1, and at each iteration
step, we perform a feature scaling normalization method to
guarantee that the elements of the weighted adjacency matrix

of the updated supergraph W̃
(n)
ab is in the interval [0, 1].

Figure 2 shows how various properties of the fixed-point
iteration scheme for a number of financial crisis time-series
data change during updating. From the plots in the first column,
as the iteration processes, the supergraph entropy of both time-
series fluctuates and gradually converges to a value that is
lower than the initial entropy. This observation indicates that
the structure of the generative model becomes less complex as
the iteration scheme processes. The reason for this is that the
supergraph is being optimized to best summarize the structural
variations present in the time-series data during updating.
Then, some negligible structural information contained in the
data is discarded from the generative structure, which makes
the supergraph less complex. Another interesting feature to
note in the plots is that the entropy convergence of two time-
series differs, which is a reasonable result as the supergraph is a
structure representation that best explains the data graphs, then
different financial crisis time-series yield different generative
structure. In the second and third columns, the plots show
the average log-likelihood function gradually increases as the
increase of the number of iteration, while the total code length
reduces. This is an expected observation since the goal of
the proposed method is to maximize the probability of the
observed data graphs given the model structure and also to
minimize the total code length of the likelihood function.

Another interesting feature to note in the figure is that in
both cases, the convergence of the fixed-point iteration process
is oscillates from side-to-side of the fixed point. This cobweb
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Fig. 4. Von Neumann entropy of supergraph and data graph as a function of
time for different financial crises.

pattern is a consequence of the fact that g′(W̃ab) ∈ [−1, 0]. To
verify this, in Fig. 3 we show a histogram of the values of the

derivative function g′(W̃ab) for all the elements W̃ab obtained
during the iteration processes. The result clearly conforms to
our expectation as most derivative function values lie in the
interval [−1, 0]. In particular, the values for the derivative
function are close to zero, which means that the iteration
process converges close to quadratically to the fixed point.

B. Event Detection

The second experimental goal is to explore whether the
generative model can be used to provide a more efficient
representation of the network structure in terms of capturing
and detecting the structural changes during network evolution.
To this end, for each time epoch t in the time-series data, we
view the graphs from t−N/2 to t+N/2 as the observed sample
graphs, where N +1 is the length of the time-series data. We
then learn a generative model from this set of sample graphs,
which can be viewed as a new network representation at t.
We compare this new structure representation with the original
data graph at each time epoch in the financial crisis time-series,
by using the graph approximate von Neumann entropy.

In Fig. 4 we plot the approximate von Neumann entropy of
both the data graph and the supergraph for Black Monday and
the September 11 attacks time-series data. It is worth pointing
out that, to construct the generative structure at each t, we
use the sample graphs from t − 5 to t + 5 as the data. This
is because two weeks is assumed to be a proper time length
that can be used to effectively represent how long the effects
of stock correlations last in the stock market. Moreover, the
supergraph structure at each t is obtained after 15 iterations
since we have observed from Fig. 2 that generally, the structure
of the supergraph converges after 15 steps of updating.

From both plots, the von Neumann entropy of the super-

graph generally follows the trend of that of the data graph
in the time-series, implying that the supergraph is effec-
tive in capturing the graph structural properties in the data.
More importantly, the generative model clearly gives a better
graph structure representation than the sample graph since
the supergraph entropy curve eliminates some of the random
fluctuations observed in that of the sample graph. For example,
from the inset plot in Fig. 4(a), at the day when Black Monday
takes place, i.e., 19th October, 1987, the von Neumann entropy
of the data graph clearly shows some unexpected fluctuations.
However, the supergraph entropy reaches its minimum with
a significant decrease, precisely representing that the stock
correlation network experiences significant structural changes
at that day. Overall, Fig. 4 shows that the supergraph we
have learned using the generative model can be used as an
efficient tool for summarizing a time-series of sample graphs
and more importantly, for identifying significant structural
changes during the network evolution.

C. Time Series Structure

From our development of the generative model, the su-
pergraph represents a generative structure over a time-series
of sample graphs. So it is expected that the graph whose
structure significantly differs from that of the supergraph, can
be viewed as a sample generated from the generative model
with a relatively low probability. In contrast, graphs that have
similar structure with the supergraph are the samples generated
from the model with higher probabilities. In other words,
the graphs corresponding to critical events and periods in
the financial time-series should be highly dissimilar to the
generative structure computed from the time-series data. To
verify this expectation, in Fig. 5 we plot the Jensen-Shannon
divergence kernel [14] between the sample graph at each time
epoch and the supergraph for the entire time period in the
financial data. Unlike the experiments shown above, here the
supergraph is constructed over the whole collection of the
financial data graphs.

The Jensen-Shannon divergence kernel is a non-extensive
information theoretic kernel, which can be defined using the
von Neumann entropy and mutual information computed from
the structure being compared. In the work [14], the Jensen-
Shannon divergence between graphs G1 and G2 is expressed
as

DJS(G1,G2) = HV N (GU )−
HV N (G1) +HV N (G2)

2
,

where GU denotes the disjoint union graph of G1 and G2, and
HV N is the von Neumann entropy. Then, the Jensen-Shannon
divergence kernel is

kJSD(G1,G2) = exp{−DJS(G1,G2)}.
It is interesting to note that the the Jensen-Shannon divergence
kernel is dependent on the individual von Neumann entropies
of graphs G1 and G2 as the composite entropy HV N (GU ) can
be computed from HV N (G1) and HV N (G2).

The most important feature in the figure is that most of
the significant troughs can be used to identify significant real-
world financial crises. For instance, the Black Monday is the
deepest one in the plot and the September 11 attacks also
gives a sharp drop in the kernel curve. The reason for this
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Fig. 5. Jensen-Shannon divergence kernel between sample graph and
supergraph as a function of time for the time-evolving financial network.

is that during financial crisis, the stock correlation network
undergoes significant structural changes, making the graph
structure different from that of the generative model, which
is a summary structure over the entire financial time-series.
Such difference in graph topology can be efficiently captured
by the shortest path kernel and the information theoretic kernel.
Then, the similarity between the financial-crisis graph and the
generative model becomes extremely low.

Another interesting observation to note in Fig. 5 is that
the kernel measure exhibits very different patterns before and
after a so-called “critical point” time epoch, which is around
July and August, 2002. In particular, before the critical point,
the kernel generally remains stable with time, except for a
small number of fluctuations indicating the financial crises.
This implies that the stock correlation network is able to return
to its normal state in a short time after each financial crisis
from 1987 to 2002. In contrast, after the critical point, the
kernel becomes extremely unstable, which means that the net-
work structure fluctuates significantly and becomes difficult to
recover from the crises over the last decade. These observations
can be mathematically verified by computing the modularity
of the two generative structure computed from the time-series
data before and after the critical point respectively, which
are 0.3311 and 0.1860. In effect, the modularity is bounded
between -1 and 1, and a network with a high modularity has
modules in which the vertices are densely connected between
each other but sparse connections between vertices in different
modules. This shows that during 1987 to 2002, most stocks in
the market have the tendency to form larger-sized groups in
which the stocks are densely correlated internally. After 2002,
stocks in the market are more likely to remove the connections
with the stock groups, which may be related to the fact that
such structure could lower the risk of stock price falling caused
by the crash of the important stocks, i.e., core vertices in the
network.

IV. CONCLUSION

To conclude, this paper is motivated by the need to develop
efficient tools for analyzing time-evolving network data. To
this end, we have suggested a novel method for learning a
generative model from graph time-series in which the weights
of the connectivity between vertices in the graph change
with time while the vertex number and label do not. We

concentrate on the edge patterns present in those graphs and
represent the connectivity changes on each individual edge
with a Gaussian probability distribution, which is characterized

by the structure of the generative model (or supergraph). The
paper then explores how this structure can be fitted to the graph
time-series data using an information theoretic approach with
an MDL criterion, whose model complexity is encoded by the
graph von Neumann entropy. To solve the data-fitting problem,
we present a new fixed-point iteration scheme which optimizes
the structure of the generative model. In the experiments,
we show our proposed method provides a number of new
directions to the time-evolving network analysis.

There are a number of ways in which the work reported
here can be extended. For example, it would be interesting to
explore whether the method proposed for analyzing time-series
data can contribute to the construction of dynamic network
models. To do this, we could apply a Markov chain model to
our generative model and investigate whether we could seek
the evolutionary rules that govern the network dynamics.
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